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Recent advances in wearable sensor technology andmachine learning (ML) have allowed

for the seamless and objective study of human motion in clinical applications, including

Parkinson’s disease, and stroke. Using ML to identify salient patterns in sensor data

has the potential for widespread application in neurological disorders, so understanding

how to develop this approach for one’s area of inquiry is vital. We previously proposed

an approach that combined wearable inertial measurement units (IMUs) and ML to

classify motions made by stroke patients. However, our approach had computational

and practical limitations. We address these limitations here in the form of a primer,

presenting how to optimize a sensor-ML approach for clinical implementation. First, we

demonstrate how to identify the ML algorithm that maximizes classification performance

and pragmatic implementation. Second, we demonstrate how to identify the motion

capture approach that maximizes classification performance but reduces cost. We used

previously collected motion data from chronic stroke patients wearing off-the-shelf IMUs

during a rehabilitation-like activity. To identify the optimal ML algorithm, we compared

the classification performance, computational complexity, and tuning requirements of

four off-the-shelf algorithms. To identify the optimal motion capture approach, we

compared the classification performance of various sensor configurations (number and

location on the body) and sensor type (IMUs vs. accelerometers). Of the algorithms

tested, linear discriminant analysis had the highest classification performance, low

computational complexity, andmodest tuning requirements. Of the sensor configurations

tested, seven sensors on the paretic arm and trunk led to the highest classification

performance, and IMUs outperformed accelerometers. Overall, we present a refined

sensor-ML approach that maximizes both classification performance and pragmatic

implementation. In addition, with this primer, we showcase important considerations for

appraising off-the-shelf algorithms and sensors for quantitative motion assessment.

Keywords: machine learning algorithms, wearable sensors, inertial measurement unit, accelerometers, functional

primitives, stroke rehabilitation

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2019.00996
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2019.00996&domain=pdf&date_stamp=2019-09-18
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:heidi.schambra@nyulangone.org
https://doi.org/10.3389/fneur.2019.00996
https://www.frontiersin.org/articles/10.3389/fneur.2019.00996/full
http://loop.frontiersin.org/people/719490/overview
http://loop.frontiersin.org/people/771862/overview
http://loop.frontiersin.org/people/239784/overview


Parnandi et al. Motion Classification in Neurological Patients

INTRODUCTION

Wearable sensors, such as inertial measurement units (IMUs)
and accelerometers, provide an opportunity for the objective,
and seamless capture of human motion. Machine learning (ML)
enables computers to learn without being explicitly programmed,
and provides an opportunity to rapidly identify patterns in data.
ML is potentially a powerful tool for clinical application because
of its ability to automatically recognize categories of interest.
These categories could be used for diagnostic purposes (e.g.,
severity of disease, disease identification) or therapeutic purposes
(e.g., dose quantitation during stroke rehabilitation).

Given recent technological and computational advances,
combining wearable sensor data with ML algorithms has the
potential for rapid, automated, and accurate classification of
motion. Researchers have begun using this combined sensor-
ML approach in a number of applications. These include
human activity recognition (1–3), gesture analysis (4), assessment
of bradykinesia in Parkinson’s disease (5, 6), motor function
assessment in multiple sclerosis (7), and differentiating between
functional and non-functional arm usage in stroke patients (8,
9). While many of these studies showcase the application of
sensors and ML in clinical populations, no previous work has
detailed the various hardware and software considerations for
using the sensor-ML approach. Furthermore, no guide currently
exists to advise investigators in building and troubleshooting this
approach, which sits at the intersection of human movement
science, data science, and neurology. With the potential for
the sensor-ML approach to have widespread applicability to
neurological disorders, understanding how to develop this
approach for one’s own area of inquiry is paramount.

One possible application of the combined sensor-ML
approach is the monitoring of rehabilitation dose in stroke
patients. Quantifying the dose of rehabilitation entails classifying
units of measurement, which are subsequently tallied. In
our previous proof-of-principle study, we used IMUs worn
by stroke subjects performing a structured tabletop activity
to capture motion data. Our units of measurement were
functional primitives, elemental motions that cannot be
further decomposed by a human observer. We applied
an ML algorithm (hidden Markov model with logistic
regression) to the IMU motion data to recognize primitives
embedded in this activity, achieving an overall classification
performance of 79% (10). While promising, this sensor-ML
approach had variable classification performance among
the primitives (62–87% accuracy). It also did not address
research implementation challenges such as the computational
complexity and computational costs of the ML approach, or
clinical implementation challenges such as the expense (11) and
electromagnetic intolerance of the IMUs.

In the present study, we address these limitations in the form
of a primer, outlining deliberations that researchers developing
their own sensor-ML approach would need to consider. We
describe our rationale and steps for identifying (1) an algorithm
that is highly accurate but computationally tractable, and (2)
the type and array of sensors that minimize cost but maximize
accuracy. We use functional primitives as the motion type to

be classified, and describe our approach for both capturing and
identifying these motions. We also use off-the-shelf algorithms
and sensors, providing an accessible framework for investigators
seeking to address new scientific and clinical questions with the
sensor-ML approach.

METHODS

To demonstrate the steps in identifying the optimal ML
algorithm and sensor array, we use data collected from previous
work (10). Briefly, six mild-to-moderately impaired stroke
patients (Table 1) moved a toilet paper roll and aluminum can
over a horizontal array of targets (Figure 1).

