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Background: Electric and magnetic source imaging methods (ESI, MSI) estimate the

location in the brain of the sources generating the interictal epileptiform discharges

(II-ESI, II-MSI) and the ictal activity (IC-ESI, IC-MSI). These methods provide potentially

valuable clinical information in the presurgical evaluation of patients with drug-resistant

focal epilepsy, evaluated for surgical therapy. In spite of the significant technical advances

in this field, and the numerous papers published on clinical validation of these methods,

ESI and MSI are still underutilized in most epilepsy centers performing a presurgical

evaluation. Our goal was to review and summarize the published evidence on the

diagnostic accuracy of interictal and ictal ESI and MSI in epilepsy surgery.

Methods: We searched the literature for papers on ESI and MSI that specified

the diagnostic reference standard as the site of resection and the postoperative

outcome (seizure-freedom). We extracted data from the selected studies, to calculate

the diagnostic accuracy measures.

Results: Our search resulted in 797 studies; 48 studies fulfilled the selection criteria (25

ESI and 23 MSI studies), providing data from 1,152 operated patients (515 for II-ESI,

440 for II-MSI, 159 for IC-ESI, and 38 for IC-MSI). The sensitivity of source imaging

methods was between 74 and 90% (highest for IC-ESI). The specificity of the source

imaging methods was between 20 and 54% (highest for II-MSI). The overall accuracy

was between 50 and 75% (highest for IC-ESI). Diagnostic Odds Ratio was between 0.8

(IC-MSI) and 4.02–7.9 (II-ESI < II-MSI < IC-ESI).

Conclusions: Our systematic review and meta-analysis provides evidence for the

accuracy of source imaging in presurgical evaluation of patients with drug-resistant focal

epilepsy. These methods have high sensitivity (up to 90%) and diagnostic odds ratio (up

to 7.9), but the specificity is lower (up to 54%). ESI and MSI should be included in the

multimodal presurgical evaluation.
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INTRODUCTION

Rationale
In spite of the numerous published papers on the accuracy
of electric source imaging (ESI) and magnetic source imaging
(MSI) in localizing interictal epileptiform discharges and ictal
activity, these methods have gained only partial acceptance
in the presurgical evaluation of patients with drug-resistant
focal epilepsy. A recently published survey by the E-PILEPSY
consortium, comprising 25 European centers, showed that less
than half of the centers used these methods for presurgical
evaluation (1).

Interictal epileptiform discharges and ictal activity are
typically recorded during long-term video EEG monitoring,
which is part of the presurgical evaluation in almost all centers.
However, signals are interpreted visually, without any post-
processing or signal analysis. In the majority of centers, this
is merely done by indicating the scalp region where the peak
negativity of the discharges (phase reversal) is spotted. This can
be misleading, since due to volume conduction, peak negativity
can be recorded over a different lobe and even different side than
the source. Interictal epileptiform discharges and ictal activity are
essential components of the multimodal presurgical evaluation:
they indicate the location of the irritative zone and the seizure-
onset zone, respectively. Therefore, their accurate localization is
extremely important for identifying the cortical area that needs
to be surgically resected in order to render the patient seizure-
free (2).

Source imaging methods estimate the location of the electric
sources (ESI) and of the magnetic sources (MSI). Both methods
can be applied for localizing interictal epileptiform discharges
(II-ESI and II-MSI) and ictal activity (IC-ESI and IC-MSI).
However, at present, MEG has the size of a scanner, and needs
a shielded room together with special maintenance, requiring
precisely scheduled recording times. Thus, restrictions in time
(duration) and space (patient mobility) of the MEG recordings
are inherent, so that IC-MSI is rarely performed.

Despite these limitations, during the last decades, these
methods developed considerably. It is nowadays possible to
record EEG and magnetoencephalographic (MEG) signals using
high-density array, and individual head models are constructed
using the patients’ own MRI.

Objectives
Our goal was to review the published literature on ESI and MSI
in presurgical evaluation of patients with drug-resistant focal
epilepsy and to infer its accuracy, from the published results.

