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Background: Alzheimer’s disease (AD) is the most common type of dementia. Scientists

have discovered that the causes of AD may include a combination of genetic, lifestyle,

and environmental factors, but the exact cause has not yet been elucidated. Effective

strategies to prevent and treat AD therefore remain elusive. The identified genetic causes

of AD mainly focus on individual genes, but growing evidence has shown that complex

diseases are usually affected by the interaction of genes in a network. Few studies have

focused on the interactions and correlations between genes and how they are gradually

destroyed or disappear during AD progression. A differential network analysis has been

recognized as an essential tool for identifying the underlying pathogenic mechanisms

and significant genes for prediction analysis. We therefore aim to conduct a differential

network analysis to reveal potential networks involved in the neuropathogenesis of AD

and identify genes for AD prediction.

Methods: In this paper, we selected 365 samples from the Religious Orders Study and

the Rush Memory and Aging Project, including 193 clinically and neuropathologically

confirmed AD subjects and 172 no cognitive impairment (NCI) controls. Then, we

selected 158 genes belonging to the AD pathway (hsa05010) of the Kyoto Encyclopedia

of Genes and Genomes. We employed a machine learning method, namely, joint

density-based non-parametric differential interaction network analysis and classification

(JDINAC), in the analysis of gene expression data (RNA-seq data). We searched for the

differential networks in the RNA-seq data with a pathological diagnosis of AD. Finally,

an optimal prediction model was built through cross-validation, which showed good

discrimination and calibration for AD prediction.

Results: We used JDINAC to derive a gene co-expression network and to explore the

relationship between the interaction of gene pairs and AD, and the top 10 differential

gene pairs were identified. We then compared the prediction performance between

JDINAC and individual genes based on prediction methods. JDINAC provides better

accuracy of classification than the latest methods, such as random forest and penalized

logistic regression.

Conclusions: The interaction between gene pairs is related to AD and can provide more

insight than the individual genes in AD prediction.

Keywords: Alzheimer’s disease, differential networks, machine learning, neurodegenerative disease,

gene expression
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1. INTRODUCTION

With the improvement of the standard of living, people’s life
expectancy has gradually increased, but at the same time, the
aging population is also growing, and age-related diseases such
as dementia are on the rise (1). Dementia is a condition that
causes a severe loss of cognitive abilities due to a disease or
injury. Dementia caused by a traumatic brain injury is usually
static, whereas dementia caused by neurodegenerative diseases
is usually progressive and may eventually become fatal (2).
Alzheimer’s disease (AD) is the most common cause of dementia
and the most common neurodegenerative disorder (3). The
clinical features of AD are a decline in memory or other thinking
skills that affect a person’s ability to perform daily activities. AD
is a complex and chronic neurological disease, affecting more
than 200,000 people younger than 65 years old and 5 million
people older than 65 years old. At present, the total estimated
prevalence is expected to be 13.8 million (4). AD is a critical
public health issue in many countries around the world, with a
significant health, social, and financial burden on society (5).

At the neuropathological level, AD is characterized
by progressive cortical atrophy due to neuronal loss and
characteristic intracellular and extracellular deposits of insoluble
tau and amyloid-β (Aβ) proteins (6). Although the pathology
and molecular mechanisms of AD have been explored through
various methods such as gene expression profiling, genome-wide
association studies (GWAS), or a systems biology framework,
the cause of AD is still unclear (7–11). AD is a multifactorial
disease, including age, genetic factors, excess use of alcohol, or
depression (5). Among these factors, genetic factors can explain
an estimated 70% risk of AD (12). Thus far, a lot of GWAS
have shown that many risk loci and genes are related to AD. A
dominant mutation in the gene encoding presenilin-1 (PSEN1),
presenilin-2, amyloid precursor protein, and apolipoprotein E
(APOE) is an identified genetic cause of AD (13). However,
current works have mainly focused on the genetic variations of
individual genes associated with AD. Few studies have focused
on the interactions and correlations between gene products
and how they are gradually destroyed or disappeared during
AD progression.