Subjects performed 5 trials moving the object between a center
target and eight radially arrayed targets (20 cm away). The task
generates the following functional primitives: reach (to move
into contact with a target object); transport (to convey a target
object); reposition (to move proximate to a target object); and idle
(to stand at the ready near target object). Functional primitives
are discrete, object-oriented motions with a single goal (12).
Functional primitives are non-divisible and are largely invariant
across individuals (13), may be represented cortically (14–16),
and provide a finer-grained capture of performance in stroke
patients who may be unable to accomplish a full activity. Akin to
words, functional primitives are combined to make a functional
movement (17) (analogous to a sentence), which in turn are
combined to make an activity (analogous to a paragraph) (18).
For example, a series of reach-transport-reposition primitives
could constitute a functional movement for zipping up a jacket,
within the activity of dressing.

Motion data were recorded with 11 IMUs (XSens Technology)
worn on the head, sternum, pelvis, and bilateral hands, forearms,
arms, and scapulae. 3D linear accelerations, 3D angular velocities,
and quaternions were generated at 240Hz. To segment and
label the motion data as constituent functional primitives, we
synchronously recorded motion (30Hz) with a single video
camera. Trained coders used the video recording to label the
beginning and end of each primitive, which also labeled the

TABLE 1 | Demographic and clinical characteristics of patients.

N 6

Age (years) 61.7 (46.5–71.0)

Gender (Female/Male) 2F/4M

Dominant arm (Right/Left) 5R/1L

Paretic side (Right/Left) 6R

Impairment (Fugl-Meyer score) 52.8 (45–62)

Time since stroke (years) 12.0 (2.0–31.1)

Shown are number of participants, mean age (range), gender, race, hand dominance,

paretic side, mean Fugl-Meyer assessment score at first assessment (range; maximum

66), and time since stroke (range). Inclusion criteria were age ≥18 years; premorbid

right-hand dominance; unilateral motor stroke; contralateral arm weakness with Medical

Research Council score <5/5 in a major muscle group. Exclusion criteria were traumatic

brain injury; musculoskeletal, medical, or non-stroke neurological condition interfering

with assessment of motor function; contracture at shoulder, elbow, or wrist; moderate

dysmetria or truncal ataxia; visuospatial neglect; apraxia; global inattention; blindness.
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FIGURE 1 | Tabletop activity set-up. Healthy individual wearing the sensors

and transporting the object from center to a target.

corresponding IMU data. These labels served as the ground
truth. This step enabled us to train ML algorithms on motion
data and test their classification performance against the ground-
truth labels. IMU data were z-score normalized and statistical
features were extracted. Following prior work, the statistical
features were the following: mean, standard deviation, minimum,
maximum, and root mean square (10). These statistical features
have been shown to capture human motion efficiently, reducing
the computational burden (19–21). We selected a window
size of 0.25 s sliding by 0.1 s (10), from which to derive the
statistical features. The statistical feature data were fed to the
ML algorithms.

The dataset consisted of 2,881 functional primitives,
consisting of 810 reaches, 708 transports, 781 repositions,
and 582 idles. It is important to note that this is the sample
size of interest (not the number of subjects). Accounting for
repeated measures within-subject and at each target, and using
this dataset of 2,881 primitives with α = 0.05, we have 81%
power to detect a classification performance of at least 79%
(positive predictive value, section Classification Performance of
Algorithms below). We used 79% accuracy as the benchmark for
sufficient classification performance as achieved in our previous
study (10).

COMPUTATIONAL DETAILS

ML Methods for Classification
In the present study, we sought to identify an ML algorithm
that performs well for identifying functional primitives, i.e., has a

high classification performance, but that also is practical, i.e., has
low computational overhead and minimal tuning requirements.
Supervised ML algorithms work in two phases: training and
testing. During training, ML algorithms learn the relationship
between a pattern of data characteristics (here, the statistical
features) and its class (here, its primitive label). During testing,
the trained ML algorithm uses the pattern of data characteristics
to identify a new data sample as one of the primitives. This
identification is checked against the ground-truth human label,
thus reading out classification performance.

We considered both generative and discriminative algorithms.
Generative algorithms model the underlying distribution of data
for each class, seeking to identify data characteristics that enable
matching of new data samples to a given class. In contrast,
discriminative algorithms model the boundaries between classes
and not the data themselves. They seek to identify the plane
separating the classes so that, based on location relative to the
plane, a new data sample is assigned to the appropriate class.

We selected four algorithms that have been found to provide
high classification performance in human activity recognition:
linear discriminant analysis (LDA) (22), Naïve Bayes classifier
(NBC) (19), support vector machine (SVM) with a radial basis
function kernel (23), and k-nearest neighbors (KNN) (20). LDA
and NBC are generative algorithms, whereas SVM and KNN are
discriminative algorithms.We used off-the-shelf versions of these
algorithms without any special permutations; in other words, the
algorithms are widely available inmostmachine learning libraries
such as scikit-learn (24, 25).

