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Objective: To identify the abnormal regional spontaneous brain activity associated with

relapsing-remitting multiple sclerosis (RRMS) using fractional amplitude of low-frequency

fluctuation (fALFF) analysis and their relationships with clinical features.

Methods: A total of 26 RRMS (11 males, 15 females; age, 36.58 ± 10.82 years) and

27 status-matched healthy group (HGs; 12 males, 15 females; age, 35.85 ± 12.05

years) underwent an Expanded Disability Status Scale (EDSS) examination. fALFF was

applied to evaluate the abnormal regional brain activity associated with RRMS. Pearson’s

correlation analysis was applied to calculate the correlations between the signal values of

brain areas that exhibited abnormal fALFF values and clinical features. Receiver operating

characteristic (ROC) curve was performed to evaluate the sensitivity and specificity of

those altered brain areas to distinguish between RRMS and HGs.

Results: Compared with HGs, RRMS exhibited higher fALFF in the right cerebellum

posterior lobe, left orbitofrontal cortex, left dorsolateral prefrontal cortex, bilateral

supplementary motor area, and right fusiform gyrus and lower fALFF values in the left

hippocampus and right precuneus. ROC revealed that these areas showed two good

and five fair AUC values (0.77 ± 0.03, 0.729∼0.822). However, four combinations

with more than five brain regions received the same best discriminatory power with a

sensitivity of 96.3% and a specificity of 88.5%. EDSS revealed a negative correlation

with supplementary motor area (r = −0.395, p = 0.046).

Conclusions: RRMS is associated with abnormal regional brain activity deficits of

motor- and cognitive-related areas. The fALFF parameter may serve as a potential

biological marker to discriminate between the two groups.

Keywords: cognitive function, fractional amplitude of low-frequency fluctuation, functional magnetic resonance

imaging, motor system, multiple sclerosis, receiver operating characteristic
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INTRODUCTION

Multiple sclerosis (MS) is a demyelinating disease in axonal

degeneration with commonly diagnosed in the prime of life. In

addition to classic inflammatory white matter lesions, extensive

gray matter demyelination have been gradually known (1,
2). Extensive involvements of clinical symptoms-related (3,
4) gray matter abnormalities could be found by routine and
functional magnetic resonance imaging (MRI) (5–7), these
disease-related cortical abnormalities may delay and perturb
syntonic intrinsic signals across cortico-cortical and cortico-
subcortical wirings and lead to several clinical manifestations,
such as fatigue, sensorimotor deficits, cognitive dysfunction, even
chronic disability (2). Although extensive neurotoxic effects of
MS on brain and behavior have been known, the neurobiological
mechanism of complex brain network impairments underlying
MS remains ambiguous.

It is proposed that resting-state functional MRI (rs-fMRI)
is a useful tool for the mechanism research of brain disease
(8) and exhibited an effective way to characterize the resting-
state brain activity without any tasks that may represent more
than 95% of the total activity of the brain (9). The rs-fMRI
can be used to describe the regional spontaneous neuronal
brain activity without exposing to the radioactive tracers
(8). In contrast to magnetoencephalography and conventional
electrophysiologic methods, the rs-fMRI has the capacity to map
the physiological effects of neuronal activity with high spatial
resolution. Cordani et al. found widespread gray matter atrophy,
microstructural white matter abnormalities, and decreased
resting state functional connectivity in motor and cognitive
networks in patients with MS, which contribute to explain motor
disability in MS patients (10). Plata-Bello et al. found a decrease
of amplitude of low-frequency fluctuations (ALFF) in the left
inferior frontal gyrus inMS patients, and this area correlated with
the graymatter volume of the left inferior parietal lobule (11). van
Geest et al. found that compared to non-depressed MS patients,
depressed MS patients had lower white matter volume (p <

0.01), decreased fractional anisotropy of the uncinate fasciculus
(p < 0.05), and lower resting-state functional connectivity
between the amygdala and the frontal regions (p < 0.05) (12).
Furthermore, the disease duration, fractional anisotropy of the
uncinate fasciculus, and the functional connectivity pair could
explain 48% of variance in the severity of depression. These
findings help us understand the pathophysiology of the MS.