We wanted to include a wide spectrum of methods
and modalities: low density (LD) EEG recordings, with <

64 electrodes, high density (HD) EEG recordings (64–256
electrodes), MEG recordings, analysis of interictal epileptiform
discharges as well as of the ictal activity.

Research Question
We have addressed the following question: What is the accuracy
of electric and magnetic source imaging in the presurgical
evaluation of patients with drug-resistant focal epilepsy?

METHODS

Study Design
This is a systematic review and meta-analysis of the accuracy of
electric and magnetic source imaging in presurgical evaluation.

Participants, Interventions, Comparators
Participants: patients with drug-resistant focal epilepsy (3)
who underwent presurgical evaluation for possible surgical
treatment (resection).
Interventions: II-ESI (electric source imaging of interictal
epileptiform discharges), IC-ESI (electric source imaging of
ictal activity), II-MSI (magnetic source imaging of interictal
epileptiform discharges) and IC-MSI (magnetic source imaging
of ictal activity).
Comparators: The most widely accepted, clinically relevant
gold standard (reference standard) for diagnostic methods in
presurgical evaluation is the epileptogenic zone (EZ), inferred
from the site of the resection and the postoperative outcome.
Therefore, in this study we compared at sub-lobar level the
location of the electric and magnetic sources with the resected
area, and then the postoperative outcome (≥1 year after surgery).

Systematic Review Protocol
Literature search was made for electric and magnetic source
imaging studies in presurgical evaluation. We designed the
review protocol, based on the PRISMA statement (Preferred
reporting items for systematic reviews and meta-analyses) (4).

Search Strategy
We searched research studies published between January 1st 1991
and May 31st 2018. We restricted the search to human subjects
that were published in English.

For ESI we used the following search string in PubMed
and in EMBASE: (Epilepsy[Title/Abstract] AND Source
imaging [Title/Abstract] AND Electric OR Electrical OR
Electroencephalographic OR EEG [Title/Abstract]).

For MSI we used three different search strings in PubMed.
String-1: (Epilepsy[Title] AND Magnetic [Title] OR MEG OR
Magnetoencephalographic OR Electromagnetic OR[Title] AND
Source Imaging[Title/Abstract]). String-2: (Ictal [Title] AND
Magnetic Source Imaging [Title]). Sting-3: ((Magnetic source
imaging[Title] OR Magnetoencephalography[Title]) AND
Epilepsy[Title/Abstract] AND Interictal[Title/Abstract]).

Duplicate studies were eliminated.

Data Sources, Studies Selections, and Data

Extraction
The studies were selected according to the following criteria:
(1) Source Imaging compared with gold standard (as described
in section Participants, Interventions, Comparators); (2) Studies
with at least five subjects (up to four were included in case of ictal
magnetic source imaging studies as there were very few studies);
(3) follow up duration ofminimum 1 year. First title and abstracts
were screened, then the full text papers were screened and (for the
selected papers) data were extracted, as detailed below.

The location of the epileptic focus indicated by the source
imaging study was tested against gold standard to calculate
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accuracy parameters. If more than one source were found then
the dominant one was used. All included patients underwent
respective surgery. Resection of the source and seizure-freedom
(Engel-1 outcome) ≥1 year after surgery was considered as
evidence for correct localization of the epileptogenic zone, by the
source imaging methods.

The definitions for accuracy parameters were used as follows:
(a) Source imaging focus within resected area and Engel-1
outcome = True positive (TP); (b) Source imaging focus within
resected area and outcome other than Engel-1 = False positive
(FP); (c) Source imaging focus outside resected area and outcome
Engel-1 = False negative (FN); (d) Source imaging focus outside
resected area and outcome other than Engel-1 = True negative
(TN). These data (TP, TN, FP, FN) were extracted from the
selected studies.

In addition, for ESI studies we extracted information on the
electrode array (low density vs. high density array).