Algorithm Performance Metrics
Classification Performance of Algorithms
We first evaluated how well the algorithms could classify
primitives, measuring classification performance by comparing
algorithm-chosen labels against ground-truth human labels.
Primitives were classified as true positive (TP, labels agreed)
and false positive (FP, labels disagreed). We used 60% of the
data to train the algorithm and 40% to test it, repeating the
process 10 times. A validation dataset was not used because we
were not optimizing algorithm architectures, and the test dataset
provides an unbiased estimate of algorithm performance. Data
were randomly selected for each primitive proportional to its
prevalence in the complete dataset (i.e., stratified proportional
sampling). This ensured that each dataset adequately represented
the entire sample population. In addition, to examine the
possibility that within-subject dependencies in the training
and testing sets leads to an overestimation of classification
performance, we also performed a leave-one-subject-out analysis
i.e., training the algorithms using data from all but one subject
and testing its performance on the data from the remaining
subject. This process was repeated 6 times, once for each subject,
and classification performances were averaged.

The first metric for classification performance was positive
predictive value (PPV; [TP/(TP+FP)]∗100). PPV reflects how
often a primitive was actually performed when the algorithm
labeled it as such; in other words, PPV is how often a primitive
was correctly classified. We generated primitive-level PPVs in a
one-vs.-all analysis (e.g., reach vs. transport + reposition + idle
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combined). We also generated an overall PPV by combining
data for all primitives and tallying all true and false positives.
We prefer PPV because it takes into account the prevalence
of the primitive in the dataset (26). We additionally examined
confusionmatrices for each algorithm. A confusionmatrix allows
us to visualize where the algorithm is succeeding or failing in its
classification. Each row of the confusionmatrix correspond to the
true classes (human-generated) and each column correspond to
the predicted-classes (ML-generated). The diagonal cells between
the rows and the columns represent the percentage of primitives
for which the predicted class is same as the true class, while
the adjacent cells (non-diagonal) represent the percentage of
primitives misclassified by the algorithm. Ideally, the diagonal
cells should contain a value of 100% with the adjacent cells being
0%, indicating perfect classification.

The second metric for classification performance was the
receiver operating characteristic (ROC) curve. ROC curves depict
the relative tradeoff between true positive rate (sensitivity; y-
axis) and false positive rate (1-specificity; x-axis) and identify
the optimal operating point of an algorithm (27). Perfect
classification would lead to a ROC curve that passes through
the upper left corner, with an area under the ROC curve (AUC)
equal to 1 and an operating point at 100% sensitivity and 100%
specificity (27).

Practical Performance of Algorithms
We next considered the computational complexity of the
algorithms in terms of their training and testing times and their
tuning requirements. Having a high computational complexity
means that specialized computing hardware and advanced
expertise would be needed, potentially hindering widespread
implementation in research.

Training and testing times of the algorithms
The time required to train and test the algorithms was measured
for datasets of different sizes. If training time is fast, rapid
appraisal and optimization of the algorithm are possible, favoring
rapid development and deployment. If the testing time is fast,
real-time classification and online feedback are possible, favoring
clinical implementation.

We first used 20–100% of the dataset (n = 2,881 functional
primitives) in randomly selected 10% increments. At each
increment, we measured (1) the time required to train the
algorithm (training time), and (2) the time required for a
trained algorithm to classify a primitive (testing time). At each
10% increment, the algorithms were trained de novo to avoid
overfitting and to provide unbiased estimates.

Given the modest size of our dataset, we next used a simulated
dataset that could be expected from a typical sample size of
50 subjects performing a variety of activities. The simulated
dataset had 300,000 functional primitives with same proportion,
mean, and variance as our original dataset. We used 25–100%
of the dataset in randomly selected 25% increments. At each
increment, we measured the training and testing times, training
the algorithm de novo as above. Of note, the simulated dataset
was used only to generate training and testing times, and was not
used for classification performance assessments.

Tuning requirements of the algorithms
We also assessed the algorithm’s need for tuning, the adjustment
of algorithm parameters to maximize classification performance.
A high tuning requirement requires the extensive analysis of the
algorithm to identify its optimal parameters, potentially limiting
implementation in settings that lack domain expertise. Of note,
tuning requirements were only used to index complexity, but
we did not tune the algorithms themselves in the assessment of
classification performance.

We operationalized the algorithms’ tuning requirements as
the number of parameters that can be adjusted. We also
qualitatively classified the level of domain knowledge required
to implement and tune the algorithms. Based on typical US
educational programs, “low” domain expertise indicates a basic
knowledge of statistics, “medium” indicates undergraduate-level
knowledge of machine learning, and “high” indicates graduate-
level knowledge of machine learning.

Optimal Sensor Characteristics
We then focused on the hardware side, seeking the best
balance between ease of motion capture and high classification
performance. We first considered the use of IMUs compared
to accelerometers alone. IMUs are a combination of sensors,
including accelerometers, gyroscopes, and magnetometers.
Many IMU hardware-software systems generate 3D linear
accelerations, 3D angular velocities, 3D magnetic heading, and
4D quaternions, resulting in 10 data dimensions per sensor.
We used accelerations, angular velocities, and quaternions for
derivation of statistical features (section Methods), as these data
types have been used previously for human activity recognition
(20, 28, 29). In contrast, 3D accelerometers generate only 3D
linear accelerations, resulting in 3 data dimensions per sensor.

