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Background: Repetitive transcranial magnetic stimulation (rTMS) is a promising

intervention to promote upper limb recovery after stroke. We aimed to identify differences

in the efficacy of rTMS treatment on upper limb function depending on the onset

time post-stroke.

Methods: We searched PubMed, Embase, and the Cochrane Library to identify relevant

RCTs from their inception to February 2018. RCTs on the effects of rTMS on upper limb

function in adult patients with stroke were included. Study quality and risk of bias were

assessed independently by two authors. Meta-analyses were performed for outcomes

on individual upper limb outcome measures (function or activity) and for function and

activity measures jointly, categorized by timing of treatment initiation. Timing of treatment

initiation post-stroke was categorized as follows: acute to early subacute (<1 month),

early subacute (1–3 months), late subacute (3–6 months), and chronic (>6 months).

Results: We included 38 studies involving 1,074 stroke patients. Subgroup analysis

demonstrated benefit of rTMS applied within the first month post-stroke [MD = 9.31;

95% confidence interval (6.27–12.34); P < 0.0001], but not in the early subacute phase

(1–3months post-stroke) [MD= 1.14; 95% confidence interval (−5.32 to 7.59), P= 0.73)

or chronic phase (>6months post-stroke) [MD=1.79; 95% confidence interval (−2.00 to

5.59]; P = 0.35), when assessed with a function test [Fugl-Meyer Arm test (FMA)]. There

were no studies within the late subacute phase (3–6 months post-stroke) that used the

FMA. Tests at the level of function revealed improved upper limb function after rTMS

[SMD = 0.43; 95% confidence interval (0.02–0.75); P = 0.0001], but tests at the level of

activity did not, independent of rTMS onset post-stroke [SMD = 0.17; 95% confidence

interval (−0.09 to 0.44); P = 0.19]. Heterogeneities in the results of the individual studies

included in the main analyses were large, as suggested by funnel plot asymmetry.
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Conclusions: Based on the FMA, rTMS seems more beneficial only when started in the

first month post-stroke. Tests at the level of function are likely more sensitive to detect

beneficial rTMS effects on upper limb function than tests at the level of activity. However,

heterogeneities in treatment designs and outcomes are high. Future rTMS trials should

include the FMA and work toward a core set of outcome measures.

Keywords: systematic review, meta-analysis, repetitive transcranial magnetic stimulation, motor function

recovery, upper limb outcome, stroke

INTRODUCTION

In patients with stroke, paresis of the upper limb is a major cause
of disability (1, 2). This motor disturbance influences activities
of daily living, but also the quality of life of patients and their
relatives (3, 4). Neurorehabilitation therefore often focuses on
restoration of upper limb function. Several studies have suggested
that non-invasive brain stimulation promotes recovery of the
upper limb, possibly through enhancement of motor cortex
plasticity (5, 6).

Repetitive transcranial magnetic stimulation (rTMS) is a
non-invasive, painless method to modulate cortical excitability.
High-frequency rTMS or intermittent theta-burst stimulation
(TBS) can increase cortical excitability, whereas low-frequency
rTMS or continuous TBS can suppress cortical excitability
(7). Interhemispheric imbalance in primary motor cortex (M1)
activity and the remaining functional motor output after stroke
may contribute to motor dysfunction and has been suggested as
target for therapeutic rTMS (8).

Earlier meta-analyses of small, randomized controlled trials
(RCTs) suggest that rTMS is able to improve motor outcome
in the paretic arm after stroke (9, 10). However, there are large
differences between the results of RCTs, which could be explained
by methodological differences (11, 12), including the timing of
treatment initiation after stroke.

Research to date has not yet determined which time period
post-stroke would be the optimal time window to start treatment.
Many clinical practice guidelines advocate an early start of
rehabilitation after stroke (13). Results from studies in animal
models and patients suggest that there is an early critical
time window during which the brain is most responsive to
neurorehabilitation treatments (14). Most recovery takes place
during the first 3 months, after which improvement is believed
to reach a plateau phase (15, 16). However, it remains unknown
whether rTMS interventions early after stroke could be more
effective than at later points in time. Furthermore, the used
outcome measure(s) to assess upper limb function must match
with the stated intention of the treatment. Outcomes can
be measured at the level of function, activity (capacity and
performance) or participation, according to the International
Classification of Function, Disability and Health (ICF model)
(17). An outcome measure at function level [e.g., Fugl-Meyer
Assessment (FMA)] may be more sensitive to effects of
interventions targeted at the neural level, than outcomemeasures
at the level of activity or participation [e.g., Action Research Arm
Test (ARAT)], which are also affected by cognitive, personal and
environmental factors (18).

We performed a systematic review and meta-analysis to
evaluate whether the efficacy of rTMS on upper limb function
depends on the time of treatment initiation after stroke. As
secondary aims, we also assessed the efficacy of rTMS on
upper limb function at the levels of function and activity (ICF
model), and determined the efficacy of rTMS applied in the
first month post-stroke on upper limb function assessed at 3
months post-stroke.

METHODS

This systematic review was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (19). We did not register the protocol in
a registry prior to publishing.

Search Strategy and Selection of Studies
We searched the literature in three databases (PubMed, Embase,
Cochrane Library) for RCTs published up to February 2018 as a
full-text article in the English language. We based our search on
the following overarching PICO:

In adult patients (≥18 years) with stroke (population),
does rTMS aimed at improvement of upper limb function
(intervention) as compared with sham rTMS or no rTMS
(comparison) improve function or activity of the upper
limb (outcome)?