The interactions of genes can be adequately represented as
a network (14, 15). Accordingly, a differential network analysis
can be used to identify different structures between the gene
networks of two specific groups. Generally, these specific groups
of networks are often represented as the patient group and
healthy control group. Through the differential network analysis,

we can identify whether the connectivity of a particular set of

genes of interest, or a given single gene has changed between

two networks (16–23). The differential network analysis can be
used to understand the effects of different genes and to identify
interactions between essential genes that affect AD. In the past
few years, the differential network analysis has been one of the
techniques that has drawn researchers’ attention and has become
an active field of research. For example, the method DEDN,
proposed by Zhao et al. (24), uses a precision matrix to build two
models of each condition-specific network under the Gaussian
assumption. Yuan et al. (25) also proposed NES in 2016, which

is the first method to detect group differences between pathways.
This method can find changes in edges and nodes and consider
the pathway structure. However, depending on the characteristics
of AD, not all differential network analysis methods are suitable.
Many confounding factors are involved in AD, such as age,
gender, and depression, which are all related to the progression
and development of the disease. Korolev (5) also confirmed that
confounding factors can affect AD. To identify the differential
patterns of gene product network activation more accurately
between the patient group and healthy controls, we should select
the method that can cope well with these confounding factors.
Moreover, in analyzing a specific disease, the use of network
biomarkers to achieve accurate classification is meaningful,
especially in high-dimensional settings. Furthermore, in AD, the
probability distribution of gene product measurements may be
unknown, so we should select a method that does not have the
parametric probability distribution hypothesis of gene product
measurements. To the best of our knowledge, thus far, no one
has proposed a method to solve all of the above issues at the
same time.

To address the challenges above, we propose the use of a
novel machine learning method, namely, joint density-based
non-parametric differential interaction network analysis and
classification (JDINAC), which was proposed by Ji et al. (26). The
JDINAC method eliminates the effects of confounding factors
in the differential network analysis and uses high-dimensional
sparse data for an accurate classification. Moreover, JDINAC
makes no assumptions about the probability distribution of the
gene measurement parameters. In this study, we first employ
JDINAC in the analysis of high-dimensional “omics” and autopsy
data from the Religious Order Study (ROS) and Memory and
Aging Project (MAP), two well-known studies in the area of
AD research. Then, we selected genes from the AD pathway of
the Kyoto Encyclopedia of Genes and Genomes (KEGG) and
searched for potential biomarkers and differential networks of
gene expression data with a pathological diagnosis of AD. Finally,
we obtained an optimal prediction model that was subsequently
built through a cross-validation. Such a model showed good
discrimination and calibration for AD prediction.

2. MATERIALS AND METHODS

2.1. ROS and MAP
Data were obtained from two famous cohort studies in the area of
AD: the ROS and MAP. Both were proposed by Bennett (27, 28).
ROS is a longitudinal clinical pathology cohort study of AD.
Since 1994, the study has recruited people over the age of 65
from more than 40 groups (nurses, pastors, and siblings) in the
United States. As a complementary study of ROS, MAP is also
a longitudinal clinical pathology cohort study that focuses on
cognitive and motor function decline and AD risks. The project
began in 1997 and enrolled older people (65 years old and above)
from retirement communities in Chicagoland and Northeastern
Illinois. These studies are both run by Rush University and
approved by Rush University Medical Center Institutional
Review Boards. In addition, participants in both studies did not
have known dementia at the time of enrollment and agreed to
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receive annual clinical assessments and to donate their brain
after death. For the present study, we used a subset of the ROS
and MAP datasets that includes a reduced selection of more
commonly used variables (i.e., clinical diagnosis, demographics,
and RNA-seq).

2.2. Clinical Diagnosis
Based on a three-stage process, a clinical diagnosis of AD
status was proposed, including scores of computerized cognitive
tests, clinical judgment of neuropsychologists, and diagnostic
classification of clinicians.

All participants were required to have a unified, structured
clinical assessment, including a set of 19 cognitive tests.
These tests were scored by a computer using a decision
tree, which was designed to simulate clinical judgment. Then,
neuropsychologists, who were blinded to the demographics of
the participants, examined injury ratings and other clinical
information and made clinical judgments on the presence
of injuries and dementia. Lastly, a clinician (neurologist,
geriatrician, or geriatric nurse practitioner) reviewed all available
data, examined the participants, and presented a final diagnostic
classification. The final diagnostic is divided into six groups: NCI
(no cognitive impairment), MCI (mild cognitive impairment and
no other causes of cognitive impairment), MCI+ (mild cognitive
impairment and another cause of cognitive impairment), AD
(AD and no other causes of cognitive impairment), AD+ (AD
and another cause of cognitive impairment), and other dementias
(other primary causes of dementia).