The ALFF and fractional ALFF (fALFF) are two important
parts of the rs-fMRI. The spontaneous LFFs have been suggested
to arise from neurovascular mechanisms (13). Although the
nature of the LFFs remains unclear, the proposed ALFF method
(14) may be associated with regional spontaneous neuronal
activity (15) and has served as a sensitive biological indicator to
discriminate one group from the other group (16). However, this
method is sensitive to physiological noise, which may hamper
us to describe the alterations of regional spontaneous neuronal
brain activity. The fALFF may overcome this limitation (17). The
improved method could provide a more specific index of low-
frequency oscillatory phenomena bymeasuring local fluctuations
in neuronal activity rather than generalized neuronal activity

(18). The proposed new method of fALFF has been shown
to decrease bias and increase sensitivity relative to the ALFF
method (17). Recently the fALFFmethod has been widely used to
explore the neurobiological mechanism for several diseases, such
as schizophrenia (19), depressive disorder (20), and Alzheimer’s
disease (21). Liu et al. (22) found that abnormal regional brain
activity was detected in patients with MS with simple spinal
cord involvement by this method. However, relapsing-remitting
MS (RRMS) has not been studied by this method. RRMS is
associated with changes in behavior, brain function, and brain
structure. However, the nature of these changes have not been
well-understood. Motivated by previous work, in the present
study, it is the first to utilize the fALFF method to identify the
regional spontaneous brain activity associated with RRMS.

MATERIALS AND METHODS

Subjects
Total of 26 RRMS (11 males, 15 females; mean age, 36.58± 10.82
years; mean education, 10.69± 2.53 years) and 27 age-, sex-, and
education-matched healthy groups (HGs; 12 males, 15 females;
mean age, 35.85 ± 12.05 years; mean education, 11.07 ± 2.85
years) were recruited.

The RRMS met the pertinent inclusion criteria: (1) met
the diagnostic criteria of RRMS as defined by McDonald; (2)
had mild to moderate RRMS as defined by the Expanded
Disability Status Scale (EDSS) examination (EDSS ≤ 5), to
prevent confounding factors in the analysis; (3) had not received
steroids-based therapy or experiencing a clinical relapse, or other
concomitant therapy as antidepressant or therapy for fatigue
for at least 2 months prior and during this study; (4) had no
sleep disorders and other psychiatric disorders, as defined by
the DSM-IV; (5) had no brain tumor, brain injury, intracerebral
hemorrhage, according to the conventional MRI. The disease
duration was recorded in months from the symptom onset date
to the MRI scan date.

The HGs had no history of brain tumor, brain injury,
inborn or other acquired diseases, neurological or psychiatric
disorders, sleep disorders, alcohol abuse, drug abuse, systemic
illness, intracerebral hemorrhage, and foreign implants in
the body. All subjects were right-handed, as defined by the
Edinburgh Inventory.

TABLE 1 | Demographics and clinical characteristics.

RRMS HGs t/χ2 value p-value

Sex (Male, Female) 11/15 12/15 0.025 0.875*

Age, year 36.58 ± 10.82 35.85 ± 12.05 0.23 0.819 #

Education, year 10.69 ± 2.53 11.07 ± 2.85 −0.515 0.609 #

Disease duration, day 22.02 ± 32.96 N/A N/A N/A

EDSS score 3.62 ± 1.8 N/A N/A N/A

Data are mean ± standard deviation values; *χ2 test was used; # independent t-test.

RRMS, relapsing-remitting multiple sclerosis; HGs, healthy groups; N/A, not applicable;

EDSS, Expanded Disability Status Scale.
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All volunteers underwent a thorough physical examination
using the EDSS by an experienced neurologist. The EDSS
score is from 0 to 10, where zero score indicates normal,
and higher EDSS score shows more disability. All volunteers
participated voluntarily and were explained the purposes,
methods, and potential risks. Before the MRI session,
all subjects voluntarily signed their informed consent

form. This study was approved by the Human Research
Ethics Committee.

MRI
MRI scan was performed on 3-TeslaMR scanners (Trio, Siemens,
Erlangen, Germany). High-resolution T1-weighted anatomical
images were acquired with a three-dimensional magnetization

FIGURE 1 | One sample t-tests of fALFF differences. One sample t-tests of fALFF differences in MS (A) and HGs (B). RRMS, relapsing-remitting multiple sclerosis;

HGs, healthy groups; R, right; L, left; fALFF, fractional amplitude of low-frequency fluctuation.

