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Inappropriate physical inactivity is a global health problem increasing the risk of

cardiometabolic diseases. Wearable sensors show great potential to promote physical

activity and thus a healthier lifestyle. While commercial activity trackers are available

to estimate energy expenditure (EE) in non-disabled individuals, they are not designed

for reliable assessments in individuals with an incomplete spinal cord injury (iSCI).

Furthermore, activity recommendations for this population are currently rather vague and

not tailored to their individual needs, and activity guidelines provided for the non-disabled

population may not be easily translated for this population. However, especially in

iSCI individuals with impaired abilities to stand and walk, the assessment of physical

activities and appropriate recommendations for a healthy lifestyle are challenging.

Therefore, the study aimed at developing an EE estimation model for iSCI individuals

able to walk based on wearable sensor data. Additionally, the data collected within this

study was used to translate common activity recommendations for the non-disabled

population to easily understandable activity goals for ambulatory individuals with an

iSCI. In total, 30 ambulatory individuals with an iSCI were equipped with wearable

sensors while performing 12 different physical activities. EE was measured continuously

and demographic and anthropometric variables, clinical assessment scores as well

as wearable-sensor-derived features were used to develop different EE estimation

models. The best EE estimation model comprised the estimation of resting EE using

the updated Harris-Benedict equation, classifying activities using a k-nearest neighbor

algorithm, and applying a multiple linear regression-based EE estimation model for each

activity class. The mean absolute estimation error of this model was 15.2 ± 6.3%

and the corresponding mean signed error was −3.4 ± 8.9%. Translating activity

recommendations of global health institutions, we suggest a minimum of 2,000–3,000

steps per day for ambulatory individuals with an iSCI. If ambulatory individuals with an

iSCI targeted the popular 10,000 steps a day recommendation for the non-disabled
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population, their equivalent would be around 8,000 steps a day. The combination of

the presented dedicated EE estimation model for ambulatory individuals with an iSCI

and the translated activity recommendations is an important step toward promoting an

active lifestyle in this population.

Keywords: energy expenditure, spinal cord injury, wearable sensor, estimation model, pathological gait, activity

recommendation, digital biomarker

INTRODUCTION

“10,000 steps a day” is a popular activity recommendation which
is understandable, easy to remember, and as a consequence easy
to apply in daily life. Although this activity recommendation is
not without controversy and other daily step goals have been
proposed (1, 2), it is nonetheless a recommendation which is
commonly used, also in consumer wearables, to promote a
healthy lifestyle in the general population (3–5).

Large institutions such as the American College of Sports
Medicine (ACSM), the U.S. Department of Health and Human
Services (HHS), and the World Health Organization (WHO)
present their activity guidelines as the duration per week that
one should spend doing aerobic physical activity (PA) at a
specific intensity, e.g., 150min of moderate-intensity aerobic
PA per week (6–9). While such activity guidelines are—from
a scientific perspective—more elaborated than the 10,000 steps
recommendation, they are more challenging to follow since the
intensity, and duration of the activity need to be observed. While
subjective intensity ratings, as proposed in the guidelines, or the
average energy expended in a given activity, as presented by
Ainsworth et al. (10, 11), can be used as estimates, it is easier
andmore precise to assess the intensity of a PA throughmeasures
or estimates of energy expenditure (EE). Commercially available
(consumer- and research-grade) wearable activity trackers such
as Fitbit One, Nike Fuelband, Jawbone UP, ActiGraph GT3X,
or the Apple Watch series 3 (and higher), are used by non-
disabled individuals to estimate EE in daily life. However,
depending on the device, the estimation accuracy can range
from poor to good (12–14). Thus, accurate wearable activity
trackers have been shown to promote PA and an active
lifestyle (15–17).

Only 13–16% of the population with a spinal cord injury
(SCI) reports being physically active (18), while increased odds
of heart disease have been reported for this population (19).
Furthermore, greater levels of PA were associated with lower
levels of cardiovascular diseases and type 2 diabetes risk factors
(20). Therefore, wearable activity trackers could be of great
value to increase the amount of PA and therefore reduce the
risk of cardiometabolic diseases in this population. There exist
different EE estimation models based on wearable sensor data
for individuals with an SCI using a wheelchair, which can partly
be applied in real-world applications (21–30). However, to the
best of our knowledge, no such EE estimation model exists for
ambulatory individuals with an incomplete SCI (iSCI) where
the suitability of models developed for ambulatory individuals
needs to be questioned (31). General models for ambulatory
individuals usually estimate EE using step counts and/or activity

counts (AC), which is an approximate for the amount of limb
movements. Four major problems exist in this context: First, the
magnitude of AC largely depends on the device and is therefore
not a robust metric. Second, step detection of commercial sensors
used for persons with pathological gait can partly be poor,
especially for persons with a low walking speed as shown for
iSCI (31) and other neurological conditions (32, 33). Third,
the EE during pathological gait increases with more severe gait
disability (34–36), which is not taken into account by commercial
sensors. Fourth, the use of upper extremity assistive devices,
e.g., crutches and canes, increases the EE (34), which is not
necessarily captured when estimating EE through step counts or
AC. Nonetheless, it has been shown in other populations with
altered or pathological gait (e.g., elderly, multiple sclerosis, and
stroke) that EE can be estimated using wearable sensors (37–40).
Furthermore, multi-sensor setups might provide a superior EE
estimation accuracy compared to single-sensor setups as shown
in neurological patients (41), since impairments manifesting at
different body locations can be taken into account. Therefore,
it can be assumed, that an accurate EE estimation model based
on wearable sensor data can be developed for ambulatory
individuals with an iSCI.

In addition to accurate activity tracking with EE
estimation, this population also needs comprehensive
activity recommendations adapted to the special needs.
Although, general activity guidelines for this population
exist (8, 9, 42, 43), there are no simple and comprehensive
activity recommendations, which are applicable for iSCI and
during acute rehabilitation (44) as for example known for the
non-disabled population, e.g., 10,000 steps per day.

For that reason, we have conducted a study aiming at
developing and validating an EE estimation model based
on data from multiple wearable sensors for ambulatory
individuals with an iSCI. Furthermore, we aimed at translating
activity recommendation for the non-disabled population to
comprehensive recommendations for ambulatory individuals
with an iSCI. The study design, the data analysis, and the
translation of activity recommendations were inspired by
a previous study from our group (30), which focused on
wheelchair-dependent SCI individuals with the same aims as
this study.

METHODS

As the present study is closely related to a study we have
conducted with SCI wheelchair users (30), some parts of the
methods section are almost identical to the previous study.
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TABLE 1 | Demographics and assessment scores (SCIM III sub-section mobility

and 6MWT) of all participants.

Variables Values

Participants 30

Sex

Male 20

Female 10

Age (years) 54.1 ± 11.9 (27–72)

Weight (kg) 75.5 ± 16.2 (44–106)

Height (m) 1.71 ± 0.09 (1.48–1.91)

Injury level

C2-T1 10

Th2-L4 20

AIS score

B 1

C 1

D 28

SCIM III mobility 28.1 ± 3.9 (15–30)

6MWT (m) 486 ± 158 (137–744)

Reported hours of 3.9 ± 3.6 (0–14)

Sport/week

Note that age, weight, height, SCIM III mobility score, 6MWT distance, and reported hours

of sports per week are presented as mean ± standard deviation (minimum—maximum).

To facilitate comprehension, we nevertheless provide detailed
methodological information here.

