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Cognitive impairment is a common feature in Parkinson’s disease (PD) and other

α-synucleinopathies as 80% of PD patients develop dementia within 20 years. Early

cognitive changes in PD patients present as a dysexecutive syndrome, broadly

characterized as a disruption of the fronto-striatal dopamine network. Cognitive deficits

in other domains (recognition memory, attention processes and visuospatial abilities)

become apparent with the progression of PD and development of dementia. In

dementia with Lewy bodies (DLB) the cognitive impairment develops early or even

precedes parkinsonism and it is more pronounced in visuospatial skills and memory.

Cognitive impairment in the rarer α-synucleinopathies (multiple system atrophy and

pure autonomic failure) is less well studied. Metabolic brain imaging with positron

emission tomography and [18F]-fluorodeoxyglucose (FDG-PET) is a well-established

diagnostic method in neurodegenerative diseases, including dementias. Changes in

glucose metabolism precede those seen on structural magnetic resonance imaging

(MRI). Reduction in glucose metabolism and atrophy have been suggested to represent

consecutive changes of neurodegeneration and are linked to specific cognitive disorders

(e.g., dysexecutive syndrome, memory impairment, visuospatial deficits etc.). Advances

in the statistical analysis of FDG-PET images enabling a network analysis broadened

our understanding of neurodegenerative brain processes. A specific cognitive pattern

related to PD was identified by applying voxel-based network modeling approach. The

magnitude of this pattern correlated significantly with patients’ cognitive skills. Specific

metabolic brain changes were observed also in patients with DLB as well as in a

prodromal phase of α-synucleinopathy: REM sleep behavior disorder. Metabolic brain

imaging with FDG-PET is a reliable biomarker of neurodegenerative brain diseases

throughout their course, precisely reflecting their topographic distribution, stage and

functional impact.
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INTRODUCTION

Parkinson’s disease (PD) is a chronic neurodegenerative
disease affecting 2–3% of the population older than 65
years. It is primarily a movement disorder characterized by
bradykinesia, rigidity, postural impairment, and resting tremor.
Its neuropathologic hallmarks are degeneration of substantia
nigra and intracellular aggregation of α-synuclein (1). Since
James Parkinson’s An Essay on the Shaking Palsy (2), which
still remains largely valid, new knowledge has been gained,
particularly on non-motor symptoms, some of which may
precede motor signs by decades (3). Cognitive decline, which was
not described by James Parkinson, is one of the most debilitating
non-motor symptoms and it may drastically decrease patient’s
and caregiver’s quality of life. It is now recognized that the full
spectrum of cognitive decline, ranging from subjective cognitive
decline (SCD) through mild cognitive impairment (MCI) to
dementia can be observed in PD patients (4).

Furthermore, cognitive impairment is important for
diagnosis and differential diagnosis among α-synucleinopathies,
since some are strongly associated with dementia [PD and
dementia with Lewy bodies (DLB)] and others not [multiple
system atrophy (MSA) and pure autonomic failure (PAF)].
Although underlying pathology (α-synuclein) is the same in
all-aforementioned conditions, its topography, pathophysiology
and clinical presentation of cognitive impairment may differ.

Cognitive impairment is a common feature of PD and based
on different criteria and thresholds, 10–40% of PD patients have
MCI (PD-MCI) at the time of the diagnosis (5–11). Among
the PD patients with normal cognition at baseline almost 50%
developMCI within 6 years (12), however around 20% of patients
with PD-MCI revert to normal cognition after a year (13).
Additionally, subtle cognitive decline, presenting as a decline in
the processing speed and executive functions as well as a mild
decrease in Mini-Mental State Examination (MMSE) score may
even precede PD diagnosis for up to 7 years (14). SCD, which is
a risk factor for Alzheimer’s dementia (AD), is believed to also
precede MCI in PD, and SCD in PD remains an active research
topic (4).