FIGURE 2 | fALFF differences between RRMS and HGs. RRMS, relapsing-remitting multiple sclerosis; HGs, healthy groups; R, right; L, left; fALFF, fractional amplitude

of low-frequency fluctuation.
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prepared rapid-gradient-echo sequence in a sagittal orientation:
the brain volume with 176 slice phase encoding directions
(repetition time = 2,300ms, echo time = 2.98ms, slice
thickness = 1.0mm, acquisition matrix = 256 × 256, field of
view = 256mm × 256mm, flip angle = 9◦) were obtained.
Total of 240 functional images (repetition time = 2,000ms,
echo time = 30ms, slice thickness = 4.0mm, gap = 1.2mm,
acquisition matrix = 64 × 64, flip angle = 90◦, field of
view = 220mm × 220mm, 32 slices) covering the whole brain
were obtained, which took about 8min for functional data
acquisition. Other sequences, such as T1WI, T2WI, T2 FLAIR,
and diffusion-weighted imaging, were also acquired.

Data Analysis
The first 10 time points of the functional images were
discarded due to the possible instability of the initial MRI
signal and inadaptation to the scanning environment (23). On
the basis of MATLAB2010a (Mathworks, Natick, MA, USA),
data pre-processing of the remaining resting-state images was
performed by Data Processing & Analysis for Brain Imaging
(DPABI 2.1, http://rfmri.org/DPABI) toolbox (24), including
form transformation, slice timing, head motion correction,
spatial normalization, and smooth with a Gaussian kernel of
6 × 6 × 6 mm3 full-width at half-maximum. The 3D T1-
weighted images for each subject were coregistered to the mean
of the realigned EPI template and then segmented into gray
matter, white matter, and cerebrospinal fluid (CSF) using the
Diffeomorphic Anatomical Registration Through Exponentiated
Lie Algebra (DARTEL) segmentation. Participants with more
than 1.5mm maximum translation in x, y, or z directions and
1.5◦ degree of motion rotation were removed. The Friston
24 head motion parameters model, including six head motion
parameters, six head motion parameters, and 12 corresponding
squared items, was used to regress out the head motion effects
based on recent work showing that the higher-order models
benefit from the removal of head motion effects (25–28). In
RRMS, T1-hypointense lesions were manually identified and
were semiautomated painted as regions of interest (ROIs) using
the T1 sagittal images converted to axial. Lesion masks for each
patient were created (transforming the ROIs into independent
images) and then binarized using ImCalc module. After this step,

the binary lesion masks together with the T1 sagittal images
were used to create new structural images. The created images
were automatically transformed from the individual space to the
Montreal Neurological Institute (MNI) space. Linear regression
was applied to remove other sources of spurious covariates along
with their temporal derivatives, including the global mean signal,
white matter and cerebrospinal fluid signal. After the head-
motion correction, the functional MRI images were spatially
normalized to the MNI space and resampled at a resolution of
3 × 3 × 3 mm3. After pre-processing, the time series for each
voxel were linearly detrended to reduce the low-frequency drift
and physiological high-frequency respiratory and cardiac noise.

The ALFF measure at each voxel was the averaged square
root of the power spectrum of low-frequency (0.01–0.08Hz).
The fALFF value was the ratio of this power spectrum to entire
frequency range. The fALFF was calculated by DPABI toolbox.

Statistical Analysis
The demographic factors (age, education, and years of education)
and the questionnaire data were compared between groups

FIGURE 3 | Beta value of between-group differences in fALFF. Data are mean

± standard error values. fALFF, fractional amplitude of low-frequency

fluctuation; R, right; L, left; MS, multiple sclerosis; HGs, healthy groups; CPL,

cerebellum posterior lobe; FG, fusiform gyrus; Hip, hippocampus; IFG, inferior

frontal gyrus; SFG, superior frontal gyrus; Prc, precuneus.

TABLE 2 | fALFF differences between RRMS and HGs.