Data Analysis
Using the data extracted from the selected studies, we
calculated the diagnostic accuracy measures, using the
conventional formulae:

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Accuracy =
TP + TN

TP + TN + FP + FN

Diagnostic Odds Ratio =
TP∗TN

FP∗FN

Positive Likelihood Ratio =
sensitivity

1− specificity

Negative Likelihood Ratio =
1− sensitivity

specificity

For all accuracy measures, we calculated 95% confidence
intervals (CI). We compared the accuracy of the various
source imaging methods (HD vs. LD recordings, interictal
vs. ictal, ESI vs. MSI) using Chi square test, based on
the numbers of TP, FP, TN, and FN. An open source
software, OpenMeta[Analyst] was used to calculate accuracy
parameters with statistical analysis (OpenMeta[Analyst]
([Windows],[CEBM@BROWN],[USA],[2018]).

RESULTS

Study Selection and Characteristics
Figures 1, 2 show the flow diagram of the studies on ESI andMSI,
retrieved for the review.

Our search strategy resulted in 486 ESI studies and 311 MSI
studies, after removal of duplicates (Supplementary Material 1).
After screening the titles and the abstracts, 77 ESI studies and
53 MSI studies were selected for full text review. Forty-eight
fulfilled all selection criteria. Twenty-five of them addressed ESI:
19 studies on II-ESI (5–23) and six on IC-ESI (24–29). Twenty-
three studies addressed MSI: 19 on II-MSI (30–48) and four
on IC-MSI (49–52). Data were extracted from these studies
for the meta-analysis. These were cross-sectional cohort studies
(Supplementary Materials 2, 3).

From the studies selected for data extraction 15 ESI and eight
MSI were prospective, including three IC-ESI and two IC-MSI
studies, respectively. II-ESI studies included 11 studies with HD
electrode array (64 or more electrodes, 64–256), four with LD
electrode array (<64) and four with both. The studies with LD
electrode array used 26 electrodes in one, 32 electrodes in other
one and variable number of electrodes ranging from 19 to 29 and
27 to 32 in the rest. II-MSI studies mostly were with HD sensors
except two with 37 sensor MEG and one study did not comment
about the density of sensors.

There were three II-ESI and two II-MSI studies which
included pediatric population of<18 years age. Other studies had
mixed age group population with age ranging from 1 to 75 years
from study to study.

There were very few studies on IC-MSI with fewer number
of subjects fulfilling inclusion criteria. The sample size was very
small, hence results should be interpreted in light of this bias.
Study by Badier et al. (50) on IC-MSI used two methods of
source analysis which resulted in two different results. These two
methods were included as independent studies for the purpose of
analysis. Both methods were correlated with epileptogenic zone
mapped by intracranial EEG which in turn was used to calculate
accuracy parameters. This introduces a methodical heterogeneity
and reduces significance of results from this sub-group (IC-MSI).

Synthesized Findings
The pooled patient population for assessment of the accuracy of
source imaging included 1,152 patients totally (Table 1).

Figures 3–14 show forest plots of the diagnostic
outcome measures (sensitivity, specificity, diagnostic
odds ratio, positive and negative likelihood rations)
of the selected studies and the pooled data, for the
source imaging methods: II-ESI, IC-ESI, II-MSI, IC-MSI.
Table 1 summarizes the diagnostic outcome measures,
determined from the pooled data. Table 2 summarizes
comparisons of the outcome measures among the source
imaging methods.

Sensitivity of the source imaging methods was between 73.8
and 89.9%, highest for IC-ESI and lowest for IC-MSI. Sensitivity
was significantly higher for IC-ESI as compared with II-ESI
(p= 0.02).
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FIGURE 1 | Flow diagram of the studies on ESI, retrieved for the review.
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FIGURE 2 | Flow diagram of the studies on MSI, retrieved for the review.
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TABLE 1 | Diagnostic outcome measures from pooled data (95% CIs in parenthesis).