Current diagnostic criteria proposed by Movement Disorder

Society define PD-MCI as a gradual decline of cognition, not
causing a significant impact on a patient’s everyday functioning.
It is defined by clinical, cognitive, and functional criteria (15).
PD-MCI is a heterogeneous disorder and it can be either amnestic
or non-amnestic (16). PD-MCI correlates with an increased risk

of developing dementia (12, 13, 17). PD dementia (PDD) causes
cognitive changes in more than one domain and affects the
subject’s day-to-day functioning (18). It is a common feature of
the disease and, if patients live long enough, it occurs in almost
80% of them within 20 years from the initial diagnosis (19). On
the other hand, patients who develop dementia prior or within

1 year of first motor signs of parkinsonism are diagnosed with
DLB (20). While DLB and PDD are both characterized by similar
pathology and cognitive impairments, e.g., executive function,
attention (21, 22), DLB patients perform worse on visuospatial
andmemory tests (23). Their cognitive decline is faster withmore
severe fluctuations and their survival-time is shorter (24, 25).

MSA is a less common α-synucleinopathy characterized by
autonomic failure, cerebellar and parkinsonian signs and one
third of patients develop frontal-lobe dysfunction (26, 27). A
minority of MSA patients also develop dementia syndrome,
which has a rather heterogeneous clinical presentation (28–
30). α-synucleinopathies are commonly preceded by prodromal
conditions, such as idiopathic rapid eye movement (REM)
sleep behavior disorder (RBD) or, rarer, PAF. RBD, not an
α-synucleinopathy by itself (31), is characterized by lack of
muscle atonia during REM sleep and it has been shown
that RBD patients perform worse on neuropsychological tests
compared to healthy controls (32, 33). A big majority of
RBD patients also develop α-synucleinopathies; PD, DLB, or
MSA (34–37). In PD patients, RBD correlates with a higher
prevalence of PD-MCI and its presence predicts cognitive
decline at follow-up (38–41). RBD may therefore offer an
insight into the development of dementia at its preclinical phase
and be an excellent target for disease-modifying interventions.
However, reliable and objective biomarkers of progression of
cognitive impairment and conversion to dementia are still under
development (42). PAF is characterized by α-synuclein inclusions
in peripheral autonomic nervous system and consequential
autonomic symptoms (43). PAF, similarly to RBD, often
progresses to various α-synucleinopathies, although its relation
to later cognitive decline is still unclear (44).

The etiology of cognitive impairment in PD can be divided
into two partially overlapping orthogonal patterns, according
to the dual syndrome hypothesis (45). Cognitive changes
in planning ability, working memory and executive function
(dysexecutive syndrome) in PD-MCI patients arise due to
disruption of the fronto-striatal dopamine network, which is
mainly caused and driven by the depletion of striatal dopamine
transmission, rather than by primary frontal dysfunction
(46). Executive functions are also closely correlated with the
mesocortical dopamine system, which arises in the ventral
tegmental area and projects to the neocortical areas and whose
hyperactivity may act compensatorily in the early PD when only
the fronto-striatal system is impaired. There is some evidence
that disruption of both dopaminergic systems is necessary for the
development of dysexecutive syndrome (45, 46). Disruption of
the noradrenergic and cholinergic system further contributes to
the executive dysfunction (46). On the other hand, patients who
mostly suffer from deficits in visuo-spatial function and semantic
fluency, already early in PD course, have marked posterior
cortical and temporal lobe dysfunction (45). It has been shown
that the latter subgroup of patients develops dementia more
rapidly (47). Attention, visuoperceptual, and memory deficits
also correlate with the neurodegeneration of the cholinergic
nucleus basalis of Meynert and a consequential disruption of the
posterior cholinergic network (46).