Conditions Brain regions of peak

coordinates

R/L BA Voxel volume (mm3) t-score of peak voxel MNI coordinates

X Y Z

RRMS > HGs Cerebellum posterior lobe R N/A 594 3.5264 24 −72 −51

RRMS > HGs Inferior frontal gyrus L 47 1,026 4.3785 −33 36 −9

RRMS > HGs Superior frontal gyrus L 46 756 3.583 −21 48 24

RRMS > HGs Superior frontal gyrus L, R 6 540 3.5727 6 15 69

RRMS > HGs Fusiform gyrus R 20 810 3.4781 42 −24 −30

RRMS < HGs Precuneus R 7 648 −3.5184 15 −66 33

RRMS < HGs Hippocampus L 28 540 −8.3636 −21 12 −33

The statistical threshold was set at uncorrected voxel threshold of p < 0.01 with a minimum voxel volume threshold of 540 mm3. fALFF, fractional amplitude of low-frequency fluctuation;

RRMS, relapsing-remitting multiple sclerosis; HGs, healthy groups; R, right; L, left; BA, Brodmann’s area; MNI, Montreal Neurological Institute; N/A, not applicable.
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FIGURE 4 | Pearson’s correlation between EDSS score and beta value of

caudate head. fALFF, fractional amplitude of low-frequency fluctuation; EDSS,

Expanded Disability Status Scale.

using two sample t-test. Chi-square (χ2) test was used for
categorical data. The statistical analysis was performed using
IBM Statistical Package for the Social Sciences version 21.0 (SPSS
21.0). Data are presented as mean ± standard deviation. All
results were quoted as two-tailed, and P < 0.05 was considered
as statistically significant.

Two-sample t-tests were used to investigate the fALFF
differences in brain regions between RRMS and HGs with age,
sex, and years of education as nuisance covariates of no interest.
A corrected threshold of two-tailed voxel-wise p < 0.001 and
cluster-level p < 0.001, corrected for multiple comparisons
by false discovery rate (FDR), was used for one-sample t-
tests. A loose corrected threshold of two-tailed voxel-wise p <

0.01 and cluster-level p < 0.05 with a minimum continuous
cluster voxel volume of 540 mm3 was used for two-sample
t-tests.

Recently, ROC curve was increasingly applied into the
exploration of the reliability of one neuroimaging parameter as
a potential biological indicator in distinguishing one group from
another group (8, 16, 29–31). The mean beta values of those
brain regions exhibiting abnormal fALFF in RRMS relative to
HGs were entered into ROC curve analysis. Pearson correlation
analysis was performed to evaluate the relationships between the
behavioral performances (disease duration and EDSS score) and
the fALFF value of those different brain regions. p < 0.05 was
considered to be significant differences.

RESULTS

Sample Characteristics
The demographic characteristics of the subjects are
presented in Table 1. There were no significant differences
in sex (χ2 = 0.025, p = 0.875), mean age (t = 0.23,

p = 0.819), and mean education (t = −0.515, p = 0.609)
between RRMS and HGs. The mean disease duration
and EDSS score of RRMS was 22.02 (±32.96) days and
3.62 (±1.8), respectively.

fALFF Differences Between Groups
First, we reported within-group statistic maps for fALFF
measurement for RRMS (Figure 1A) and HGs (Figure 1B) using
one sample t-test (p < 0.001, FDR corrected). We found that
the two groups showed significantly similar fALFF value in brain
areas, but the covered areas in RRMS are wider than those in
HGs (Figure 2). Next, the fALFF differences between RRMS and
HGs were compared. Compared with HGs, RRMS exhibited
significantly higher fALFF values in the right cerebellum
posterior lobe, left orbitofrontal cortex (BA 47), left dorsolateral
prefrontal cortex (BA 46) in the salience network, bilateral
supplementary motor area (BA 6) in the salience network, and
right fusiform gyrus (BA20) and lower fALFF values in the left
hippocampus (BA28) and right precuneus (BA 7) in the occipital
cortex (Figure 2; Table 2).