II-ESI IC-ESI II-MSI IC-MSI

Number of patients 515 159 440 38

Sensitivity 81.1% (76.2–85.2%) 89.9% (81.8–94.6%) 77.4% (71.5–82.3%) 73.8% (48.4–89.4%)

Specificity 45.2% (36.0–54.7%) 46.9% (30.5–63.9%) 54.1% (46.2–61.9%) 20.5% (7.1–46.8%)

Accuracy 74.17% (70.39–77.95%) 74.84% (68.1−81.59%) 70.68% (66.43–74.94%) 50.00% (37.71–69.43%)

Diagnostic odds ratio 4.02 (2.31–6.98) 7.896 (3.117–20.004) 4.54 (2.81–7.32) 0.823 (0.16–4.229)

Positive likelihood ratio 1.31 (1.12–1.54) 1.47 (1.149–1.881) 1.42 (1.204–1.672) 0.98 (0.735–1.305)

Negative likelihood ratio 0.383 (0.263–0.557) 0.218 (0.169–0.281) 0.395 (0.282- 0.555) 1.04 (0.708–1.539)

FIGURE 3 | Forest plot showing sensitivity and specificity of the II-ESI studies (individual studies: size of the squares are proportional to weights used in meta-analysis;

the summary measure: center line of the diamond; associated 95% confidence intervals: lateral tips of the squares and the diamond).

FIGURE 4 | Forest plot showing sensitivity and specificity of the IC-ESI studies (individual studies: size of the squares are proportional to weights used in

meta-analysis; the summary measure: center line of the diamond; associated 95% confidence intervals: lateral tips of the squares and the diamond).

FIGURE 5 | Forest plot showing sensitivity and specificity of the II-MSI studies (individual studies: size of the squares are proportional to weights used in

meta-analysis; the summary measure: center line of the diamond; associated 95% confidence intervals: lateral tips of the squares and the diamond).
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FIGURE 6 | Forest plot showing sensitivity and specificity of the IC-MSI studies (individual studies: size of the squares are proportional to weights used in

meta-analysis; the summary measure: center line of the diamond; associated 95% confidence intervals: lateral tips of the squares and the diamond).

FIGURE 7 | Forest plot showing diagnostic odds ratio of the II-ESI studies (individual studies: size of the squares are proportional to weights used in meta-analysis;

the summary measure: center line of the diamond; associated 95% confidence intervals: lateral tips of the squares and the diamond).

FIGURE 8 | Forest plot showing diagnostic odds ratio of the IC-ESI studies (individual studies: size of the squares are proportional to weights used in meta-analysis;

the summary measure: center line of the diamond; associated 95% confidence intervals: lateral tips of the squares and the diamond).

Specificity of the source imaging methods was between 20.5
and 45.1%, highest for II-MSI and lowest for IC-MSI. Specificity
of IC-MSI was significantly lower compare with II-MSI (p =

0.007) and IC-ESI (p= 0.02).

The overall accuracy of the source imaging methods was
between 50 and 74.84%, highest for IC-ESI and lowest for
IC-MSI. Accuracy of the IC-MSI was significantly lower
compared to the other methods (p < 0.002). There was
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FIGURE 9 | Forest plot showing diagnostic odds ratio of the II-MSI studies (individual studies: size of the squares are proportional to weights used in meta-analysis;

the summary measure: center line of the diamond; associated 95% confidence intervals: lateral tips of the squares and the diamond).

FIGURE 10 | Forest plot showing diagnostic odds ratio of the IC-MSI studies (individual studies: size of the squares are proportional to weights used in meta-analysis;

the summary measure: center line of the diamond; associated 95% confidence intervals: lateral tips of the squares and the diamond).

FIGURE 11 | Forest plot showing negative and positive likelihood ratios of the II-ESI studies (individual studies: size of the squares are proportional to weights used in

meta-analysis; the summary measure: center line of the diamond; associated 95% confidence intervals: lateral tips of the squares and the diamond).
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FIGURE 12 | Forest plot showing negative and positive likelihood ratios of the IC-ESI studies (individual studies: size of the squares are proportional to weights used in

meta-analysis; the summary measure: center line of the diamond; associated 95% confidence intervals: lateral tips of the squares and the diamond).

FIGURE 13 | Forest plot showing negative and positive likelihood ratios of the II-MSI studies (individual studies: size of the squares are proportional to weights used in

meta-analysis; the summary measure: center line of the diamond; associated 95% confidence intervals: lateral tips of the squares and the diamond).