In this study, we examined the effects of gene pairs on AD.
To ensure the accuracy of our data analysis, we selected samples
without cognitive impairment or with AD but without other
causes of cognitive impairment. Accordingly, we eliminated the
unclear effects of other cognitive impairments on our research.
The final samples were selected from two diagnostic groups,
namely, NCI and AD.

2.3. Demographics
Basic demographic information includes age, gender, and years
of education, and in this study, they represent confounder
covariates. Age is calculated based on the dates of birth and
death. Gender and years of education were self-reported from the
baseline evaluation.

2.4. RNA-Seq
RNA was extracted from the dorsolateral prefrontal cortex gray
matter of the ROS andMAP datasets using QIAGEN’s miRNeasy
mini kit (catalog number 217004) and the RNase-free DNase
kit (catalog number 79254). They were quantified by NanoDrop
and evaluated for quality by Agilent Bioanalyzer. The Broad
Institute’s Genomics Platform uses the strand-specific dUTP
approach (29) with poly-A selection (30) on samples to prepare
the RNA-seq library. All samples were selected to meet two initial
quality criteria: a quantity threshold of 5 g and a RNA integrity
(RIN) score >5. Raw RNA-seq data were processed by parallel
automated pipelines [see (31) for the details of the RNA-seq
data pipeline].

2.5. Study Design
In this study, to ensure that the variables were included in all
of the samples, we selected 365 samples from the ROS and
MAP databases, including 193 clinically and neuropathologically
confirmed AD subjects and 172 NCI controls. The RNA-seq data
need to be obtained from the gray matter of the dorsolateral
prefrontal cortex. We therefore emphasize that, although the
ROS andMAP are cohort studies, the 365 samples were deceased.
We randomly selected 135 subjects from the AD group and 120
subjects from the NCI group as our training samples. A total of
255 training samples and 110 test samples were therefore used.

We extracted 171 genes from the AD pathway (hsa05010) of
KEGG and treated these genes as our candidate genes. We then
filtered the genes that contained a >30 % zero gene expression
value in our data. A total of 158 final candidate genes were
therefore used for the analysis.

2.6. Differential Gene Co-expression
Methods
A differential network analysis is a standard method used to
discover differences in a network topology between two groups
of gene expression samples. In this study, we employed the
differential network analysis to detect the differential interaction
patterns of the genes selected between two specific groups
(i.e., AD and NCI) and to build a classification model using
these genes. However, the differential network analysis and
the classification in our research are confronted with some
challenges. First, the number of features p is often much bigger
than the sample size of data n, and here, p is the number
of pairs of genes. Second, nonlinear relationships often appear
in the analysis of two genes. Third, AD may be affected by
confounding factors, such as age, gender, and years of schooling.
Therefore, we have to address these confounding factors in
a differential network analysis and classification. Lastly, due
to the difficulty in obtaining the underlying distribution of
genes, some specific distribution assumptions often fail, such
as the Gaussian assumption. To address the above challenges,
we compared various differential network analysis approaches.
We then selected the most suitable method for our study,
which is JDINAC (26). We employed this newly proposed
machine learning model, that is based on a non-parametric
kernel approach, to recognize differential interaction patterns of
genes and to find gene pairs that are most closely related to AD.
We then built a classification model using these gene pairs. In the
following text, we briefly introduce the JDINAC method.

The main premise of JDINAC is that the difference in
the gene network between patients with AD and healthy
people arises from the collective effect of differential pairwise
gene–gene interactions. Here, through a nonparametric kernel
method, we estimate the conditional joint density of pairs
of genes in different groups and characterize them as the
pairwise gene–gene interactions. Formally, we denote Xn×p =

(X1, X2, . . . , Xn)
T as the matrix of n samples and p genes and

Yn×1 = (Y1, Y2, . . . , Yn)
T as the response vector. We denote

s (s = 1, 2, . . . , n) as the individual participant. Then, Xs, s =

1, 2, . . . , n, represents the gene features in the s-th people.
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We define Ys as the binary response variable, which can be
represented as:

Ys =

{

0, if s is non-AD

1, if s is AD
(1)