Pearson Linear Correlation
The mean fALFF values of these different areas were extracted
(Figure 3) and used for Pearson linear correlation analysis. As
shown in Figure 4, EDSS revealed a negative linear correlation
with fALFF value in the bilateral supplementary motor area (BA
6) in the salience network (r = −0.395, p = 0.046), but no
significant difference can be found after multiple testing. No
other significant linear correlations between fALFF value in those
different brain areas and the behavioral performances were found
(p > 0.05).

High Sensitivity and Specificity
Since the different fALFF areas might be utilized as markers to
separate the RRMS from the HGs, the mean fALFF values of
these different areas were extracted and used for ROC curve
to explore whether the fALFF have the potential ability to
distinguish the RRMS from the HGs. In the present study, the
ROC analysis revealed that the seven areas exhibiting abnormal
fALFF values showed two good and five fair AUC values (0.77 ±
0.03, 0.729∼0.822) to discriminate the two groups (Figures 5A,B;
Table 3). Further diagnostic analysis demonstrated that the
mean beta values of these brain areas demonstrated low-
high degree of sensitivities (74.93% ± 12.52, 57.7∼92.6%)
and specificities (74.84% ± 13.39, 59.3∼96.3%). Next, we
investigated the discriminatory power of the combinations
with more brain regions (≥2) and found that combining
with more brain regions could improve the discriminatory
power. Each of the four combinations with more than five
brain regions exhibiting abnormal fALFF received the same
best discriminatory power to distinguish the two groups with
a sensitivity of 96.3% and a specificity of 88.5% (Figure 5C;
Table 3). These findings indicate that the fALFF parameter
may serve as a potential marker to distinguish the RRMS
from the HGs.
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FIGURE 5 | ROC curve of mean fALFF values value of those different brain regions between RRMS and HGs. ROC curve of increased (A) and decreased (B) fALFF

differences and four combinations with more than five brain regions (C). ROC, receiver operating characteristic; R, right; L, left; RRMS, relapsing-remitting multiple

sclerosis; HGs, healthy groups; CPL, cerebellum posterior lobe; FG, fusiform gyrus; Hip, hippocampus; IFG, inferior frontal gyrus; SFG, superior frontal gyrus;

Prc, precuneus.

DISCUSSION

The study is the first to utilize the fALFF analysis to
identify the RRMS-related abnormal regional brain activity and
their correlations with demographic characteristics. RRMS was

associated with widespread changes in brain areas, including
cerebellum, orbitofrontal cortex, dorsolateral prefrontal cortex,
supplementary motor area, and fusiform gyrus with higher
fALFF values, and left hippocampus and precuneus in the
occipital cortex with lower fALFF values. Recently, the ROC
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TABLE 3 | ROC curve analysis for the fALFF difference in brain areas between RRMS and HGs.

fALFF index ROC curve

AUC Sensitivity Specificity Cutoff value

R_CPL 0.762 65.4% 88.9% −0.3908

R_FG 0.744 84.6% 59.3% −1.0845

L_Hip 0.822 92.6% 73.1% −0.6546

L_IFG 0.801 57.7% 96.3% 0.4447

L_SFG 0.788 69.2% 74.1% 0.4163

R_Prc 0.746 70.4% 69.2% 1.3291

LR_SFG 0.729 84.6% 63% 0.3984

L_Hip + L_IFG + L_SFG + R_Prc + LR_SFG 0.944 96.3% 88.5% 0.4518325

R_CPL+ L_Hip + L_IFG + L_SFG + R_Prc + LR_SFG 0.943 96.3% 88.5% 0.4718962

R_FG+ L_Hip + L_IFG + L_SFG + R_Prc + LR_SFG 0.944 96.3% 88.5% 0.4590561

R_CPL+ R_FG+ L_Hip + L_IFG + L_SFG + R_Prc + LR_SFG 0.943 96.3% 88.5% 0.4718186

ROC, receiver operating characteristic; AUC, area under curve; R, right; L, left; RRMS, relapsing-remitting multiple sclerosis; HGs, healthy groups; CPL, cerebellum posterior lobe; FG,

fusiform gyrus; Hip, hippocampus; IFG, inferior frontal gyrus; SFG, superior frontal gyrus; Prc, precuneus.

curve analysis has been widely applied into the exploration of
the reliability and the potential of one neuroimaging approach
to serve as an indicator in distinguishing one group from the
other group (8, 16, 29). In the present study, the ROC curve
revealed excellent AUC values for the combined areas, and
further diagnostic analysis demonstrated that these combinations
alone discriminated between the RRMS and the healthy subjects,
with high degree of sensitivities and specificities. Thus, the
resting-state fALFF analysis might serve as a potential biological
indicator to characterize the abnormal regional brain activity in
RRMS. Furthermore, in the RRMS group, the supplementary
motor area negatively correlated with EDSS score, which may
suggest that the motor cortex could predict the disability status
of RRMS.