FIGURE 14 | Forest plot showing negative and positive likelihood ratios of the IC-MSI studies (individual studies: size of the squares are proportional to weights used

in meta-analysis; the summary measure: center line of the diamond; associated 95% confidence intervals: lateral tips of the squares and the diamond).

no significant difference in accuracy between II-ESI, IC-ESI
and II-MSI.

Diagnostic Odds Ratio was between 0.823 and 7.896, highest
for IC-ESI and lowest for IC-MSI. The 95% CIs of all source
imaging methods, except for IC-MSI, were >1.

Positive Likelihood Ratio was between 0.98 and 1.47, highest
for IC-ESI and lowest for IC-MSI. Negative Likelihood Ratio was
between 0.22 and 1.04, lowest for IC-ESI and highest for IC-MSI.

The sub-group analyses taking into account the spatial
sampling, could not show significant difference in sensitivity,
specificity or accuracy of II-ESI or IC-ESI, between HD and LD
recordings (Table 2). However, the overall accuracy of II-ESI with
HD recordings was significantly higher compared with II-MSI
with HD recordings (p= 0.0187).

DISCUSSION

Based on a large number of operated patients (n = 1,152), the
various EEG and MEG source imaging methods proved to have
high accuracy in localizing the epileptic focus.

IC-MSI had the lowest performance, especially concerning its
specificity. IC-ESI was done in a small number of patients (n =

38) due to its low feasibility (short recording time compared to
EEG long term monitoring, and limited mobility of the patients
with motor seizures in the MEG). These limitations might be
overcome in future by the new generation of MEG equipment
that allows room temperature measurements using optically-
pumped magnetometers. Recently, EEG systems which allow
EEG recordings of up to 256 electrodes for one or several days
became commercially available. We hypothesize that there will
be more studies on the yield of HD-EEG and HD-ESI with
more widespread use of these systems, especially if electrode
application and EEG analysis become easy to do.

Excluding the IC-MSI, the large pooled data showed high
sensitivity of the source imaging methods, between 77 and 90%,
highest for IC-ESI. However, their specificity was lower, between
45 and 54%, highest for II-MSI. The overall accuracy of the
three methods was between 71 and 75% (highest for IC-ESI).
Their Diagnostic Odds Ratio was between 4 and 7.9, highest for
IC-ESI, demonstrating the diagnostic utility of these three source
imaging methods.
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TABLE 2 | Comparisons of the outcome measures among the source imaging methods.

Sensitivity (95%CI) p Specificity (95%CI) p Accuracy (95%CI) p

II-ESI 82.29% (78.56–86.03%) 0.021 45.61% (36.47–54.76%) 0.887 74.17% (70.39–77.95%) 0.865

IC-ESI 91.35% (85.94–96.05%) 43.64% (30.53–56.74%) 74.84% (68.10–81.95%)

II-ESI 82.29% (78.56–86.03%) 0.697 45.61% (36.47–54.76%) 0.160 74.17% (70.39–77.95%) 0.22

II-MSI 81.11% (76.44–85.04%) 54.12% (46.63–45.61%) 70.68% (66.43–74.95%)

IC-ESI 91.35% (85.94–96.05%) 0.056 43.64% (30.53–56.74%) 0.023 74.84% (68.10–81.95%) 0.002

IC-MSI 77.27% (59.76–94.17%) 12.50% (03.370–87.70%) 50.00% (34.10–65.95%)

IC-MSI 77.27% (59.76–94.17%) 0.660 12.50% (03.370–87.70%) 0.007 50.00% (34.10–65.95%) 0.0082

II-MSI 81.11% (76.44–85.04%) 54.12% (46.63–45.61%) 70.68% (66.43–74.95%)

II-ESI (HD) 84.21% (79.27–89.04%) 0.753 53.57% (40.51–46.63%) 0.964 77.74% (72.73–82.95%) 0.98

II-ESI (LD) 86.00% (76.38–95.09%) 52.94% (29.21–47.67%) 77.61% (67.63–87.95%)

IC-ESI (HD) 85.00% (69.35–00.15%) 0.261 62.50% (28.95–37.05%) 0.245 78.57% (63.37–93.95%) 0.61

IC-ESI (LD) 92.86% (87.35–98.05%) 40.43% (26.40–59.46%) 74.05% (66.54–81.95%)

II-ESI (HD) 84.21% (79.27–89.04%) 0.261 53.57% (40.51–46.63%) 0.962 77.74% (72.73–82.95%) 0.0187

II-MSI (HD) 80.00% (74.59–85.05%) 53.19% (44.96–46.43%) 69.23% (64.40–74.95%)

Significant differences are highlighted in bold.