Pr denotes the probability of the patients with AD,
i.e., Pr = P(Ys = 1), and Gi is the i-th gene.
Based on the logistic regression, JDINAC can be
built as

logit(Pr) = α0 +

T
∑

t=1

αtZt +

p
∑

i=1

∑

j>i

βijln
f 1ij (Gi,Gj)

f 0ij (Gi,Gj)
,

p
∑

i=1

∑

j>i

∣

∣βij

∣

∣ ≤ c, c > 0 (2)

where Zt(t = 1, 2, . . . ,T) indicates the covariates, such
as age, gender, and depression, which is used to adjust
the confounding factors. We define f 1ij (Gi,Gj) as the class

conditional joint density of the i-th gene (Gi) and j-th gene
(Gj) in Class 1, i.e., ((Gi,Gj)|Y = 1) ∼ f 1ij (Gi,Gj) and

f 1ij (Gi,Gj) represents the strength of the association between

Gi and Gj in Class 1. Similarly, we define f 0ij (Gi,Gj) as

the class conditional joint density of the i-th gene (Gi)
and j-th gene (Gj) in Class 0, i.e., ((Gi,Gj)|Y = 0) ∼

f 0ij (Gi,Gj) and the f
0
ij (Gi,Gj) represents the strength of association

between Gi and Gj in Class 0. The parameters βij denote
the differential dependency patterns between condition-specific
groups (32).

As this is a high-dimensional problem, we need to adopt
the L1 penalty (33). Therefore, to estimate βij, we solve L1
penalized logistic regression, and to obtain the best penalty
parameter, we employ a cross-validation method. The estimation
procedure of JDINAC includes amultiple splitting procedure and
a prediction averaging procedure, which guarantee robust and
accurate results. For the multiple splitting procedure, the data
are split into two parts. The first part data are used to estimate

the kernel density functions f̂ 1ij (Gi,Gj) and f̂ 0ij (Gi,Gj), whereas

the second part data fits the L1 penalized logistic regression. For
the prediction averaging procedure, we repeat the first procedure
for pre-determined times [for the detailed implementation of
JDINAC, please refer to (26)].

3. RESULTS

3.1. Characteristics of the Subjects in This
Study
Among the 365 subjects in this study, 193 were diagnosed with
AD and 172 subjects had NCI. The demographics of the two
groups of subjects (i.e., AD and NCI) are presented in Table 1. In
the table, no statistically significant difference was found between
the two groups with respect to female sex ratio and years of
education (p > 0.05). However, statistically significant differences
in the APOE ε4 ratios and age at death between the two groups
were detected (p <0.001). A higher ratio of subjects who had
APOE ε4 in the AD group than the NCI group is found.

TABLE 1 | Sample demographics of the subjects included in this study.

AD NCI

Variable (N = 193) (N = 172) p-value

Female sex, No. (%) 133 (68.9) 103 (59.9) 0.072

Education, years 16.54 (3.42) 16.48 (3.43) 0.876

APOE ε4, No. (%) 69 (35.6) 28 (16.3) <0.001

Age at death, years 88.29 (3.08) 84.60 (5.32) <0.001

Data are presented as mean (SD) unless specified.

3.2. Differential Gene Co-expression
Patterns
After adjusting for the covariates, the differential gene co-
expression network of AD estimated by JDINAC is described in
Figure 1. In this figure, we did not show all 171 genes; instead,
we chose genes connected with at least one other gene. A total of
114 edges are shown in the figure, which meant that 114 pairs of
genes are associated with a pathological diagnosis of AD. In the
figure, the red nodes represent the hub genes that have at least five
adjacent genes in the differential networks. Hub genes included
11 genes: CALML3, UQCRB, NDUFV2, ATP5MC2, COX6B2,
ATP5F1E, CAPN1, NCSTN, SDHA, NDUFA3, and PPP3CA.We
ordered these hub genes based on the weight derived by JDINAC
of genes. We mainly focused on the top 10 differential gene pairs
identified by JDINAC, which are summarized in Table 2.

3.3. Prediction Performance
In this section, we demonstrate that our model has good
predictive performance by examining whether individual genes
or pairwise interactions of genes are stronger associates of
AD. Accordingly, we compared JDINAC and two popular
methods in single-gene prediction: random forest (RF) and
penalty logistic regression (PLR). We used all 158 individual
genes as predictors in the RF and PLR methods. The
evaluation of their prediction performance is shown in Table 3.
We present three receiver operating characteristic curves
in Figure 2.