Participants
Thirty participants with iSCI (age 54.1 ± 11.9 years, 10
tetraparetic, 20 men) and some ability to stand and walk were
recruited for this study. Participants had to be over 18 years
old and the SCI had to be in the chronic stage (>1 year post-
injury). Furthermore, participants with all neurological levels of
injury (NLI) as well as levels of impairment according to the
ASIA Impairment Scale (AIS) from B to D were admitted to
the study. For inclusion, participants had to be able to walk
at least 100m without supervision. Any neurological disease
other than SCI affecting upper or lower limb function and
any orthopedic, rheumatologic, or metabolic disorders were
considered an exclusion criterion. The local ethics committee
of the canton of Zurich (KEK-ZH Nr. 2013-0202) approved the
study and participants provided written informed consent in
accordance with the declaration of Helsinki before participating.
Demographic information about the participants can be found
in Table 1. Five participants depended on walking aids in order
to complete our study. Two participants used forearm crutches,
one used walking poles, one used a rollator, and one had two
lower-limb orthoses and used forearm crutches.

Measurement Device
Activity Monitor
A novel 10-degrees-of-freedom inertial measurement unit
(IMU), which was developed by the ZurichMOVE consortium
(www.zurichmove.ch), was used for this study. The so-called
JUMP (Joint University Motion Platform) module (Figure 1)

comprises a motion processing unit (MPU-9250, InvenSense
Inc., San Jose, CA, USA) including a 3-axis accelerometer, a 3-axis
gyroscope, and a 3-axis digital compass. Additionally, it includes
a separate 3-axis high-g accelerometer (ADXL375, Analog
Devices Inc., Norwood, MA, USA), an altimeter (MS5611-
01BA01, TE Connectivity Ltd., Schaffhausen, Switzerland), a
microcontroller (STM32L476RG, STMicroelectronics, Geneva,
Switzerland), a custom made PCB, a 4 GB microSD card
for data storage, and a rechargeable lithium ion polymer
battery. For wireless sensor synchronization, the JUMP module
further comprises a Bluetooth R© low energy system-on-chip
(nRF51822, Nordic Semiconductor, Trondheim, Norway). A
robust and biocompatible 35 × 35 × 12mm housing encloses
the electronics. The JUMP module can continuously record data
for 65 h at a sampling rate of 200Hz (>72 h at 50Hz) while
synchronizing the modules in real time. Data transfer to the
PC, battery charging, as well as sensor configuration are done
through the corresponding docking station. Data in this study
were collected with a sampling frequency of 200 Hz.

Metabolic Assessments
For the measurement of EE, a portable metabolic cart
(Oxycon Mobile, Carefusion, Hoechberg, Germany) was used
(Figures 1A,C,D,F). The system was calibrated 30min prior to
an experimental session and after each experimental session. For
the extraction of EE, the proprietary software JLAB (Carefusion,
Hoechberg, Germany) was used. For more information about the
Oxycon Mobile, the reader is referred to our previous work (30).

Clinical Assessments
Six clinical assessments were performed prior to, during, or after
the experiment. The International Standard for Neurological
Classification of Spinal Cord Injury (ISNCSCI) protocol was used
to determine the NLI as well as the level of impairment, i.e., AIS
grade (45). In addition, the Spinal Cord Independence Measure
III (SCIM III) was used to assess the level of independence
(46) and the Graded and Redefined Assessment of Strength,
Sensibility and Prehension (GRASSP) was used to assess the
sensorimotor hand function (47, 48) (Figure 1B). In order
to assess locomotor function and gait, the 10-m Walk Test
(10MWT) and the 6-Min Walk Test (6MWT) were used (49).
The TimedUp andGo Test (TUG)was used to additionally assess
balance and fall risk (49).

Activities/Tasks
Participants were asked to conduct 12 different physical activities
during this experiment. These activities were pseudo-randomly
selected from a comprehensive pool of 34 activities of daily
living. The pool covered activities related to rest, leisure time
(e.g., watching TV and playing cards, Figure 1C), housework
(e.g., washing dishes and sweeping with a mop, Figure 1F), office
work (e.g., writing and computer work), sport and fitness (e.g.,
playing table tennis and doing squats), as well as locomotion (e.g.,
walking at given speed and climbing stairs, Figure 1D). These
activities were further separated into four activity classes, namely
“sedentary,” “low-intensity,” “high-intensity,” and “walking.”
All activity classes with the associated physical activities are
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FIGURE 1 | Examiners equipped with the full measurement setup, i.e., eight JUMP modules and the indirect calorimeter. (A) Side view of an examiner during the

activity walking with two JUMP modules attached at each wrist and the indirect calorimeter with the facemask (with a turbine), data exchange unit, and the sensor

box. Note, that the JUMP modules placed at the chest and the hip are not visible (usually hidden under the shirt). (B) Extract from the GRASSP assessment during the

prehension part. (C) Examiner wearing the experimental setup during the activity playing cards and (D) climbing stairs. (E) Close view of the JUMP modules fixed at

the foot and at the ankle. (F) Examiner during the activity sweeping a mop. (G) Close view of the JUMP module recently developed by the ZurichMOVE consortium.

Written and informed consent was obtained for the publication of these images.

presented in the results section (Figure 5). Note, that the activity
“weight lifting” was performed on a dip machine with 5 kg
weights. During the activities including the bicycle ergometer, the
resistance was set to 1, 1.25, and 1.5W per kg of body weight.
All “walking” and “running” activities with a given speed were
performed on a straight 65m track (indoor), where the speed
was imposed through acoustic cues, i.e., participants had to reach
a mark (5m interval) always at the beep. The obstacle parcour
consisted of four elements, two of them, namely the ramp and the
stairs, were obstacles from the Cybathlon 2016 (50), one element
was a slalom with six pylons, and the last element was a 360◦

rotation around a pylon. One lap was∼20 m long.

Protocol
The protocol is almost identical to the one we used in the
study with wheelchair users (30). After an overnight fast,
participants came to the Balgrist University Hospital for one
single session lasting around 5 h. Participants were not allowed
to perform vigorous exercise and consume alcohol 24 h prior to
the measurement. In the first step, the experimental procedures,
as well as the 12 pseudo-randomly selected tasks, were explained
in detail to the participants. Note that activities, which could
not be performed by the subject, were replaced by an activity of
the same activity class. Following the explanations, participants
were equipped with eight sensors (Figure 1). Two sensors were
attached to each wrist, similar to a watch, two sensors were
attached ∼5–10 cm above each ankle on the lateral side, two

sensors were attached to the top of each foot (location: above the
3rd and 4th metatarsal bones), one sensor was attached to the
chest above the sternum, and one sensor was attached above the
right anterior superior iliac spine, similar to a pedometer attached
to the belt. Furthermore, participants were equipped with an
indirect calorimeter, i.e., Oxycon mobile.

The actual experimental session started with a measurement
of resting EE (REE) lasting 20min where participants had
to lie on a bed without moving. Thereafter, participants
received a standardized breakfast, which corresponded to ∼450
kcal. During the following ≥90-min resting period (to ensure
that REE had returned to baseline prior to further testing),
clinical assessments were performed and the demographic,
anthropometric, and behavioral data (age, height, weight, gender,
handedness, and sportive activities per week) were collected.
After the resting period, the experimental session continued
with 12 different activities. The first activity was always lying
on the bed for 20min. This was considered as a second REE
measurement under non-fasting condition to check whether the
REE returned to the baseline. An additional break was added
in case the REE did not return to the baseline. Thereupon,

participants performed the pseudo-randomly selected, remaining
11 activities for 8min each with a 5-min break following
each of the activities. Activities were executed according to

their expected intensity, starting with the least intense activity.
Perceived exertion of each activity was rated by the participant
on an 11-point numeric rating scale (0 = “no exertion,” 10 =
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“maximum exertion”) immediately after finishing the activity.
Additionally, video recordings (GoPro Hero3, Go Pro Inc., San
Mateo, CA, USA) were taken for the entire experimental session,
including the clinical assessments.