[18F]-fluorodeoxyglucose positron emission tomography
(FDG-PET) is a well-established diagnostic method in early
and differential diagnosis of neurodegenerative brain diseases,
including dementia (48). FDG enters the cells via glucose
transporter, where it is metabolized and stays trapped in the
cell, and where 18F decays (49). Although it is still under
debate whether FDG signal mainly reflects neuronal or
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astrocytic glucose metabolism (50, 51), it is still thought to
be a direct measurement of synaptic activity (52) and is in
close correlation with cerebral blood flow (53, 54). It was
shown that impaired glucose metabolism antecedes atrophy
in Parkinson’s and Alzheimer’s disease and that these two
processes represent consecutive changes of neurodegeneration
(55, 56), making FDG-PET an excellent candidate for an
early disease stage biomarker. As demonstrated by a recent
meta-analysis, functional brain abnormalities detected with
FDG-PET scan, are more consistently and reliably observed
in PD patients than are the structural changes detected with
voxel-based morphometry magnetic resonance imaging (MRI)
(57). Although the topography of hypo/hypermetabolic changes
is thought to be specific for different neurodegenerative disorders
(58, 59), FDG-PET information in the clinical setting is only
regarded as supportive or not supportive of the diagnostic
hypothesis and it is recommended to be always used in addition
to clinical and neuropsychological assessment (48).

The last few decades brought us enormous progress in both
image acquisition techniques and subsequent FDG-PET image
analysis methods. These have broadened our understanding of
disease processes in neurodegenerative brain diseases through
defining regional disease-related metabolic changes as well as
by investigating their long-range consequences on the spatial
connectivity and whole brain metabolic changes (60).

Although international guidelines suggest the use of
quantitative techniques for aiding the interpretation of brain
FDG studies (61, 62), in clinical setting visual assessment of
FDG-PET images may still be deemed appropriate, depending
on the individual, local procedures. Visual assessment, however,
harbor limitation measured by inter-rater variability, mainly
depending on the expertise and experience of the reader (63).
Assessment by visual reading can be improved by the use
of various statistical mapping approaches (64, 65). The use
of automated semi-quantification methods is advised by the
European Association of Nuclear Medicine and the European
Academy of Neurology for increased accuracy of image reading
(66). The most widely accepted methods are based on mass
univariate testing, such as statistical parametric mapping (SPM)
(67, 68). For clinical evaluation, it has been established to apply
SPM for voxelwise comparison of e.g., regional FDG uptake of a
single patient’s image with the age matched control group images,
preferentially acquired at the same site. In this approach, each
voxel is evaluated independently, without an a-priori hypothesis
and voxel clusters that are statistically significantly different,
after correction for multiple comparisons, between the patient’s
and control group’s images can be identified and mapped
onto an anatomical atlas or an individual, structural MRI for
further interpretation (68). Other statistical approaches include
multivariate analyses, such as scaled subprofile model/principal
component analysis (SSM/PCA). When properly applied, this
method can be used to generate specific disease-related patterns
(58, 69, 70). Pattern’s expression can be prospectively measured
and quantified from the individual scans with the Topographic
Profile Rating (TPR) analysis (70). For all the methods, however,
a basic knowledge of both, disease characteristics and statistical
procedures is needed for proper interpretation of the results.

As most neurodegenerative brain syndromes manifest with a
range of cognitive impairments, neuropsychological assessments
represent the gold standard of its assessment. Metabolic
imaging may significantly contribute to our understanding of
functional anatomy and pathophysiological underpinnings of
cognitive impairments.

The aim of this review was driven by two basic questions:
(i) do neuropsychological data in PD and related α-
synucleinopathies correlate with metabolic neuroimaging
data and (ii) do these neuroimaging data reveal correlates of
impaired cognition already in syndromes that are known to
predict evolution into PD, DLB, and MSA.

METHODS

A literature search on PubMed was performed using
terms: “cognitive,” “cognition” or “neuropsychological” and
“Parkinson,” “Parkinson’s,” “dementia with Lewy bodies,”
“DLB,” “LBD,” “PDD,” “Multiple system Atrophy” or “MSA”
and “Fluorodeoxyglucose,” “Fluoro-deoxyglucose,” “FDG,”
“hypometabolic” and variations, or “hypermetabolic” and
variations. Additionally, for our second aim, we included search
terms “REM Sleep Behavior Disorder,” “RBD,” “Pure autonomic
failure” or “PAF.” Two hundred sixty-four articles were found
and analyzed. Only original research articles relevant to the
aforementioned rationales and pertaining to human studies,
written in the English language, published up to June 2019 were
included in this review. Case reports, interventional studies,
comparisons with non-α-synucleinopathies, studies investigating
non-cognitive signs, etc. were not taken into account.