As shown in Table 3 and Figure 2, the two methods with
individual genes (i.e., RF and PLR) performed worse than
JDINAC in terms of the area under the curve (AUC) and
accuracy. Moreover, compared with two other methods, JDINAC
not only showed higher sensitivity and specificity but also had
a better balance between them. Thus, the interactions between
the pairs of genes are associated with AD and can provide
more insights than the individual genes in AD prediction.
These results suggest that identifying differential networks is
biologically meaningful for distinguishing between disease states
and normal disease states.

Furthermore, to prove that our method (i.e., JDINAC) is more
stable than the other twomethods (i.e., RF and PLR), we calculate
the 95% confidence intervals for all the indicators through the
bootstrap method and list them in Table 3. The results show
that JDINAC has a smaller confidence interval than the other
two methods, thus showing its stability. Furthermore, JDINAC
is significantly better than the other two methods in terms of
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FIGURE 1 | The differential network of AD pathway between AD subjects and NCI subjects. An edge presented in the differential network means the relation of

corresponding pair genes is different between two condition-specific groups. The red nodes stand for hub genes.

TABLE 2 | Top 10 differential gene co-expression pairs identified by JDINAC.

Gene 1 Gene 2

1 UQCRB NDUFV2

2 NDUFV3 ATP5PB

3 NDUFB8 PSENEN

4 NDUFV2 NDUFA10

5 NDUFS8 IL1B

6 CAPN2 NDUFAB1

7 PSEN1 NDUFAB1

8 NDUFC2 NDUFA5

9 PPP3CC NDUFB5

10 ATP5MC2 NDUFB5

predictive power. We used the DeLong test (34) to compare the
AUC value of JDINAC with the AUC values of RF and PLR.
Statistically significant differences in the twoAUC values between
JDINAC and RF and between the JDINAC and PLR were also
detected (p = 0.016 and p = 0.007, respectively). The findings
show that the AUC index of JDINAC is significantly improved
compared with that of the other two methods with a confidence
level of 0.05.

TABLE 3 | Evaluation and comparison of prediction performances of Random

Forest and Penalized Logistic Regression based on individual genes and JDINAC

based on pairwise interactions of genes.

JDINAC RF PLR

AUC 0.840 (0.763–0.916) 0.731 (0.637–0.825) 0.727 (0.630–0.824)

Accuracy 0.791 (0.716–0.866) 0.682 (0.604–0.760) 0.673 (0.591–0.755)

Sensitivity 0.776 (0.636–0.916) 0.672 (0.417–0.928) 0.724 (0.459–0.989)

Specificity 0.808 (0.652–0.963) 0.692 (0.431–0.954) 0.615 (0.355–0.876)

Precision 0.818 (0.705–0.931) 0.709 (0.542–0.876) 0.677 (0.510–0.845)

95% confidence interval are presented in parentheses.

4. DISCUSSION

4.1. Key Findings
The goal of the current study is to determine the underlying
genetic interaction mechanisms of AD and use these identified
network genes to achieve accurate classification. At first, we
believed that the relationship between gene expression and AD
is complex and considering the response of AD to any individual
genes is insufficient to fully capture or interpret this relationship.
By selecting 158 genes from KEGG as our final candidate genes,
we identified 114 pairs of genes that were related to AD through

Frontiers in Neurology | www.frontiersin.org 5 October 2019 | Volume 10 | Article 1162

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Chen et al. Alzheimer’s Disease Prediction

FIGURE 2 | ROC curves for JDINAC, penalized logistic regression, and

Random Forest.

the use of JDINAC. The analysis of the relationship between
AD and gene expressions suggested that the key influencing
factor of AD is the interaction between genes. In other words,
AD is rarely the result of a single genetic abnormality, but it
rather reflects the various genes that interact in the network.
Further analysis revealed a differential network in the pairwise
interactions between a limited number of genes that predict AD
more accurately and strike a good balance between sensitivity
and specificity.