A shortened protocol was performed by 13 participants.
This required participants to come to the laboratory at least
2 h after the last food intake. The experimental session started
with the clinical, demographic, anthropometric, and behavioral
assessments followed by a single 20min REE measurement.
The following activity protocol was identical to the one
described above.

Data Analysis
The entire data handling was performed using MATLAB 2017b
(The MathWorks, Natick, MA, USA). This included the merging
of IMU data, Oxycon data, demographic, anthropometric
and behavioral information, and assessment scores, the data
preprocessing, the data labeling, and segmentation, the extraction
of features, the training and evaluation of the different evaluation
models, i.e., multi-linear regression model (MLR), k-nearest
neighbor (kNN) classifier, artificial neural networks (ANN), as
well as the statistical analysis. Furthermore, the calculations
for translating activity recommendations were also performed
using MATLAB 2017b. A brief overview of the different steps of
processing and analysis can be found in Figure 2 (left).

In this study, we developed four different EE estimation
models. Two models, namely an MLR-based and an ANN-
based model, considered features derived from the IMU data,
anthropometric data, clinical assessment data, as well as the
estimated REE as direct input. The other two EE estimation
models were motivated by the fact that it has been shown
that preceding activity classification can significantly increase
the EE estimation accuracy (30, 51, 52). Thereby, a PA is first
classified into one of the four aforementioned activity classes,
and afterwards a dedicated algorithm for each class is used to
estimate the EE. This means that each activity class has its own EE
estimation model (again MLR or ANN based). For illustration,
the flow chart of the MLR based EE estimation model with a
preceding activity classification is presented in Figure 2 (right).
For each model, all features described above were considered as
model inputs. However, in the end, the selected features differed
between models (Table 2).

Estimation of REE
Different well-established and validated REE prediction
equations for the non-disabled population were considered for
the analysis. The Harris-Benedict equation (53), the updated
Harris-Benedict equation (54), and the Mifflin-St Jeor equation
(55) showed good results in a study with wheelchair users (30)
and were therefore evaluated in this study. We hypothesized
that these equations should show better estimates in iSCI able
to stand and walk than in wheelchair users with SCI because
muscle mass and body composition of participants with an iSCI
are more similar to the one of the non-disabled population. We
further included two additional estimation equations, namely
the Müller equation and the body mass index (BMI)-dependent
Müller equation (56). The criterion for selecting one of the

equations for our REE estimation was the mean absolute error
(MAE) in percent.

Data Pre-processing
First, the data were temporally realigned using a linear
interpolation function if necessary. Afterwards, IMU data,
Oxycon data, and video recordings were temporally aligned using
dedicated markers, which were present in all data sets. Identical
to the previous study with wheelchair users, we used a 2nd order
Butterworth high-pass filter with a cutoff frequency of 0.25Hz to
filter the accelerometer data and a 2nd order Butterworth low-
pass filter with a cutoff frequency of 0.2Hz to filter the altitude
data (30).

Labeling and Segmentation
Data was labeled using dedicated markers, which were available
in both, IMU and Oxycon data. For REE, the average of EE
between minute 14 and 18 of the first REE measurement was
calculated. For the EE estimation and the activity classification,
data was segmented in windows of 1min. Only data fromminute
4–8 of each activity were included in the analysis to ensure
that EE reached a steady state. After the segmentation, data
was checked visually for completeness. Segments with indirect
calorimeter data and/or missing sensor data, segments in which
EE had not reached a steady state, or in which participants did not
follow the protocol (e.g., movements not related to the activity),
were removed from the analysis. As a consequence, exactly 1,300
segments remained for the analysis. This corresponds to 90.3% of
the entire data set.

For the translation of activity guidelines, the exact number
of steps was required. Therefore, an investigator labeled all steps
manually for all activities, which were included in this part of the
analysis, i.e., walking at 1–6 km/h and walking at a self-chosen
pace. Identification of individual steps was performed by labeling
local peaks in the gyroscope signal and by checking the video
recordings where applicable.

Feature Extraction
From the sensor data, we extracted two classes of features. First,
we extracted statistical features, which were derived from one
single sensor. Second, we extracted high-level features, which
were either derived from multiple sensors or required multiple
calculation steps. In total, 36 purely statistical features were
derived for both wrist and feet sensors and for the hip and
chest sensor. For both ankle sensors, 52 features were derived.
These features were derived from the acceleration magnitude,
from the gyroscope magnitude, from the gyroscope z-axis data
corresponding to a rotation in the sagittal plane (only ankle
sensors), and from the altitude data. The extracted features have
already been used in other studies using machine learning for
activity classification (23, 30, 57–64). Additionally, we included
12 high-level features. The number of steps was derived using an
unpublished algorithm from our group, which is based on a peak
detection algorithm applied to the gyroscope z-axis data of the
ankle sensors. The distance walked was calculated by multiplying
the number of steps by the step length, whereby the step length
was estimated using the static method presented by Pratama
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FIGURE 2 | (Left) Analysis flow chart used in this study. (Right) Overview of the different analysis steps for the MLR based model with preceding activity classification.

and Hidayat (65). Based on the step detection, we also included
the variance in stride time as a feature. Furthermore, limb-use
laterality (66–68) for the upper limb (left vs. right wrist), lower
limb (left vs. right ankle and left vs. right foot), as well as for upper
limb (both wrists) vs. lower limb (both ankles) were included
as additional features. The cross-correlation was computed for
the accelerometer magnitudes of wrists (left vs. right), ankles
(left vs. right), and feet (left vs. right). Finally, we included
altitude change, activity counts (AC), all demographic and
anthropometric variables, and all assessment scores as features
(30, 69). The REE was also included as a feature but only for the
EE estimation and not for the activity classification. Altogether,
351 features were available for the activity classification and the
EE estimation. A list of all extracted features can be found in
Table S1.

Activity Classification
The goal of the activity classification was to assign the different
activities to one of the four activity classes, i.e., “sedentary,” “low-
intensity,” “high-intensity,” and “walking.” The kNN classifier
was used for the activity classification because it showed
good results in previous studies from our group (30, 62, 63).
For this classifier, we set the number of neighbors to be
k = 10, and the squared inverse distance weight was used
as the distance weighting function method. To evaluate the
classification performance, we used the leave-one-subject-out
cross-validation method, resulting in a total of 30 iterations. The
percentage of correctly classified segments was used as a criterion
for tuning and evaluating the classifier. Finally, five features
were selected for the classifier, i.e., the 95th percentile (dominant
ankle) and the interquartile range (IQR, dominant ankle) of the

z-axis angular velocity signal, the 99th percentile (chest) and
the 25th percentile (non-dominant wrist) of the angular velocity
magnitude, and the standard deviation (SD) of the altitude signal
(non-dominant wrist).