PARKINSON’S DISEASE

We reviewed studies investigating MCI in PD, its progression to
PDD and studies specifically addressing the correlation between
metabolic changes and neuropsychological deficits.

Already in 1992, Peppard et al. described that cognitive decline
in PD is accompanied by changes in brain glucose metabolism
(71). More recent studies focused on cognitive decline in
specific stages of PD. In comparison with healthy control (HC)
participants, it was shown that PD-MCI patient exhibit regional
glucose hypometabolism in temporo-parieto-occipital regions
(72–74). The same pattern of hypometabolism, although to
a lesser extent, is seen when comparing PD-MCI with PD
patients having normal cognition (72, 73, 75, 76), marking
posterior, presumably cholinergic disruption. Although, when
Lyoo et al. divided PD patients into MCI subgroups, the
single domain amnestic subgroup exhibited no differences in
comparison to HC (73). Lack of differences may be accounted
to small sample size (n = 12) and topographic heterogeneity
of hypometabolic brain changes in amnestic MCI subgroup.
Rather inconsistent are also findings of the frontal metabolic
changes in PD-MCI in comparison to HC. Some studies report
frontal hypometabolism (72, 73, 76) and the others frontal
hypermetabolism in paracentral lobule (75) in PD-MCI patients.
This inconsistency can be explained to some degree by selective
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focusing on hypometabolic changes in some studies and thus
not paying attention to hypermetabolic ones. The hypermetabolic
changes however previously rose some controversy regarding
their meaning (77–80). Recent results (81–83) show that relative
hypermetabolism is a true (compensatory) feature of cognitive
changes in neurodegenerative diseases and not just a side-
effect of normalization. Furthermore, heterogeneity of PD-MCI
sample (84), different image reconstruction algorithms (85) or
the selection of a comparison group could also be a source of
confounding results. It is also a possibility that mild frontal
hypometabolic changes were not seen in a small sample studies
due to stringent statistical thresholds. Studies investigating
the progression of cognitive decline showed that extensive
parietal and occipital hypometabolic changes can predict the
development of PDD in PD-MCI patients (65, 86–88) and also
in PD patients with normal cognition (88, 89). Changes in
glucose metabolism were also shown to be correlated with global
cognition changes and other neuropsychological tests (90, 91).

Only few studies investigated the correlation of regional
metabolic brain changes with cognitive dysfunction detected by
neuropsychological tests.

Deficits of executive functions correlated with frontal
hypometabolism in some studies (92, 93), but not in the
others (94–96). Furthermore, disruption of the striatal
dopaminergic system, shown with [18F]-6-fluorodopa PET
imaging, correlated with executive dysfunction in patients with
preserved metabolism in the frontal cortex (97), with uncertain
explanation. The effect of anti-parkinsonian medication
on metabolic changes, which may influence fronto-striatal
dopaminergic network (98), has not been thoroughly addressed
as of yet. Hypometabolism in parietal and temporal cortices
more consistently correlated with executive dysfunction (92–96).
Attention deficits, regarded by some as an executive dysfunction
(99), correlate with hypometabolism in the frontal cortex (95),
precuneus and parietal cortex (94) and with the hypermetabolism

in the putamen, parahippocampal gyrus, inferior frontal lobule,
paracentral lobule, and hippocampus (94). Posterior cholinergic
neurodegeneration, marked by the initial decline in visuospatial
functioning and followed by memory impairment, can be
detected by glucose metabolism changes, too. The former deficits
correlate with the occipito-parietal, temporal and precuneal
hypometabolic changes (94, 96), but also with the putaminal
and parahippocampal hypermetabolism (94). Memory deficits
correlated with the temporal and parietal hypometabolism
(92, 94, 95). However, both, hypo- and hypermetabolism in the
posterior cingulate cortex were found to correlate with memory
deficits (94, 96).