While IMUs are data-rich, they are challenged by
electromagnetic drift. Magnetic environments lead to potentially
inaccurate gyroscopic measurements and therefore necessitate
frequent recalibration. While accelerometers are data-sparse,
they are largely unaffected by a magnetic environment.

Another practical consideration for sensor choice is system
expense. IMU systems can cost thousands of dollars (11)
whereas accelerometry systems cost in the hundreds (30). It
is possible that cost and set-up time could be optimized by
reducing the number of sensors or by using accelerometers alone.
Although simplified and less expensive motion capture would
favor clinical implementation, it may come at the cost of reduced
classification performance.

In this analysis, we subsampled data from the IMUs to extract
accelerometry data, ensuring that comparisons were based on
identical sensor locations and primitive motions. LDA was
trained and tested on the separate datasets to read out effects on
classification performance.

Optimal sensor number and configuration for classification
We first evaluated how the number of sensors and their
location on the body affects classification performance. We
used exhaustive search to systematically test all possible
sensor configurations (31). This approach provides an unbiased
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appraisal of all sensor combinations for each incremental
reduction in sensor number.

Optimal sensor type for classification
We also evaluated how sensor type affected classification
performance. We compared classification accuracies using IMU
data vs. accelerometry-only data. This allowed us to determine
whether accelerometers, with their reduced dimensionality,
could enable sufficient accuracy to warrant their use in lieu
of IMUs.

RESULTS

Classification Performance of Algorithms
We first determined the classification performance of multiple
ML algorithms using PPVs (Table 2). LDA and SVM had
high classification performance for all functional primitives
(overall PPV 92.5 and 92%, respectively). KNN had intermediate
performance (PPV 87.5%) and NBC had the lowest performance
(PPV 80.2%), particularly for reaches (PPV 77%) and transports
(PPV 71%). In the leave-one-subject-out analysis, which
addressed the possibility of within-subject dependencies, similar
overall classification performances were identified (PPVs of 89%
for LDA, 90% for SVM, 83% for KNN, and 75% for NBC).

We then inspected the confusion matrices of the algorithms,
which enables us to identify primitive-level classification. We
found that LDA and SVM had high classification success for
all four primitives (diagonal cells in the confusion matrices:
90.0–94.0%) and had few misclassifications (non-diagonal
cells: 1.4–4.8%) (Figure 2). KNN had moderate success in its
classification of the four primitives (diagonal cells: 85.1–89.1%),
and misclassified 7.1% of the transports as reaches. NBC had
moderate success in its classification of repositions and idles (83.4
and 83.9%, respectively) and inadequately classified transports
and reaches (70.5 and 77.8%, respectively). NBC misclassified
12.3% of the reaches as transports and 15.7% of the transports
as reaches.

To further characterize classification performance, we
generated ROC curves for each functional primitive (Figure 3).
All algorithms detected idle with high accuracy (AUC > 0.87).
For the other primitives, LDA and SVM had AUCs 0.95–0.99,
indicating very high classification performance. KNN also
had high classification performance for reach (AUC 0.94)
and transport (AUC 0.90) and intermediate classification
performance for reposition (AUC 0.87). In contrast, NBC had the
lowest classification performance on the remaining primitives
(AUC 0.80–0.85). We also identified the optimal operating point,
indicating the best tradeoff between sensitivity and specificity, for
each algorithm (Figure 3). At their respective optimal operating
points, LDA and SVM achieved high sensitivities (0.83–0.95)
and specificities (0.83–0.95) for all primitives. KNN achieved
a high sensitivity (0.91) and specificity (0.86) for transport,
but had moderate sensitivities (0.80–0.88) and specificities
(0.79–0.86) for other primitives. NBC had the lowest sensitivities
(0.74–0.81) and specificities (0.74–0.79) for all primitives. In
sum, these findings indicate that LDA and SVM have the highest
classification performance of the algorithms tested.

TABLE 2 | Classification performance of machine learning algorithms for

functional primitives.

Algorithm PPVs for functional primitives Overall PPV

Reach Transport Reposition Idle

LDA 93 ± 1.47% 91 ± 1.65% 93 ± 1.47% 92 ± 1.56% 92.5 ± 1.52%

NBC 77 ± 2.42% 71 ± 2.61% 83 ± 2.16% 85 ± 2.06% 80.2 ± 2.30%

SVM 92 ± 1.56% 90 ± 1.73% 92 ± 1.56% 93 ± 1.47% 92 ± 1.56%

KNN 86 ± 2.00% 87 ± 1.94% 85 ± 2.06% 89 ± 1.80% 87.5 ± 1.90%

Positive predictive values (PPV) with associated 95% confidence intervals are shown.

PPV reflects how often a primitive was actually made when the algorithm identified it as

such, was calculated for the primitives of reach, transport, reposition, and idle. Primitive-

level PPVs were computed in one-vs.-all analysis (e.g., reach vs. transport + reposition

+ idle combined). The overall PPV was assessed by combining data for all primitives

and tallying all true and false positives. Overall classification performance was highest for

linear discriminant analysis (LDA) and support vector machine (SVM), moderately high for

k-nearest neighbors (KNN), and lowest for Naïve Bayes classifier (NBC).