The pooled data showed a significantly higher sensitivity
of IC-ESI compared with II-ESI. From a technical point of
view, IC-ESI is more challenging, due to the lower signal-to-
noise ratio, difficulties in delimiting the ictal onset epoch, rapid
propagation, electrodecremental response. However, our data
suggest that these difficulties can be overcome, and that the gain
from imaging the SOZ exceeds the errors potentially induced by
the technical difficulties.

When restricting the analyses to the sub-groups of patients
with HD EEG and HD MEG recordings, II-ESI had a higher
diagnostic accuracy compared to II-MSI. The pooled data could
not confirm higher accuracy of HD compared to LD ESI. It is
important to emphasize the limitations in comparing accuracy of
the source imaging methods, based on data pooled from different
studies. There was a high heterogeneity in terms of study design
and included patient populations among the studies, which could
have biased the results of comparisons among the source imaging
methods. Ideally, these methods should have been compared on
the same patients (cross-over design) which was not the case
here. Furthermore, most LD-recordings were obtained with >

30 electrodes, which is not that low and might be sufficient
for lesional epilepsy. Another important point is the underlying
syndrome. Non-lesional extratemporal epilepsy may need HD-
EEG/MEG to obtain correct localization, but this may be less
relevant for tumoral temporal lobe epilepsy. Future studies may
help to better stratify patients who need source localization with
>64 electrodes or sensors

Our meta-analysis has several limitations. We did not limit
our search strategy with any a priori assumption (for example,
we did not exclude ictal studies or LD recordings). This rather
inclusive strategy resulted in a high number of selected studies,
but the drawback was the increased heterogeneity of study design,
patient inclusion and source imaging methods, which potentially
could have biased the results. Nevertheless, the large number
of analyzed patients might have compensated for this, when
inferring the main outcome results. The retrieval of published
studies was limited to PubMed and EMBASE databases. We

did not use Cochrane library. We restricted the studies that
reported surgical standard as gold standard, thus excluding
studies comparing source imaging with intracranial recordings.
Strictly speaking, the best method of assessing the localization
accuracy, per se, is comparing it with the intracranial recordings.
However, the clinical relevance of this is questionable, since
resecting the focus identified by intracranial recordings often
does not lead to seizure-freedom. In addition, not all operated
patients are implanted, which limits its use as a comparator
for the whole group of operated patients. Furthermore, a
systematic bias in all source imaging studies is the inclusion
only of the operated patients. Although this is necessary for
pragmatic reasons (need for gold standard), it potentially can
lead to overestimation of the accuracy of the index test (source
imaging). We grouped the methods according to the recorded
modality (EEG vs. MEG) and the type of the analyzed EEG
signals (interictal vs. ictal). This resulted in four categories,
for which we calculated the accuracy measurements separately.
Within each category, various types of inverse solutions were
used for the analysis. However, recently published, large
prospective and retrospective studies failed to prove significant
difference I accuracy between the various inverse solutions
(26, 53, 54).

Future studies need to address these limitations, with study
design that overcome the issues listed above. There is a need
for prospective, multi-center studies, with standardized
electrode array and analysis pipeline (ideally as much
automated as possible) and comparison of the various analysis
methods within the same patients (cross-over design). Such
a large, multi-center study has been recently initiated by
European Reference Network (EpiCare), involving 20 epilepsy
surgery centers.

Based on a large number of patients and studies, our results
provide evidence for the accuracy of IC and II ESI and II MSI in
localizing the epileptic focus. These methods should be included
into the multimodal presurgical evaluation of patients with drug-
resistant focal epilepsy.
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