The next paragraph focuses on metabolic network analyzes
in cognitive changes in PD. A specific regional metabolic
covariation pattern, associated with poor performance on tests
of executive control and attentional control of working memory,
was identified in non-demented PD patients using the region
of interest-based SSM/PCA analysis. It was characterized by
increased metabolic activity in the left pallidum and mediodorsal
thalamus associated with decreased metabolic activity bilaterally
in the ventromedial frontal regions, striatum and in the left
hippocampal gyrus (100). Later, a voxel-based adaptation of
SSM/PCA was used to identify a specific spatial covariance
pattern associated with cognitive functions in PD patients,
termed PD-related cognitive pattern (PDCP) (Figure 1). PDCP
was identified and validated in two groups of non-demented
PD patients. Both patient groups were relatively young, 58.6
and 58.8 years, respectively and had a high MMSE score of
28.3 and 28.1, respectively. The magnitude of PDCP expression
correlated with a test of executive function (Trail Making Test B),
Symbol Modality Test, memory functioning (California Verbal
Learning Test) and test of visuospatial function (Hooper Visual
Organization Test). This cognitive pattern did not correlate with
patients’ motor impairment. PDCP is characterized by bilateral
hypometabolism in the supplementary motor area, precuneus,

FIGURE 1 | Parkinson’s disease-related cognitive pattern (PDCP) identified by scaled subprofile model/principal component analysis (SSM/PCA) from a group of 15

non-demented PD patients. PDCP is characterized by bilateral hypometabolism in the supplementary motor area (preSMA), precuneus, the dorsal premotor cortex

(PMC), inferior parietal lobule and left prefrontal region and relative increases in the cerebellar vermis and dentate nuclei (DN). Voxels showing metabolic increases are

color-coded red and those showing metabolic decreases are color-coded blue. Reprinted with permission from Huang et al. (101).
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the dorsal premotor cortex, inferior parietal lobule and left
prefrontal region and relative increases in the cerebellar vermis
and dentate nuclei. Furthermore, PDCP has shown to be a
robust metabolic indicator of cognitive decline in PD, as its
scores were stable in a group of patients which was scanned
twice over two months (101). PDCP encompass both posterior
and frontal changes as well as compensatory hypermetabolic
changes and therefore present a reliable, objective biomarker
of cognitive decline. Similarly, another specific brain metabolic
network, termed PD-related pattern (PDRP), which correlates
with the severity of motor symptoms, was identified prior to
PDCP (102). PDCP was later also identified in two different
cohorts and the results significantly correlated with the original
one (103, 104). Both newly-derived PDCPs also correlated
with neuropsychological tests of executive functions (103,
104). Two longitudinal studies showed that the expression
of PDCP increases over time, but its expression lags behind
the expression of the motor function related PDRP (105,
106). This is in consistence with clinical findings in PD,
where motor symptoms precede significant cognitive changes
(1). Furthermore, it was shown that PDCP expression is in
correlation with the worsening of cognitive impairment (107)
and with the loss of dopaminergic input in the anterior
striatum, particularly in the caudate nucleus, as shown with
dopamine transporter imaging ([18F]-fluoropropyl-β-CIT PET
and [18F]-fluorodihydroxyphenylalanine (FDOPA) PET) (108,
109). Hypermetabolic cerebellar changes, once argued to be an

FIGURE 2 | Parkinson’s disease dementia (PDD)-cognition related pattern

identified by scaled subprofile model/principal component analysis (SSM/PCA)

from a group of 18 demented PD patients. Pattern significantly correlated with

Mini-Mental State Exam Score (r = −0.483, p = 0.042). PDD-related cognition

pattern is characterized by hypometabolism in the left caudate nucleus, middle

and posterior cingulate gyri, temporal regions, amygdala, hippocampus and

midbrain and no metabolic increases were found. Voxels showing metabolic

decreases are color-coded blue. Reprinted with permission from Ko et al.