Estimation of EE
The four different EE estimation models presented in this study
were based either on MLRs or on ANNs. The MLR models have
all the basic form:

EE = β0 +

n∑

i=1

βi · Fi

with β0 representing the intercept and βi representing the
regression coefficient for the feature Fi. The MLRs were
computed by minimizing the sum of squared relative errors
(70). This approach has been chosen because in this study, we
used the MAE in percent as a criterion. Similar to the kNN
classification, the performance was analyzed using leave-one-
subject-out cross-validation, resulting in 30 iterations of training
and testing. For the ANN-based approach, ANNs with one
hidden layer with sigmoid neurons were used, whereby the
number of neurons varied between three and six for the different
models. The Levenberg-Marquardt backpropagation algorithm
was used to train the algorithm, and the initial weights were
chosen by the Nguyen-Widrow layer initialization function (71,
72). Again, the performance was evaluated using the leave-one-
subject-out cross-validation and theMAE in percent. For training
of the different ANNs, the data in each cross-validation iteration
was further randomly divided into 70% training data and 30%
validation data. The training process ended when 500 training
epochs were reached, when the error gradient on the training set
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dropped below 1e-6, or when the error in the validation data set
increased six times in a row. As the ANN output depends on the
initial weights and the data division, 100 ANNs were trained per
cross-validation iteration and the mean outcome was used for
further analysis. Note that, for the two models (MLR and ANN)
with preceding activity classification, EE estimation models had
to be trained for each class separately. The two estimation models
with preceding activity classification were evaluated in two ways.
First, we evaluated the model assuming 100% correct activity
classification and second, we used the output of the previously
trained kNN classifier. An overview of the selected features of
each EE estimation model can be found in Table 2.

Translation of Activity Recommendation
Different PA recommendations from global institutions were
translated into daily step goals. The WHO and the U.S.
Department of Health and Human Services (HHS) suggest
150min of moderate-intensity aerobic PA per week or as
an alternative 75min of vigorous-intensity aerobic PA per
week (7–9). As level walking is considered to be of low
to moderate intensity, we only evaluated the moderate-
intensity WHO recommendation. Similarly to the WHO and
HHS recommendation, the ACSM and the American Heart
Association (AHA) recommend a minimum of 30min of
moderate-intensity aerobic PA on 5 days per week (6). Other
recommendations go one step further and include 30min
of moderate PA on every weekday (73, 74). For additional
health benefits, most of the activity guidelines mentioned above
recommend twice the amount of moderate PA per day (e.g.,
60 min/day or 300 min/week) for additional health benefits,
e.g., prevention of weight gain (74). Therefore, we translated
the 30 and 60min of moderate-intensity PA recommendation
in a daily step goal for ambulatory individual with an iSCI.
The basis for this translation was that a moderate-intensity
PA of 60min corresponds to an additional EE of 150–200
kcal (74). Furthermore, we also translated exercise guidelines
for adults with an SCI. These guidelines suggest 20min of
moderate to vigorous-intensity aerobic exercise two times per
week for cardiorespiratory fitness and 30min of moderate to
vigorous-intensity aerobic exercise three times per week for
cardio-metabolic health benefits (42, 43). Thompson et al. (75)
proposed that a PA of 150min in moderate-to-vigorous intensity
corresponds to ∼1,000min of total PA in moderate-to-vigorous
intensity, which is easier to capture by wearable sensors.
Therefore, we also translated this recommendation into a daily
step goal.

Lastly, the activity goal of 10,000 steps a day is a common
and easily understandable activity goal for the able-bodied
population. Therefore, the daily goal of 10,000 steps was
considered as a mutual benchmark for this analysis. For the
translation of this activity goal, a value of 300 kcal [lower end of
the suggested 300–400 kcal value by Choi et al. (76)] was used.

Performance Analysis and Statistics
The MAE was used as a criterion for the EE estimation models.
The REE and EE models were further analyzed using the MAE in
kcal, the mean signed error (MSE) in percent and in kcal/day,
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and the maximum error in percent and kcal/day. In order to
compare the result of the best model to results of the literature,
we further computed Pearson correlation coefficient between
estimated and measured EE. The performance of the kNN
classifier was evaluated with the overall classification accuracy,
which was used at the same time as a criterion. We used for
the comparison of different activities the metabolic equivalent
of task (MET) formula for the able-bodied population, where 1
MET represents 3.5mL O2·kg

−1·min−1 (10) and not the adapted
formula for SCI. The correlation between perceived exertion and
MET was computed by using a Spearman rank correlation.

A Bland-Altman analysis of agreement was performed
between the measured EE and predicted EE using 95% limits of
agreement. Additionally, a paired equivalence test was performed
between the measured EE and the predicted EE with a chosen
equivalence zone of± 10% of the mean of the measured EE.

RESULTS

REE Estimation
The evaluation of the five included REE estimation models can
be found in Table 3. The different models were evaluated in
terms of MAE, MSE, and maximum error and the criterion for
the selection of one of the estimation models for the subsequent
analysis was the MAE. Based on these results, the updated
Harris-Benedict equation was selected for the further analysis,
showing an MAE of 10.5± 9.4%. Note that in general, all models
lay within 2.5% of MAE deviation. In all estimation models,
the REE estimation was better for paraparetic participants
compared to tetraparetic, and for women compared to men.
Furthermore, all models tended to underestimate the REE. A
plot showing the correlation between estimated REE using the
updated Harris-Benedict equation and the measured REE can be
found in Figure S1.

Activity Classification
The kNN classifier with the five previously mentioned inputs
showed an overall classification accuracy of 95.6%. The sensitivity
for the sedentary (99.4%) and walking class (98.2%) was excellent,
for the low-intensity class (94.6%) very good, and for the
high-intensity class (81.0%) good. The decreased classification
accuracy of the high-intensity class results mainly from a
misclassification into the low-intensity class (14.3%). The
complete overview of the classification accuracies of each class
and selected visualizations of the results can be found in Figure 3.

EE Estimation
The results of the different EE estimation models can be found
in Table 4. The MLR model with preceding activity classification
showed the overall best performance in terms of MAE with
a value of 15.2 ± 6.3%. A perfect activity classification would
improve the MAE to 14.6 ± 6.1%. The correlation coefficient
between the measured EE and the estimated EE was R = 0.92
(p < 0.001). In general, all EE estimation models showed a
better performance for paraparetic compared to tetraparetic
participants, and for women compared to men. All MLR based
models underestimated the EE in general, while all ANN-based

models overestimated the EE, which is reflected in the MSE. A
closer look into the estimation accuracies of the different activity
classes revealed that the EE estimation accuracy was similar for
the sedentary, the low-intensity, and the walking class, but worse
for the high-intensity class compared to the others. A complete
overview of the MAE of the different classes can be found in
Table S2.

For the best EE estimation model, i.e., MLR model with
preceding activity classification, the MAEs for all activity classes
and single activities are presented in Figure 4. The Bland-Altman
comparing the measured EE with the estimated EE using the
MLR model with preceding activity classification is can be found
in Figure S2 and the corresponding equivalence test in Figure S3.

Energy Cost of Physical Activity
The measured METs, for the different activity classes and the
single activities, are presented in Figure 5. The average MET for
the sedentary class was 1.1± 0.3, with the lowest average MET of
0.9 ± 0.2 for rest, and the highest average MET of 1.3 ± 0.4 for
playing games on an iPad. The low-intensity class had an average
MET of 2.4± 0.8 with riding an elevator showing the lowestMET
value (1.5± 0.3) and vacuum cleaning showing the highest (3.2±
0.6). The average MET for the high-intensity class was 4.2 ± 1.8,
with average MET values ranging from 2.0 ± 0.6 (weight lifting)
to 6.0 ± 1.8 (playing badminton). The walking class showed the
broadest spectrum of intensities, ranging from an average MET
value of 2.5 ± 0.5 for walking at 1 km/h to 8.8 ± 3.3 for running
at 8 km/h. The averageMET value for this class was 4.2± 1.9. The
Spearman rank correlation coefficient between measured MET
and perceived exertion was R= 0.60 (p < 0.001) (Figure 6).