Training and Testing Times of the
Algorithms
We next evaluated the pragmatic aspects of implementing the
algorithm to gauge real-world applicability. We first calculated
the time required to train and test the algorithm on increasing
quantities of data (Figure 4) from our dataset of 2,880 functional
primitives. In terms of training times, NBC and LDA were on
the order of seconds (12 and 26 s, respectively), with training
times growing linearly with increasing data quantity. SVM was
on the order of minutes (5.6min), with training times growing
quadratically with increasing data quantity. KNN required no
time to train as an inherent property of the model. In terms of
testing, LDA, NBC, and SVM required sub-millisecond times
(∼0.03ms), whereas KNN required the longest time (1.5ms)
with testing times growing linearly with increasing dataset size.

To investigate the real-world ramifications of training and
testing requirements, we generated a dataset with 300,000
functional primitives (Figure 5). Training times became
prohibitively long for SVM (up to 23 h) but were manageable
for the other algorithms (up to 13min). Testing time was
relatively high for KNN (up to 2.3min), whereas LDA, NBC, and
SVM required nominal testing times (<0.03ms). Given their
consistently low training and testing times, LDA and NBC have
the best practical performance of the algorithms tested.

Tuning Requirements of the Algorithms
To gauge the difficulty of algorithm implementation, we
characterized their tuning requirements (Table 3). NBC has the
lowest number of parameters (1) and requires a low amount of
domain knowledge in machine learning to optimize it. KNN has
a moderate number of parameters (5), but their optimization
is reasonably intuitive and requires a low level of domain
knowledge. LDA has fewer parameters (3), but they require a
medium level of domain knowledge. SVM has many parameters
(9) and requires a high level of domain knowledge to build an
accurate and efficient model. In sum, these findings indicate
that NBC and KNN are the easiest to implement, and LDA
implementation requires a modestly higher skillset.

Frontiers in Neurology | www.frontiersin.org 5 September 2019 | Volume 10 | Article 996

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Parnandi et al. Motion Classification in Neurological Patients

FIGURE 2 | Confusion matrices (CMs) for the ML algorithms (A) LDA, (B) NBC, (C) SVM, and (D) KNN. CMs help visualize where ML algorithms are performing well

(successful classification) or becoming confused (misclassification). Numbers in the diagonal cells represent the percentage of samples belonging to a class that were

correctly classified by the ML algorithm. Numbers in the non-diagonal cells represent the percentage of samples belonging to a class (e.g., reach) that were classified

by the ML algorithm as another class (e.g., transport). CMs with high values for diagonal cells indicate accurate classifications. In contrast, CMs with high values for

non-diagonal cells indicate high misclassifications. The color bar indicates the percentage of primitives from a given class that has been classified as the same class

(diagonal cells) or another class (non-diagonal cells). LDA and SVM accurately classified all four primitives, closely followed by KNN. NBC performed inadequately and

became confused between reaches and transports.

Optimal Sensor Characteristics
Optimal Sensor Number and Configuration
To evaluate the effect of the sensor number and configuration on
classification performance, we used an exhaustive search process,
which evaluated all combinations of sensor number and location.
We note that exhaustive search arrived at the same optimal
configurations for IMUs as for accelerometers. Seven sensors on
the head, sternum, pelvis, and UE of the active side resulted
in the highest classification performance (IMU PPV 92.5%;
accelerometer PPV 84%). In comparison, when exhaustive search
progressively added sensors to the non-active forearm, then
hand, then upper arm, then scapula, classification performance
worsened (IMU PPV 88%; accelerometer PPV 80%) (Figure 6).
When exhaustive search progressively removed sensors on the
trunk and then head, performance also worsened. Subsequent

removal of sensors from the scapula, then arm, and then hand
further worsened performance, arriving at PPVs of 71 and 62%
for IMUs and accelerometers, respectively, for the remaining
forearm sensor.

Optimal Sensor Type for Classification
To finish, we evaluated classification performance using IMU
vs. accelerometry data only. Classification performance using
accelerometry data was consistently lower than for IMU data
for all sensor configurations (Figure 6; Table 4). Classification
performance with accelerometers was lower especially for
reaches (PPV 77 vs. 93%; Table 4), which include different arm
configurations to grasp the objects (e.g., supinating to side-grasp
the aluminum can vs. pronating to overhand grasp the toilet
paper roll). These findings indicate that IMU data enable a
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FIGURE 3 | Performance characteristics of machine learning algorithms for (A) Reach, (B) Transport, (C) Reposition, and (D) Idle. Receiver operating characteristic

(ROC) curves show the trade-off between true positive rate (or sensitivity) and false positive rate (1-specificity). Curves closer to the top-left corner indicate a better

classification performance. The optimal operating point for each algorithm (solid circles), reflect the best tradeoff between sensitivity and specificity for an algorithm.

The area under the curve (AUC), a measure of classification performance, is shown in parenthesis for each algorithm. AUC = 1 represents perfect classification. LDA

had the highest AUCs followed closely by SVM, indicating high classification performances. NBC had consistently the lowest AUCs, indicating the weakest

classification performance.

superior level of classification, particularly with more variable
motions involving forearm rotations.