4.2. Interpretation
We identified the differential interaction patterns of a network of
gene pairs between the AD and NCI groups. Then, we identified
11 hub genes and the top 10 important gene co-expression
pairs. Although the real underlying dependence relationships
of genes are still unknown, the association of these gene pairs
and AD can be supported by the results of previous studies.
Among the 11 hub genes, seven were mitochondrial genes, which
are located in the mitochondria. Moreover, the 10 gene co-
expression pairs included five gene pairs that are mitochondrial
genes, and 15 genes among the 20 genes are located in the
mitochondria. Mitochondrial genes are therefore essential for
AD, and considerable literature has already confirmed this
finding (35–37). Two specific examples for a gene pair and a hub
gene that are supported by previous studies are discussed below.

The first example, UQCRB, is a panthenol-cytochrome c
reductase binding protein. It is a nucleus-encoded component
of complex III, which is located in the mitochondrial respiratory
chain. This protein plays an essential role in the electron transfer
as a complex of ubiquinone and QP-C. Scientists have shown
that the composition of complex III is regulated in the early
onset of AD (38). Therefore, UQCRB will affect AD progression.
NDUFV2 is a protein encoding a subunit of the mitochondrial

respiratory chain complex I. Similarly, complex I and complex
II transfer some electrons to ubiquinone. Complex III uses
ubiquinol to reduce cytochrome c (39). Therefore, UQCRB has
a functional interaction with NDUFV2. This finding suggests
that the molecular role of UQCRB in the AD progression is
derived from the altered UQCRB-NDUFV2. Another example
is the hub gene ATP5F1E, which is located in the mitochondria
and encodes a subunit of the mitochondrial ATP synthase. Cha
et al. (40) found that the ATP synthase subunit α (ATP5A) was
O-GlcNAcy at Thr432, whereas ATP5A O-GlcNAcy-lation was
reduced in the brain of patients with AD and transgenic mouse
models. This finding means that ATP synthase is associated with
AD. Therefore, ATP5F1E plays a crucial role in the progression
of AD.

The association of pairs of non-mitochondrial genes with
mitochondrial genes in the differential network and AD can
be confirmed by previous research findings. For instance,
PSEN1 and NDUFAB1 are identified as a pair affecting AD
and PSEN1 are not located in the mitochondria. PSEN1 is a
protein-coding gene and makes a protein called presenilin-1.
NDUFAB1 is a protein encoding a subunit of the mitochondrial
respiratory chain complex I. In PSEN1, mutants often directly
or indirectly lead to an increase in mitochondrial calcium ion
Ca2+ content. The increased Ca2+ content in the mitochondria
stimulates mitochondrial respiration leading to an increase in
mitochondrial superoxide production (41). PSEN1 therefore
has functional interactions with NDUFAB1. As mitochondrial
dysfunction and subsequent metabolic disorders are observed in
AD and changes in the PSEN1–NDUFAB1 gene pair affecting
the mitochondrial function, we can speculate that a correlation
exists between the PSEN1–NDUFAB1 gene pair and AD. In
addition, we provide another example for a hub gene that is
not located in the mitochondria. As shown in Figure 1, the
hub gene CALML3 has the largest number of neighbor genes.
The above analysis shows that Ca2+ can affect AD. Strehler
(42) already found that the CALML3 gene is involved in the
transport of Ca2+. Therefore, the gene CALML3 will affect the
onset of AD.

4.3. Future Prospects
The main aim of this study is to identify the underlying
gene interaction mechanisms of AD. Although the study
conducted thorough research, certain limitations were still
encountered. These limitations are expected to be addressed in
our future studies.

First, a lot of potentially essential genes do not belong to
the AD pathway of KEGG, which may affect the accuracy of
our study. In the future, we can use the GWAS dataset to
investigate the association of gene interaction and AD. Second,
our analysis only identified paired gene interactions, however,
the relationship between AD and gene interactions may be more
complex. In the future we should therefore modify the method
that identifies higher-order interactions of genes. Furthermore,
because of the limitation of the ROS and MAP datasets, we
could not divide the subjects of the AD group into more specific
stages of AD, including early mild cognitive impairment, late
MCI, and AD. In the future, we can perform a differential
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co-expression analysis across all the stages of AD and derive
detailed results.

4.4. Conclusion
In this study, we employed JDINAC for the estimation of
gene co-expression networks of AD. Our findings showed a
strong association between AD and gene interactions, and we
can predict AD through the patterns of interactions within the
gene network. By comparing JDINAC with RF and PLR, we
found that the interactions between pairs of genes had more
information than the individual genes in AD prediction. In the
future, further optimizations of this study will be conducted to
provide more accurate results and to discover a broader range
of applications.
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