Translation of Activity Recommendations
To translate the activity recommendations for the non-disabled
population to daily activity goals for ambulatory individuals with
an iSCI, the measured EE, as well as manually labeled numbers
of steps, were used. The average sensitivity for the step detection
compared to the manually labeled numbers of step was 85.8
± 23.2%, and the positive predictive value was 93.7 ± 13.6%.
The translation of 30min of moderate physical activity per day
resulted in a recommendation of 1,672–3,715 steps per day
depending on the calculation basis and the walking speed. Based
on an additional EE of 300 kcal for 10,000 steps reported for
the non-disabled population, this daily step goal corresponded to
8,291 steps in ambulatory individuals with an iSCI. The overview
of the different translations of activity recommendations can be
found in Table 5.

DISCUSSION

In this work, we present an accurate method to estimate EE
from wearable sensor recordings in ambulatory individuals with
an iSCI. In addition, we translated popular and scientifically
informed activity recommendations for the non-disabled
population to easily understandable activity recommendations
for ambulatory individuals with iSCI. Hereafter, the different
EE estimation models with the different analysis steps, i.e.,
REE estimation, activity classification, and EE estimation,
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TABLE 3 | Results of the resting energy expenditure (REE) estimation based on existing models from the literature.

Model description Mean absolute error (MAE) Mean signed error (MSE) Maximum error

Overall Tetraparetic Paraparetic Men Women Overall Overall

[%] [kcal/day] [%] [%] [%] [%] [%] [kcal/day] [%] [kcal/day]

Harris-Benedict* 10.8 ± 8.8 174 ± 131 14.0 ± 11.2 9.0 ± 6.7 11.5 ± 9.4 9.3 ± 7.6 −3.8 ± 13.5 −94 ± 199 42.9 528

updated Harris-Benedict* 10.5 ± 9.4 168 ± 132 13.9 ± 12.6 8.6 ± 6.7 11.2 ± 10.3 9.3 ± 7.7 −3.3 ± 13.9 −86 ± 198 47.9 534

Mifflin-St Jeor* 13.0 ± 9.8 216 ± 145 17.1 ± 12.7 10.7 ± 7.0 13.8 ± 10.2 11.5 ± 9.2 −7.9 ± 14.4 −162 ± 206 50.0 616

Müller* 11.1 ± 11.8 173 ± 140 14.4 ± 17.4 9.2 ± 6.8 11.5 ± 13.6 10.4 ± 7.5 −2.3 ± 16.2 −74 ± 212 64.3 550

Müller, BMI dependent* 11.0 ± 13.1 171 ± 151 14.9 ± 19.5 8.8 ± 7.1 12.0 ± 15.1 8.9 ± 8.2 −1.8 ± 17.1 −71 ± 219 71.5 612

As a criterion for choosing the best REE estimation model, the mean absolute error (MAE) in percent was used. Therefore, the updated Harris-Benedict equation was used for the

subsequent analysis.

*Equations known from the literature.

A B

C D

FIGURE 3 | Visual presentation of the classification performance of the k-nearest neighbor (kNN) classifier used in this study. (A) 3D scatter plot showing the different

activity classes for the three features explaining most of the variance. Note that a point corresponds to a correctly classified activity while a cross represents an

incorrectly classified activity. (B) Confusion matrix of the entire data set (n = 1,300) is presented in this subplot. The overall classification accuracy of the kNN classifier

was 95.6%. (C,D) Two 2D scatter plot showing the different activity classes from a different point of view.

are discussed in detail. Subsequently, the translation of the
activity recommendations is reviewed, and the measured EE is
compared to literature in order to validate our calculation basis
for the translations.

Updated Harris-Benedict Equations
Provide the Best REE Estimate
An accurate estimation of REE is a principal requirement for any
EE estimation as REE accounts for ∼70% of the total daily EE in
chronic SCI (77) while all EE estimationmodels developed in this
study relied on the REE as model input. Therefore, it is obvious,
that an inaccurate estimation of the REE would result in a poor
EE estimation. Fortunately, all REE estimation models showed
satisfying results with an MAE ranging from 10.5 to 13.0%,

whereby the updated Harris-Benedict equation (54) showed the
best results. These results are in line with previous studies. In

our study with the wheelchair-bound participants, the updated
Harris-Benedict equations showed also the best results, yet with
an MAE, which was ∼4% higher than in the current study

(30). The higher MAE can be attributed to the fact that body
composition, especially muscle mass, is reduced in wheelchair-
bound individuals with SCI, due to complete or partial paralysis
of skeletal muscles below the NLI (78) and/or due to non-use of
the lower extremities. Other studies investigating the accuracy of
existing equations showed an overestimation of REE by 5–32%
(79–82) in individuals with an SCI.

While the present study showed similar REE estimation errors
as previous studies, our estimates tend to underestimate the true
REE while in the other studies an overestimation was seen. The
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TABLE 4 | Evaluation of the different EE estimation models developed within this study, which were either based on a multi-linear regression (MLR) or based on artificial

neural network (ANN).

Model description Mean absolute error (MAE) Mean signed error (MSE) Maximum error

Overall Tetraparetic Paraparetic Men Women Overall Overall

[%] [kcal/day] [%] [%] [%] [%] [%] [kcal/day] [%] [kcal/day]

MLR direct 18.6 ± 7.6 917 ± 478 20.4 ± 7.3 17.8 ± 7.8 19.1 ± 6.5 17.7 ± 9.8 −4.5 ± 12.3 −506 ± 633 53.4 3,766

MLR class known 14.6 ± 6.1 711 ± 398 16.6 ± 8.6 13.6 ± 4.4 15.3 ± 6.8 13.3 ± 4.2 −3.8 ± 8.1 −346 ± 420 50.6 3,335

MLR class estimated 15.2 ± 6.3 744 ± 425 17.2 ± 8.7 14.3 ± 4.8 15.9 ± 7.1 14.0 ± 4.8 −3.4 ± 8.9 −378 ± 486 56.1 3,577

ANN direct 21.8 ± 8.8 915 ± 407 24.8 ± 10.1 20.2 ± 7.8 22.7 ± 8.7 19.9 ± 9.1 8.8 ± 14.2 53 ± 640 47.3 1,603

ANN class known 17.0 ± 7.8 756 ± 320 18.1 ± 9.9 16.4 ± 6.8 17.1 ± 8.1 16.8 ± 7.7 4.9 ± 11.6 5 ± 519 44.6 1,453

ANN class estimated 17.7 ± 8.3 790 ± 376 19.5 ± 10.0 16.8 ± 7.4 17.8 ± 8.3 17.5 ± 8.7 5.1 ± 12.0 0 ± 552 45.5 1,546

Similar to the REE estimation, the mean absolute error (MAE) in percent was used as a criterion for optimizing the models. Note that the results in this table were calculated across all

activities and subjects.