DISCUSSION

The combination of wearable sensors and machine learning
offers exciting opportunities in numerous applications, including
human activity recognition (1–3) and assessment of impaired
motion (5, 8, 9). We recently proposed an approach that
uses wearable sensors and ML algorithms to classify functional
primitives, which could be summed to quantify rehabilitation
dose. In this study, we aimed to address limitations in this
previous work, including a modest computational performance,
high computational complexity, and hardware drawbacks. We
present our analyses as a primer for considering software
and hardware variables in the capture and classification of
motion data. We sought to identify—from both performance

and practical standpoints—the best machine learning algorithm,
sensor configuration, and sensor type to classify primitives in
stroke patients.

Among the ML algorithms, LDA represented the best balance
of classification performance and pragmatic implementation.
Among sensor configurations, seven sensors on the paretic arm
and trunk enabled better classification performance than more
or fewer sensors on the body. Among sensor types, IMU data
enabled better classification performance than accelerometers.
To our knowledge, this is the first study to systematically
outline the steps of identifying optimal ML algorithms, sensor
configurations, and sensor types to automatically classify motion
patterns of neurological patients.

Optimal Performer in Classification
Evaluating the ability of the ML algorithms to classifying
functional primitives, we found that LDA and SVM had the
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FIGURE 4 | Algorithm (A) training times and (B) testing times on sample dataset. The dataset is comprised of 2,880 primitives. We computed times to train and test

each algorithm on 20–100% of the dataset in increments of 10%. To avoid overfitting and compute an unbiased estimate of training and testing times, ML algorithms

were trained and tested de novo with each incremental increase. For training with the complete sample dataset, SVM required the most time (336 s) while the other

algorithms finished training rapidly (<30 s). For testing, KNN required the most time (1.5ms), while the other algorithms finished testing rapidly (<0.03ms). Please note

break in the y-axis to highlight the difference in the algorithm testing times.

FIGURE 5 | Algorithm (A) training times and (B) testing times on real world-sized dataset. The dataset is comprised of 300,000 simulated primitives. We evaluated

training and testing times required by each algorithm for quartile increases in dataset size. Please note the break in the y-axes to highlight differences in training and

testing times. To avoid overfitting and compute unbiased estimates, the algorithms were trained and tested de novo at each quartile. For training with the entire

dataset, SVM required the most time (1,380min) while the other algorithms required less time (LDA: 13min; NBC: 2.5min; KNN: 0min, as per model property). For

testing, KNN required the most time (2.3min). The remainder of algorithms (LDA, NBC, and SVM) needed a testing time of <0.09ms, which grew marginally with

increasing sample sizes.

highest classification performance. LDA performs well because
it aims to reduce dimensionality while preserving as much
discriminatory information as possible. This approach leads to
tight clusters and high separation between the classes (32).
SVM performs well because it projects training data to a high-
dimensional space. This approach leads to maximal separation
between classes that may not be possible in the original feature
space (33). Overall, LDA aims to find commonalities within and
differences between data classes, whereas SVM aims to find a
classification boundary that is furthest from the data classes.

Importantly, these algorithms maximize rigor in the training
phase by being less susceptible to noisy or outlier data (34,
35). LDA accomplishes this by using the clusters’ centers and
ignoring outlier samples to classify (34), while SVM uses the
most closely spaced data (i.e., the most difficult to discriminate)
to define class boundaries (35). It is worth noting that LDA
assumes that the underlying classes are normally distributed
(unimodal Gaussians) with the same covariance matrix (32). If
real-world motion data are significantly non-Gaussian, LDAmay
not capture the complex data structures required for accurate
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TABLE 3 | Complexity of algorithm implementation.

Algorithm # Tuning

parameters

Tuning parameters Level of domain

knowledge

LDA 3 Prior probability, regularization

term, optimizer

Medium

NBC 1 selection of prior distribution Low

SVM 9 Kernel function, kernel

parameters (scale, offset),

regularization term, # of iterations,

Nu, prior probability, convergence

parameter, optimizer

High

KNN 5 # of neighbors (K), distance

metric, search algorithm, tie

breaker, weighing criterion

Low

Algorithm parameter tuning is necessary to achieve optimal classification performance.

Shown are algorithm tuning characteristics, as indicated by number and specifics of the

tuning parameters. Also shown is a graded estimate of the level of domain knowledge

required to tune these parameters. NBC is considered the simplest to tune while SVM

is the most difficult. LDA has a handful of parameters that require medium domain

knowledge to negotiate. KNN has a moderate number of parameters that are intuitive

to tune and require little domain knowledge. Level of domain knowledge: low, basic

knowledge of statistics; medium, undergraduate-level knowledge of ML; high, graduate-

level knowledge of ML.

FIGURE 6 | Classification performance for full and reduced sensor counts.

Performance was computed using LDA and data from with progressively

reduced sensor counts. Seven sensors (pelvis, sternum, head, and the active

shoulder, upper arm, forearm, and hand) gave the best classification

performance, with a performance drop-off at more or fewer sensors. IMU data

consistently supported higher classification than accelerometery data,

achieving PPV 92.5 vs. 82% at the seven sensors.

classification. In this case, classification performance can be
tuned by allowing the covariance matrices among classes to vary,
resulting in a regularized discriminant analysis (36).