(111).

artifact (77), have recently been proven a true feature of cognitive
decline representing a compensatory activation of cognitive
networks including the cerebropontocerebellar tract (81). Since
original PDCP was identified in non-demented patients, further
studies explored its relationship to other dementia syndromes.
Mattis et al. applied TPR algorithm to calculate individual’s
expression of PDCP and showed that it is not expressed in
patients with AD (110). Ko et al. identified a different and specific
brain metabolic pattern of cognitive decline in PDD (Figure 2).
PDD cognition-related pattern was characterized by decreased

metabolism in the left caudate nucleus, middle and posterior
cingulate gyri, temporal regions, amygdala, hippocampus and
midbrain and no metabolic increases were found. This pattern
was identified in a group of patients with PDD with an average
age of 70.7 years and MMSE score 16.2. PDD cognition-
related pattern negatively correlated with MMSE score (111). Its
topography is similar but not identical to the PDCP identified in
non-demented PD patients. Similar but not the same statistical
methods were recently used on resting-state functional MRI data
(rs-fMRI). Independent component analysis identified rs-fMRI
PDCP (fPDCP), which was topographically similar to its FDG-
PET derived counterpart. fPDCP was characterized by reduced
regional activity in the precuneus, medial parietal cortex, medial
prefrontal and supplementary regions, thalamus and inferior
parietal cortex (112). For a more detailed explanation of PDCP,
we refer the reader to a recently published review article (113).
The detailed table with studies investigating neuropsychological
changes in correlation with glucose metabolism in Parkinson’s
disease is available as a supplementary material (Table S1).
Future studies may be warranted to investigate the PDCP or
fPDCP’s ability to detect individuals with worse prognosis of
cognitive decline.

MULTIPLE SYSTEM ATROPHY

In general studies investigating metabolic changes in correlation
to neuropsychological findings are lacking in MSA. A few
studies conducted so far showed consistent hypometabolic
changes in frontal cortex, striatum and cerebellum, the latter
only in MSA-cerebellar or mixed-type (114–116). As cognitive
impairment progresses in multiple domains, hypometabolic
changes were not unexpectedly observed in temporo-parietal
regions (115). Another group found no correlation between
glucose metabolism and MMSE scores (114), but MMSE is
probably not sensitive enough to detect cognitive changes in
MSA and more detailed neuropsychological testing may be more
appropriate in MSA patients.

DEMENTIA WITH LEWY BODIES

In DLB metabolic brain changes are found in temporo-parietal,
posterior cingulate, frontal association and primary visual cortex
(117–119). A small study (11 patients) from Fujishiro et al.
showed that hypometabolism in primary visual cortex can predict
DLB in non-demented individuals (120). Furthermore, Sala et al.
showed disruption of posterior cortical networks inDLB patients,

Frontiers in Neurology | www.frontiersin.org 5 November 2019 | Volume 10 | Article 1204

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Trošt et al. Neuropsychology and Brain Metabolism in PD

especially in the primary visual network (121). Specific disease-
related changes in glucose metabolism can be seen in DLB
patients even before the development of distinct clinical picture.
Early detection of such changes may thus significantly shorten
the time to correct diagnosis (122).

Only a few studies directly compared PDD to DLB which
are clinically and pathologically similar syndromes and even
these with conflicting results. Hypometabolic changes were
found in the anterior cingulate cortex in DLB patients in
one study (123), while another one found no differences
in metabolic topography between DLB and PDD (124).
Abovementioned PDD cognition-related pattern was expressed
also in DLB patients, though the difference in expression
was of borderline statistical significance and there is a need
for further exploration of network differences between these
two disorders (111).

Awareness of memory impairment was studied on a
group of DLB patients and it was found to correlate with
hypometabolism in the posterior cingulate cortices bilaterally
and the right orbitofrontal cortex (125). Recently, a large
multicenter study of 171 DLB patients used whole-brain
parcellation approach guided by PCA and followed by
linear regression analysis to identify metabolic patterns
correlated to the core features of DLB and cognitive decline.
Cognitive fluctuations were found to be associated with
hypometabolism in bilateral occipital cortices and with
hypermetabolism in the parietal lobe. Furthermore, a sensitivity
map of the disease severity (measured by MMSE score)
was constructed and the posterior cingulate cortex was
identified as a region most closely correlated with the decline in
MMSE (126).