FIGURE 4 | Mean absolute error (MAE) in percent (dark colors) and kcal/day (bright colors) for the EE estimation using the MLR based model with preceding activity

classification. The overall MAE for this model was 15.2 ± 6.3%.

difference might come from two sources: First, these studies
included mostly individuals with a complete lesion while our
study investigated individuals with incomplete lesions. Second,
in our study, all participants were able to walk, which has most
likely not been the case in the other studies. In the present study,
the MSE for the updated Harris-Benedict equation is indeed

negative (−3.3%), but close to 0%. This might suggest that the
iSCI ambulatory individuals included in this study are similar

to the non-disabled population in terms of body composition.
Therefore, it is a valid approach to use the updated Harris-

Benedict equation for the estimation of the REE in our EE
estimation model.

One possibility to further improve the estimation accuracy of
REE is to apply prediction equations developed specifically for
SCI individuals as recently proposed by Nightingale et al. (80).
So far, this approach has been developed for motor complete SCI
individuals only and would need to be adapted to the population
of incomplete SCI as well.

Activity Classification Results in Excellent
Accuracy
In a previous study with SCI wheelchair users, we have
shown improved EE estimation accuracy by ∼3% (30) when
using separate estimation models for different activity classes.
Similar results have also been shown for the non-disabled
population (51, 83). In order to apply different EE estimation
models for different activity classes, an accurate activity
classifier is needed. In this study, we used a kNN classifier,
which showed very good classification performance with an
overall accuracy of 95.6%. The overall classification accuracy
exceeded comparable models developed for the incomplete
SCI population by 4% (84) and 6.7% (85). However, these
models were built on a single waist-mounted sensor only
but included only six activities (lying, sitting, walking,
standing, wheeling, and stair climbing) compared to the 12
tasks investigated in the presented study, which makes a
comparison challenging.
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FIGURE 5 | The measured metabolic equivalent of task (MET) for all activities and activity classes included in this study. The different bars represent the mean ±

standard deviation and the single values for paraparetic and tetraparetic participants are presented in black and gray, respectively.

The sensitivity for the different activity classes was very
high for the sedentary and the walking class. The results can
be explained by the fact that both activities have very specific
and regular movement patterns, i.e., almost no movement at
all and very regular movement patterns, which can easily be
separated by the classifier. In contrast, the low-intensity and high-
intensity class show partly very smooth transitions, which can be
challenging for the classifier. For that reason, it is not surprising
that the sensitivity was slightly lower for the low-intensity class
(94.6%) and reasonably lower for the high-intensity class (81.0%).
The single activity showing the worst sensitivity was doing squats
(37.5%) followed by playing table tennis (72.5%), weight lifting
(75.0%), training on the bicycle ergometer at 1.25W per kg
body weight (75.0%), and playing badminton (82.1%). There
are two main reasons why activities were misclassified. First,
in some activities, e.g., “doing squats” or “weight lifting,” the
EE can be high (MET>3) while movements are minimal or
very slow. This cannot be captured through IMUs but could
possibly be overcome by combining sensor measurements with
heart rate measurements, galvanic skin response measurements,
or near body temperature measurements as done in previous
studies (14, 26). However, in our previous study with wheelchair
users, adding the heart rate data did not significantly increase
the EE estimation accuracy and was therefore omitted in the
current study. Second, activities such as “playing badminton” or

“table tennis” include rallies that can partly be very exhausting.
However, these intensive phases are repeatedly interrupted by
less intensive phases, e.g., while collecting shuttles or balls, which
in turn can directly change the classification. Actually, this is
not a true misclassification, as these activities are intermittent,
and longer, less intensive phases can indeed be classified as low-
intense activities. All other activities had sensitivities over 89%
and 20 out of 34 activities had no misclassification. Generally,
the kNN classifier presented in this work showed overall a very
good classification accuracy and can, therefore, be used for the
following EE estimation. Since this approach focused on broader
activity classes instead of single activities, it makes this kNN
classifier well-suited for real-world applications and likely also for
activities not included in this study. However, to confirm this, a
separate validation in the free-living environment including new
activities is needed.

EE Estimation Accuracy Show Similar
Performance to Models for the
Non-disabled Population
All EE estimation models developed within this study showed
satisfactory results, with MAEs ranging from 14.6 to 21.8%. The
overall best EE estimation model, which can be applied in a
real-world application, is the MLR-based model with preceding
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FIGURE 6 | Comparison between subjective perceived exertion and measured

metabolic equivalent of task (MET). Note that the subjective perceived exertion

was assessed using an 11-point numeric rating scale where 0 represents no

exertion and 10 represents maximum exertion. The Spearman rank correlation

between perceived exertion and MET was R = 0.60 (p < 0.001).

activity classification showing an MAE of 15.2%. Note, that
the EE estimation model with an MAE of 14.6% assumes a
perfect activity classification, which was only evaluated in order
to see the effect of misclassification on the EE estimation. To
the best of our knowledge, no dedicated EE estimation model
for ambulatory individuals with an iSCI exists. Thus, we can
only compare our EE estimation models to other populations.
The EE estimation models for wheelchair users with an SCI
showed similar or slightly worse accuracies than the present study
(21–23, 86). In comparison with our previous EE estimation
model for wheelchair users with an SCI, the EE estimation for
ambulatory individuals with an iSCI is slightly worse (MAE
of 15.2 vs. 14.4%). This might indicate that the population
of ambulatory individuals with an iSCI is more heterogeneous
than the population of wheelchair users with an SCI. This
heterogeneity is for example reflected in the widely varying
performance during the 6MWT in which a participant with
almost no gait deficits achieved a distance of 744m while another
participant, using two forearm crutches, only achieved 137m.
Heterogeneity is further induced by the fact that a part of the
population used walking aids, which has been shown to increase
EE additionally (34). Another factor leading to the slightly
decreased EE estimation compared to the model for wheelchair
users is the decreased accuracy in activity classification in the

present model. Classification of activities in SCI individuals
using a wheelchair could be achieved with a higher accuracy
(97.9%) than in incomplete SCI individuals with the ability to
walk (96.6%).

The result of EE estimation models designed for conditions
other than SCI with pathological gait can either not directly
be compared due to different evaluation metrics used or they
show slightly worse results than the present study (37–40).
The differences in estimation accuracies might be explained by
the fact that in the present study, the information of multiple
sensors and therefore, body locations were available. When
comparing our EE estimation model with that of commercial
activity trackers for the non-disabled population (12), our
model performs among the best despite the heterogeneity of
our ambulatory individuals with an iSCI. Again, the results
can be explained by the number of sensors used for the EE
estimation, as multiple sensors can help to capture functional
deficits from different body locations. EE estimation models
developed for the non-disabled population using information
from multiple sensors (and therefore, body locations) showed
slightly better performance than the model presented in this
study (87). Nevertheless, the MLR model with the preceding
activity classification presented in this work shows a very
good estimation accuracy considering the heterogeneity of the
included population.

The different EE estimation models developed within this
study, i.e., ANN and MLR based models, both benefited from
the preceding activity classification. In fact, the MAE decreased
by around 4%. This value is slightly better than values reported
for the inclusion of preceding activity classification in the
EE estimation models for the wheelchair-bound individuals
(decrease in MAE: 0.3% MLR based model, 3.2% ANN-based
model) (30). This observation can be explained by the fact that
in the current study, four activity classes were used in contrast to
the study with the wheelchair-bound individuals with only three
activity classes. Additionally, the activity classes in the previous
study with wheelchair users depended on upper-limbmovements
only and were thus similar in terms of body movements.
Therefore, the activity classification only marginally improved
the EE estimation model. This is in contrast to the present study,
where the different activity classes can be completely different in
terms ofmovement patterns, i.e., sedentary class vs. walking class.