In the present study we found that the altered regional
brain activity of the brain areas mainly manifested as increased
fALFF values. There are two prevalent speculations (32). One
explanation of this finding could be interpreted as brain
compensation, in which the brain utilizes additional resources
to help achieve the same level of performance as before.
RRMS, disseminated in axonal degeneration and inflammatory
demyelination in the central nervous system, is relative to the
extensive white matter and gray matter damage (1, 2, 33).
Another explanation of this finding could be interpreted as an
enhanced neural effort to offset the noxious effects on the human
brain function and structure.

RRMS is characterized by motor system disorder (1, 2), and
extensive involvements of disease-related cortical changes may
lead to several clinical symptoms, such as sensorimotor and
cognitive deficits (2). The symptoms-related abnormal regional
resting-state brain activity of RRMS may emerge ahead of
the presence of visible brain lesions on T2WI (22). These
regional areas covered the motor and visual systems. The
cerebellum posterior lobe(s) works with cerebrum to complete
several advanced cognitive and movement functions (34–36).
The cerebellum posterior lobe is associated with regulation of
coordinating movement (16, 23, 37). The cerebellar circuit has
been associated with motor control function and motor behavior

(32, 38). Abnormal regional resting-state brain activity, long-
range functional connectivity, and gray matter atrophy in the
motor systems (such as cerebellum) were also observed in the
RRMS (39–41). The notion of dysfunctional neural integration
in the cerebellum is supported by several positron emission
tomography studies with decreased glucose metabolism in the
bilateral cerebellum in early RRMS, which was ascribed to the
remote effect of demyelinating lesions (42, 43). In support of
these findings, our study showed altered regional brain activity
in the cerebellum and supplementary motor area. Furthermore,
the motor system correlated with the disability status of RRMS.
Therefore, we speculated that the altered fALFF in the motor-
related areas may be interpreted as functional deficit of the motor
system caused by the RRMS, which may explain, at least partially,
the motor system disorder of RRMS.

Cognitive function impairment may be involved with
43∼70% of RRMS patients (44, 45). Previous studies primarily
focused on how brain volume alteration (e.g., hippocampal)
or T2 lesion load affect cognitive function (46, 47). These
changes showed robust correlations with cognitive function
(48, 49) and appear to be important predictors for cognitive
function impairment in RRMS (50). In the present study, we
explored how regional functional brain activity alterations
of advanced cognitive function-related areas affect cognitive
function. Here, we found fALFF differences in several cognitive-
related areas (hippocampal, dorsolateral prefrontal lobe, and
orbitofrontal cortex) in the RRMS relative to the HGs. The
hippocampal and dorsolateral prefrontal areas are associated
with advanced cognitive function, such as working memory
(51–55). The orbitofrontal cortex (OFC), connected with
prefrontal and deep structures known to mediate sensorimotor
processing, motivation, and self-evaluation, is thought to
be responsible for mediating the interactions between
emotional processes and cognitive functions (56, 57) and
play a significant role in fatigue, executive functions, attention,
and motivation (58–60). Altered fALFF values of these advanced
cognitive function-related areas may indicate cognition deficit
of RRMS.
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CONCLUSIONS

In summary, the fALFF parameter may serve as an early
potential biological marker to describe the abnormal
regional brain activity associated with RRMS, ahead of
visible brain lesion. Our study demonstrated that RRMS
is associated with abnormal regional brain activity deficits
in motor- and cognitive-related areas. These findings may
provide intriguing insights into guide tailored treatment
decisions and help provide us with a more comprehensive
understanding of the pathophysiology of RRMS. However,
the small number of subjects may be a major limitation; a
larger number of sample sizes are necessary to corroborate
our findings.
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