RAPID EYE MOVEMENT SLEEP BEHAVIOR
DISORDER AND PURE AUTONOMIC
FAILURE

RBD is a prodromal phase of Lewy body disorders and even
at this prodromal stage metabolic changes pointing toward
PD, DLB, or MSA can be seen (40, 127, 128). SSM/PCA
network analysis was used to identify RBD-related pattern
(RBDRP). It was characterized by increased metabolic activity
in the pons, thalamus, precentral gyrus, supplementary motor
area, medial frontal gyrus, hippocampus, parahippocampal
gyrus, supramarginal and inferior temporal gyrus, and posterior
cerebellar tonsils and associated with decreased metabolic
activity in the occipital regions, midbrain (red nucleus)
and superior/middle temporal gyrus. Interestingly, expression
of RBDRP was high in early-stage, but not in late stage
PD (129), which hints toward the change in predominant
networks involved in diseases as it progresses from RBD
to PD. RBDRP was later identified also in a different
cohort of patients (130, 131). Surprisingly, the univariate
analysis does not reveal increased metabolism in thalamus,
supplementary motor area and extensive cerebellar changes
(132), meaning that multivariate analyses may detect subtler
brain activity changes compared to the univariate ones. The

RBDRP’s expression was found to be significantly higher
in PD-MCI patients than in PD patients without cognitive
decline (130) and it correlated with tests of executive function
(131). RBDRP’s expression may therefore be related to worse
cognitive status in individual PD patients. To the best of
our knowledge RBDRP’s expression has not been investigated
in DLB as of yet. But interestingly, there are metabolic
differences between DLB patients with and without RBD,
with the former having more extensive metabolic decreases
throughout the whole brain (119). There are no published studies
investigating neuropsychological and metabolic changes in pure
autonomic failure.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Neuropsychological changes are among the most common
and debilitating non-motor symptoms in PD, they are
essential for DLB diagnosis and seem to be present in RBD
already. FDG-PET brain imaging is a valuable tool to study
the underlying mechanism of cognitive dysfunction in
PD and other α-synucleinopathies. We may conclude that
neuropsychological data in PD and related α-synucleinopathies
correlate with metabolic neuroimaging data, although there
are some controversial findings in these metabolic-cognitive
correlations, which should be further addressed. Similarly so, the
differentiation between the causal and compensatory metabolic
changes in these disorders.

Although the studies investigating neuropsychological
changes and glucose metabolism in PD related α-
synucleinopathies are not many and a majority of them are
retrospective, results do reveal correlates of impaired cognition
already in RBD and those in most cases predicts the evolution
into α-synucleinopathies.

Further research effort should be directed toward prospective
follow-up studies of these syndromes from their prodromal
stages, to be able to capture subtle metabolic brain changes,
already before dementia arises. These may become valuable
biomarkers of disease progression and/or conversion to
dementia. Recent methodological advances brought forth
various objective and quantifiable covariance patterns, which
consistently and reliably correlate with cognitive changes
and may already predict the disease progression. However,
future research is needed to validate these disease-related
patterns in larger, multicentric cohorts taking into account an
important need for standardization of imaging reconstruction
and analysis protocols (133).

Furthermore, topics beyond the scope of this review—
neuropsychiatric changes, such as apathy, anxiety
and depression, which are common in patients with
neurodegenerative brain disorders, need to be addressed as
well as their impact on patients’ cognitive functions and
brain metabolism.

Last but not least, new analytical tools, such as deep
learning, that are currently under development may be able
to pick up complex neurological circuits involved in cognitive
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changes in combination with imaging of the neurotransmitter
changes that underlie the brain activity changes in PD and
other α-synucleinopathies.
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