In general, the improvement in EE estimation accuracy
with preceding activity classification is in line with results
from previous studies in the non-disabled population (12, 51).
Surprisingly, the MLR based EE estimation model outperformed
the ANN-based model in terms of MAE by 2–3%, which might
be due to the heterogeneity of the present population. It is
likely that outliers might be less heavily weighted using MLRs.
These outliers can be assumed to be the few individuals with
walking aids included, showing different movement patterns
compared to individuals without walking aids. By including
more participants, the ANN-based EE estimation model might
improve the estimation accuracy and might also outperform the
MLR-based EE estimation model.

Having a closer look at the different activity classes, we can
see that the EE estimation worked well for the sedentary, the
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TABLE 5 | Translation of different activity guidelines and recommendation for the non-disabled population to daily step goals for ambulatory individuals with an incomplete

spinal cord injury (iSCI).

Calculation Walking speed EE Time Goal: number

of steps

Cadence REE measured

EE

additional

EE

Recommendation Basis [km/h] [kcal/task] [min] [-] [steps/min] [kcal/day] [kcal/day] [kcal/day]

30min 3 84 2,648 88 1,557 5,579 4,023

30min 4 141 3,137 105 1,814 8,566 6,752

30min 5 127 3,376 113 1,653 7,737 6,085

30min 6 160 3,715 124 1,895 9,859 7,694

30min of moderate physical 30 min Average 4.3a 120 3,126 104 1,685 7,422 5,737

activity per day 75 kcal 3 27 2,369 88 1,557 5,579 4,023

75 kcal 4 16 1,672 105 1,814 8,566 6,752

75 kcal 5 18 1,997 113 1,653 7,737 6,085

75 kcal 6 14 1,738 124 1,895 9,859 7,694

75 kcal Average 4.3a 19 1,961 104 1,685 7422 5737

60min of moderate physical

activity per day

60 min Average 4.3a 239 6,251 104 1,685 7,422 5,737

150 kcal Average 4.3a 38 3,922 104 1,685 7,422 5,737

10,000 steps

10,000

steps

Average 3.3b 362 110 91 1,641 6,359 4,718

300 kcal 1 173 9,724 56 1,477 3,971 2,494

300 kcal 2 134 10,170 76 1,661 4,894 3,234

300 kcal 3 107 9,477 88 1,557 5,579 4,023

300 kcal 4 64 6,689 105 1,814 8,566 6,752

300 kcal 5 71 7,989 113 1,653 7,737 6,085

300 kcal 6 56 6,953 124 1,895 9,859 7,694

300 kcal Average 3.3b 92 8,291 91 1,641 6,359 4,718

1,000min of moderate

physical activity per weekc 569 kcal Average 4.3a 143 14,872 104 1,685 7,422 5,737

(143min per day)

Note that values in bold are average values over different walking speeds. The average values including all walking speeds equivalent to a moderate intensity activity, i.e., walking

between 3 and 6 km/h, are labeled with (a) and average values including all walking speeds, i.e., walking 1–6 km/h, are labeled with a(b). This guideline is based on the work of

Thompson et al. (75) (c).

low-intensity, and the walking class. The MAE for the single
activity classes when the MLR-based model with preceding
activity classification was used, lied between 14.0 and 15.2%. Only
the high-intensity class showed a worse MAE (18.5%). In return,
this class was the one, which benefitted most from a preceding
activity classification (improvement of ∼7%). The reason why
the high-intensity class showed, in general, the worst MAE is due
to the different activities included. Five out of seven PA in this
class are so-called weight-loading activities in which the external
load cannot be captured through the sensors. Thereby the EE
estimation accuracy decreases, which has already been shown in
other EE estimation studies (88, 89).

When investigating the features selected for the different EE
estimation models, we realize that features from all sensors, i.e.,
accelerometer, gyroscope, and altimeter, were included. This is
identical to the study with the wheelchair-dependent individuals,
where all sensors have been included as well (30). Taking a closer
look at the best EE estimation model, i.e., MLR model with
preceding activity classification, we can see that the only high-
level feature included was the laterality of the feet (included in

the sedentary and the low-intensity class). This could indicate
that the laterality of the feet might be a potential indicator for
gait deficits (kind of quality measure), similar to the laterality
of the wrist, which is considered as a measure of functional
deficits of the upper-limbs (66, 90). From the demographic
and anthropometric features and assessment scores, only one
feature was included, namely the body weight in the walking
class. However, demographic and anthropometric data such as
gender, age, weight, and height are also included in the REE
and thus indirectly included as features. An examination on
how many features are provided from which sensor location
(only MLR models) showed that features from the chest sensor
were the most prominent, with a total of eight occurrences. One
explanation of why the chest sensor contributed so many features
to the EE estimation model might be that the chest sensor can
capture movements from the upper- and the lower-limbs at the
same time. Furthermore, features from the lower extremities
(feet: eight features and ankles: two features) were included
more often than features from the upper extremities (wrists: two
features). This is not surprising, because the activity-dependent
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EE is mostly dominated by the lower extremities due to the
larger muscle groups. In summary, the MLR based model with
preceding activity classification is a very good model for the
estimation of EE, which can well be applied in real-world settings.
The present approach hasmainly been developed for applications
in research in which a high accuracy is required. Further work is
needed to investigate the feasibility of reduced number of sensors,
which is needed for application in daily life.

Energy Cost of Physical Activities Found in
Ambulatory Individuals With an iSCI Are in
Agreement With Values Reported in the
Literature
First, we would like to demonstrate that participants included
in this study are representative of the population of ambulatory
individuals with an iSCI. For this purpose, the MET values
obtained in this study were compared to MET values from the
literature. Two studies have reported MET values for ambulatory
individuals with iSCI. Collins et al. determined METs for 27
different physical activity (91). While most of the activities were
performed in a sitting position, e.g., sitting in a wheelchair,
two of the activities included walking. The converted MET
(from SCI MET) for level walking at a self-chosen pace was 3.7
for tetraparetic participants and 3.6 for paraparetic participants
which is in the same range as we have seen in the current
study (4.0 ± 0.9). For climbing stairs, however, METs were
slightly different between Collins et al. (4.7) and the current
study (7.1 ± 1.7), a difference which may likely be attributed
to the difference in the much larger slope of the stairs in the
present study and the number of participants (30 in the present
study, two in Collins et al.’s study). Two additional activities,
which were performed in a sitting position, are present in both
studies, namely deskwork and weight lifting. The reported MET
values are very similar to the MET values of the present study,
namely 1.0 MET for deskwork (present study: 1.2 ± 0.2 MET
for computer work and 1.2 ± 0.3 MET for writing) and 2.1–2.4
MET (depending on the NLI) for weight training (present study:
2.0 ± 0.6 MET). The remaining activities which were present
in both studies, i.e., playing table tennis, doing the laundry,
vacuuming, and washing dishes, cannot be compared directly
as it is unknown if participants in the study by Collins et al.
were standing or sitting during the activities. The second study
reporting MET values for ambulatory individuals with an iSCI
included four activities, which were also present in the current
study, i.e., supported and unsupported sitting, standing, and
walking (92). Reported MET values are very similar to those of
the present study, i.e., supported and unsupported sitting (both
1.0 MET) vs. reading (1.1 ± 0.3 MET) and watching TV (1.3
± 0.2 MET) in the present study, and standing (1.2 MET) vs.
riding an elevator (1.5 ± 0.3 MET) although riding an elevator
can include single steps and interacting with an interface. The
last common activity was walking at self-chosen speed, where an
average of 3.4 MET was reported (range 3.0–4.5) by Dekker and
coworkers compared to 4.0 ± 0.9 MET in the present study. In
summary, it can be stated that MET values reported in this study
match the values reported in literature. Thus, we are confident

that it is appropriate to use the present MET values to translate
activity recommendations.