By comparison, KNN showed amarginally lower classification
performance, likely due to its susceptibility to noise (37). KNN
relies on the assumption that samples from the same class exist
in close proximity. Given a new sample, KNN assigns it to the
class with the majority of closest neighbors (38). In our current
setup of KNN, all nearest sample points are given the same
weighting. Therefore, when assigning a class label, a noisy sample
will be weighted the same as other statistically important samples.
KNN classification performance can be tuned by choosing an
appropriate weighting metric (e.g., inverse squared weighing)
(39), which ensures that samples closer to the test sample
contribute more to classifying it. Performance may also be tuned

TABLE 4 | Primitive-level classification using IMU or accelerometer data.

Primitives Classification performance (PPV)

IMU Accelerometer

Reach 93% 77%

Transport 91% 80%

Reposition 93% 82%

Idle 92% 88%

Average 92.5% 82%

Classification performance is shown using the 7-sensor configuration (pelvis, sternum,

head, and the active shoulder, upper arm, forearm, and hand). Accelerometers provided

systematically poorer classification performance compared to IMUs across all primitives.

Classification performance using accelerometry data was particularly low for reach (PPV

77%) and relatively higher for idle (PPV 88%).

by using mutual nearest neighbors, where noisy samples are
detected using pseudo-neighbors (neighbors of neighbors) and
are assigned lower weights (40).

Finally, NBC had the lowest performance compared to other
algorithms. NBC uses Bayes’ rule and prior information to
classify a new sample, using the posterior probability of it
belonging to a class (41). Its lower performance may be attributed
to its underlying assumption of conditional independence
between data features (42). This assumption is violated for data
streams that are correlated, such as data from adjacent sensors on
the body, like the hand and wrist. The performance of NBC could
be improved by applying principal components analysis to the
dataset as a pre-processing step, and then training the NBC (43).

Comparing these results with our prior work (10), we found
that the four algorithms outperformed the hidden Markov
model-logistic regression (HMM-LR) classifier for identifying
the functional primitives in stroke patients. The improved
performance may be due in part to differences in the training
datasets. Our previous study trained the algorithm on healthy
control data and tested on stroke patient data to examine
the generalizability of the model. It is conceivable that if the
HMM-LR classifier been trained and tested in stroke patients
only, its performance would have been higher. To enable a
fair comparison of classification accuracy with our previous
study (10), we used the same statistical features. We did not
perform feature selection, which is the process of selecting
the most informative statistical features to obtain a subset
of the original feature set (44). Feature selection reduces the
data dimensionality, which in turn reduces overfitting by ML
algorithms, lowers training time, and increases classification
accuracy (45, 46). Given these benefits, a clinician or researcher
investigating a new problem of interest is encouraged to consider
feature selection on their dataset.

We also generated confusion matrices to further characterize
where ML algorithms are performing well (successful
classification) vs. becoming confused (misclassification). In
our analysis, we observed that NBC had limited success in
differentiating between reaches and transports, functional
primitives whose motion patterns are quite similar (12). The
main difference between these primitives are grasp-related
wrist motions (wrist extension and supination) occurring
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during reach (12). To accurately disambiguate these primitives
with a lower-performing algorithm, we would emphasize
[i.e., assign higher weights to (47)] data from the distal UE
segment. This analysis shows how confusion matrices can help
an investigator target and address areas for improvement in
ML classification.

Optimal Performer in Practicality
We also determined the most pragmatic algorithms with respect
to their training and testing times and their tuning requirements.
In terms of training times, KNN did not have any computational
overhead. This is expected, since KNN requires no training
and shifts its computations to the testing phase. Training
times for LDA and NBC grew gradually with dataset size,
but took at most minutes with a real world-sized dataset.
LDA had lower training times than NBC on a smaller dataset,
but required more training time as the dataset increased.
This is explained by the scatter matrix computations and
optimization of LDA, which become computationally expensive
as the dataset size increases (22). By contrast, SVM training
time increased quadratically with dataset size, because finding an
optimal hyperplane between classes entails solving a quadratic
programming problem (23). Complex algorithms such as SVM
thus require more processing time for large datasets, which
limits real-world application. For example, for a modestly sized
study, training times for SVM may be on the order of days.
This lag would be prohibitive for rapid tuning, significantly
delaying algorithm optimizations. Conversely, performance of
LDA and NBC could be rapidly appraised after training, alerting
an investigator to further tune the algorithm or to move on
from it.

In terms of testing times, SVM, LDA, and NBC required sub-
milliseconds to classify functional primitives, whereas KNN took
seconds-minutes and testing times grew linearly with dataset size.
This can be explained by the exhaustive and computationally
expensive search performed by KNN (48). During testing, the
KNN algorithm searches for the k nearest neighbors that have
similar data characteristics as the test sample. With increasing
samples and dimensionality of the data, the search broadens
and takes more time. If an investigator wishes to classify
primitives offline, KNN testing times may be acceptable. For
applications requiring near- or real-time classification (e.g., for
online feedback), the other algorithms should be considered
instead. Alternatively, the computational complexity of KNN can
be reduced by selecting an efficient search algorithm (e.g., KD
tree) (49), which limits the search space during testing.

In terms of ease of tuning to increase classification
performance and reduce training/testing time, we determined
that NBC had the lowest parameter complexity and requirement
for domain knowledge in machine learning. KNN has a
moderate number of tuning parameters, but they are relatively
straightforward to understand and address. LDA has fewer
tuning parameters than KNN, but moderate domain knowledge
is required to select the amount of regularization allowing
the covariance among classes to vary (36). SVM requires the
highest amount of parameter tuning, and necessitates a deep

understanding of statistics, optimization, probability theory,
and machine learning (50). This level of domain knowledge is
prohibitive for SVM use in an unsupported research setting.

Weighing classification performance and pragmatic
implementation, we judged LDA to be the best choice for
our application. Investigators will similarly need to weigh
their performance goals, time resources, and available level
of expertise for ML implementation in their own motion
classification questions.

Optimal IMU Configuration
On the hardware side, we determined the optimal sensor location
and configuration to facilitate data capture while maintaining
high classification performance. Seven sensors (not more or
fewer) enabled optimal classification performance, and the best
sensor configuration was placed on the active limb and trunk.
This result is expected, given that the participants performed
a unimanual task. Interestingly, accuracy worsened with more
sensors, likely because of the increased dimensionality of the
dataset. This may cause the ML algorithm to overfit the training
data, resulting in lower classification performance during the
testing phase (51). Finally, we found that if only one sensor
was available, the forearm location was the most informative,
although classification performance was modest. This location
is nonetheless appealing, given recent advances in smartwatches
capable of capturing motion.

Optimal Data Characteristics
Finally, we determined the sensor type that led to the highest
classification performance. Accelerometry data consistently
generated lower accuracies than IMU data, likely due to its fewer
dimensions. Although IMUs enable higher classification
performance than accelerometers, they also have some
drawbacks: a higher risk of electromagnetic drift leading to
inaccurate data estimates and the need for more frequent
recalibrations, a higher consumption of energy (52), and a
higher cost (11). Thus, there is a tradeoff between robust
motion capture and practical motion capture. We believe that
the benefits of richer data and better classification of IMUs
outweigh their practical limitations. However, there currently
exist no benchmarks for the level of classification accuracy
needed to justify clinical implementation. If these accuracy
benchmarks are lower than those achieved by IMUs, and if
investigators are constrained by financial resources or the
magnetic noisiness of an environment, accelerometers could
be appropriate.

MACHINE LEARNING FOR OTHER
CLINICAL APPLICATION

Machine learning is a potentially powerful tool formyriad clinical
applications, by virtue of its automatic recognition of categories
of interest. Investigators may seek to use ML diagnostically, as
with classification of disease states or severity. For example,
investigators can grade Parkinson’s disease based on classes
of motion defined by severity of tremor, bradykinesia, and
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dyskinesia (5, 6, 53). Investigators may also seek to use ML
therapeutically, as with performance assessments. For example,
investigators can identify and count classes of behavioral output
in training contexts, such as the number of words uttered during
speech therapy (54) or the number of functional primitives
performed during occupational therapy (12).

Notably, ML models will differ depending on the goal. There
exists no universal classifier; in other words, no single model can
classify all categories that could be of interest to researchers and
clinicians. For a ML algorithm to identify categories of interest, it
has to be trained to recognize the data features that correspond
to these categories. This means that the appropriate subject
groups, well-defined classes, and trained observers are needed
to generate and label the data for subsequent algorithm training
and testing.

LIMITATIONS AND FUTURE WORK

Our study has some limitations to be considered. The present
work showcases the use of the ML- sensor approach, providing
head-to-head comparisons between ML algorithms and sensor
type. Importantly, we demonstrate its use for a particular clinical
question; we did not build a universal system that applies to
all neurological disorders. Also importantly, we did not identify
the definitive approach for classifying functional primitives in all
rehabilitating stroke patients, for two reasons.

First, our analysis was performed on a dataset of mild-
to-moderately impaired stroke patients. This not only limits
generalization to stroke patients with severe impairment, but
also reduces the variability of the dataset upon which the
algorithms were trained and tested. Off-the-shelf algorithms may
be inadequate for more variably impaired subject populations.
To handle variability in the data, advanced machine learning
approaches such as deep learning will likely be needed
for accurate classification. For these more complex datasets,
collaboration with experts in machine learning, who can apply
and refine deep learning architectures, is suggested.

Second, the activity used in this study was highly structured.
The motion characteristics of the resulting primitives were thus
more consistent and limited than would be found in a real-world
rehabilitation setting. The training and testing of algorithms on
data with more varied kinematics is still required, and is ongoing
in our laboratory. We used this circumscribed and controlled
dataset here so that we could focus our appraisal on the ML
and sensor methodologies. More importantly, it allowed us to
display the practical deliberations required in the development
of a sensor-ML approach for motion classification.

CONCLUSION

In summary, we present a primer that details how one
can optimize both the software and hardware facets of
motion capture. This work outlines computational and practical
considerations for implementing a sensor-ML approach in
quantitative research. Specific to our application, we demonstrate
how to refine a strategy that builds toward the precise
and pragmatic classification of functional primitives in stroke
patients. We found that LDA had the best combination of
classification performance and pragmatic performance. We also
found that seven sensors on the paretic UE and trunk maximized
classification performance, and that IMUs enabled superior
classification compared to accelerometers.
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