A Minimum of 2,000–3,000 Steps per Day
Should Be Achieved by Ambulatory
Individuals With an iSCI
For the translation of activity recommendations, we first
considered recommendations from global health institutions and
second the popular recommendation of 10,000 steps a day.

Most of the activity recommendations from global institutions
recommend beside strength training, flexibility training and skill
training, 30min of moderate activity on at least 5 days per
week (6). The WHO and the HHS recommendations are kept
broader with 150min of additional moderate-intensity aerobic
PA per week (7–9). These recommendations, however, can be
satisfied by engaging in moderate PA five times a week for
30min. Other research groups go even one step further and
suggest 30min of moderate PA every day (73, 74). We focused
on the last recommendation of 30min of moderate PA per day
for our translation of activity recommendations. However, the
obtained values can easily be adapted to other recommendations,
e.g., PA, on only 5 days per week. In the current study, we
aimed to translate the aforementioned activity recommendation
for the non-disabled population to a simple and understandable
activity recommendation for ambulatory individuals with an
iSCI. Therefore, all activity recommendations were translated
into daily step goals. The activity recommendation of 30min of
moderate PA per day was translated by using 30min of moderate
PA or by using 75 kcal of additional EE during moderate
PA [approximately corresponding to 30min of moderate PA
(74)] as calculation basis. Moderate PA is defined by a
MET value between 3 and 5.9 (93). Based on our data,
this corresponds to a walking speed of 3–6 km/h (MET of
3.3–5.4, Figure 5).

When using 30min as calculation basis, the resulting daily
step goals increased with increasing walking speed due to an
increasing cadence (2,648 steps for 3 km/h and 3,715 steps for
6 km/h). The measured values of cadence are in line with findings
reported by Awai and coworkers (94). Having a closer look at the
additional energy expended during these 30min of moderate PA,
we measured 84–160 kcal, which lies above the 75 kcal which is
assumed to be an equivalent of 30min of moderate-intensity PA
in non-disabled ambulatory individuals (74). The differences in
EE can be explained as follow: First, other sources suggest 75–
150 kcal for 30min of moderate PA, and we decided to go for the
value at the lower end. Second, some of the included participants
had a relatively high REE, which results in an increased activity-
dependent EE. Third, although the cadence and step length
are similar between ambulatory individuals with an iSCI and
neurologically intact individuals (94), the EE is increased in
pathological gait, as has been shown for other neurological
conditions (34). For these reasons, it is not surprising
that the EE is slightly increased in ambulatory individuals
with iSCI.

When using the additional 75 kcal spent in moderate PA
as a calculation basis, the proposed step goal would be lower,
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around 2,000 steps per day. The time required for reaching this
additional 75 kcal would lie between 14 and 27min depending
on speed, with an average at around 20min. These 20min
of moderate PA corresponds to the activity recommendation
proposed by Ginis et al. for cardiorespiratory fitness and muscle
strength benefits (together with three sets of strength exercise
two times per week) even if this recommendation should be
followed only two times per week (42). In order to follow
the cardio-metabolic health guideline for adults with an SCI
suggesting 30min of moderate to vigorous intensity aerobic
exercise three times per week (42), 3,000 steps per day three
times per week should be accomplished. For the compliance with
the 60min of moderate PA recommendation (74), which should
bring additional health benefits such as preventing weight gain,
our data can easily be extrapolated, e.g., 150 kcal of additional
EE (corresponding to 60min of moderate PA) would correspond
to∼4,000 steps.

The last translation involves the 10,000 steps per day activity
recommendation. Based on the data collected in this present
study, participants would burn an additional 362 kcal on average
when walking 10,000 steps. This is slightly more than the
suggested 300 kcal corresponding to 10,000 steps per day in
the non-disabled population. In order to reach the 300 kcal of
additional EE, ambulatory individuals with an iSCI would have
to achieve between 6,000 and 10,000 steps per day depending
on their walking speed. The average lies at around 8,000 steps.
The ∼20% reduced number of steps can be explained by
the increased energy requirement during pathological gait as
outlined above. Interestingly, the highest step recommendation
(10’170 steps/day) would be given when participants were
walking at around 2 km/h. This could mean that ambulatory
individuals with an iSCI show the most ergonomic gait pattern
at this speed. This hypothesis is underpinned by the fact that
ambulatory individuals with an iSCI have a preferred walking
speed of around 2 km/h (94). However, walking at 2 km/h
is, according to our measurements, not a PA of moderate
intensity (MET = 2.7 ± 0.2) but the adherence to 8,000 steps
per day at preferred walking speed would certainly break a
sedentary lifestyle.

In summary, it can be stated that at an ambulatory individual
with an iSCI should walk at least 2,000–3,000 steps per day at
a moderate intensity, defined as an exertion score of 5–6 on a
0–10 scale (9); in order to fulfill the activity recommendation
of the WHO (8) to have a significant health impact and reduce
mortality. Nevertheless, 8,000 steps per day (equivalent to 10,000
steps per day in the non-disabled population) would certainly
be beneficial. Note that these activity recommendations are
only valid if no sporting activities are performed, as these
would count toward the activity goal. Furthermore, it has
to be confirmed that the proposed daily step goal of 8,000
steps per day, without prescribing an intensity, is sufficient
for a health-promoting effect. For individuals with severe gait
disabilities, the proposed PA goal might be too high, and it
might be better to follow the recommendations proposed by
Ginis et al. (42). However, with the data provided in this
study, the activity recommendations could easily be converted to
other recommendations.

Limitations
The study has several limitations. First, the number of
participants using walking aids is relatively low (n = 5) and
not all kinds of walking aids have been included in the study,
e.g., we had no quad cane and walker. Validation is required
showing that the developed algorithm can also be applied when
using other walking aids or when using a combination of walking
aids. Second, the proposed algorithm does not take fitness or
the lifestyle of an individual into account, which potentially
could improve the EE estimation accuracy. Third, although the
different tasks were performed as similar as possible to real-world
applications (no constraints on how to perform a task), both, the
classification algorithm and EE estimation algorithm, have first
to be validated under real-world settings. This also involves the
inclusion of types of PA that were not included in the current
study. Fourth, although ambulatory individuals with an iSCI have
a similar body composition to the non-disabled population, the
energy expenditure during gait is increased and the variability
between individuals might be higher than in the non-disabled
population. Especially for that reason, it has first to be shown
that activity recommendations for the non-disabled population
can be translated one-to-one or if they have to be adapted to
specific sub-populations such as individuals with more severe
functional deficits.

CONCLUSION

In this work, we present the first dedicated EE estimation
model for ambulatory individuals with an iSCI, which is
based on recordings of wearable sensors. By using state of
the art wearable sensors, the EE can be continuously recorded
over multiple days in a non-obstructive way under real-world
situations. Together with the translated and comprehensive
activity recommendations, this methodology can be a key
part for a potential activity tracker, which is specifically
designed for ambulatory individuals with an iSCI, allowing
for promotion of a healthy lifestyle without discouraging users
due to recommendations that are too high. Additionally, the
EE estimation model developed in this study in combination
with the EE estimation model, which we have developed for
wheelchair users with an SCI (30), allows tracking the EE and
also training intensity over the entire rehabilitation process in
SCI. This could potentially lead to new insights into how PA and
especially the intensity of PA affects functional recovery.
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