We used the key terms “stroke,” “transcranial magnetic
stimulation,” “upper limb function,” or their synonyms (for a
detailed search strategy, see Supplementary Table 1). Manual
searches of the reference lists of the selected articles were
also conducted.

Studies were excluded if rTMS was part of a coupling/priming
protocol or if it was bilateral; if there was no upper limb
outcome or stroke severity scalemeasurement (e.g., NIHSS score)
as outcome assessment; or if information required to perform
a meta-analysis (e.g., mean scores, standard deviations) was
missing. When necessary, authors were contacted, or procedures
were deployed for estimation of missing data (see Analyses). Two
reviewers (EvL and RC) evaluated the retrieved literature based
on titles and abstracts. Differences were discussed until consensus
was reached.

Critical Appraisal of Studies
The methodological quality and risk of bias of the included
studies were evaluated with the PEDro scale (Physiotherapy
Evidence Database from the Center for Evidence-Based
Physiotherapy of The George Institute for Global Health) (20).
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The 11 items on the scale can be rated as present or absent, with
a maximum score of 10 (one item is excluded in the PEDro
score). The sum score was classified according to the Canadian
Stroke Rehabilitation Evidence-Based Review (SREBR), which
categorized the study quality as excellent (9–10), good (6–8),
fair (4–5), or poor (0–3) (21). As a modification, studies scoring
6 or higher in which the critical criteria 2 or 3 (randomization
and concealment of allocation, respectively) were absent, were
downgraded to fair quality. The methodological quality and risk
of bias were rated independently by two reviewers (EvL and RC),
compared and discussed until consensus was reached.

Data Extraction
The following data were extracted from the included studies:
number of subjects; demographic and clinical characteristics
of the subjects (age, gender, time since stroke); intervention
protocols (type of rTMS and additional therapies, intensity,
number of pulses and sessions, type of coil); outcome
measures and mean differences and standard deviations (SDs)
of the change scores or means and SDs of the scores after
intervention. The extracted data was cross-checked by the second
reviewer (RC).

We made an overview of all outcome measures used in
the included studies and selected the outcome measures that
were used in at least two studies, to enable analysis of results
per individual outcome measure. Outcome measures were
categorized according to the ICFmodel to group them at the level
of function or activity for further analysis.

We made a categorization of time of treatment post-stroke
according to the recent recommendations by the Stroke Recovery
and Rehabilitation Roundtable (SRRR) taskforce (22): acute to
early subacute (<1 month), early subacute (1–3 months), late
subacute (3–6 months), and chronic (>6 months). The SRRR
categorization of acute (1–7 days) and early subacute (7 days−3
months) were taken together and divided into acute to early
subacute (<1 month) and early subacute (1–3 months), because
most recovery of motor function takes place within the first 30
days post-stroke (23). In this way, all included studies could fit
within a (specific) treatment timeframe. We checked whether the
real and sham rTMS conditions of crossover studies could fit
within the specific timeframe.

Data Analysis
Cohen’s kappa was calculated to check the interrater reliability of
the selection and inclusion of articles.

For quantitative synthesis, effect sizes were calculated
based on the change between baseline and post-intervention
measurement, or the post-intervention score if the baseline
score was not given, in the rTMS and control groups, divided
by the pooled standard deviation. We calculated the standard
deviation when only t-values and standard error of the mean
(SEM) were reported. If there was no numerical data provided,
we extracted these from the figures, using Plot Digitizer 2.6.8
based on the Cochrane Handbook for Systematic Reviews of
Interventions (24). In case of repeated outcome assessments,
the first assessment performed after the treatment was used
to represent the post-intervention data. Crossover trials were
included when point estimates and associated precision of

point estimates were given, and when a washout period was
incorporated. Standardized mean differences (SMDs), instead
of the mean difference (MD), with 95% confidence intervals
(95% CIs) were used if the outcome measurement scale was not
identical between studies. The (unstandardized) mean difference
was used when change-from-baseline scores were combined
with post-intervention scores. If a study had multiple treatment
groups, the results for the individual treatment conditions were
compared. If the results were comparable, an overall effect for the
different treatment conditions was computed and used (multiple
comparison correction) (24).

To investigate the effect of rTMS treatment in the subacute
or chronic phase after stroke, subgroup analyses were performed
for the individual outcome measures found. Subgroup analyses
of the different timings of post-stroke rTMS treatment were also
performed for function and activity outcome measures jointly.

To determine the effect of rTMS applied within the first
month post-stroke on upper limb function assessed 3 months
post-stroke, an independent analysis was performed.

To determine the potential influence of rTMS frequency (low
to the unaffected hemisphere vs. high to the affected hemisphere),
number of treatment sessions and additional therapy (rTMS
alone vs. rTMS + therapy), additional subgroup analyses were
performed for the function and activity outcomemeasures (while
maintaining the differentiation between subacute and chronic
groups). At least two treatment time-points had to be represented
in the subgroups, and a subgroup had to consist of at least
one study.

The heterogeneity of the effect sizes was assessed with
Cochran’sQ-test and the inconsistency I2 index, in order to assess
the consistency between the trials (24). The heterogeneity of the
outcome measurements determined the use of a fixed or random
effects method. When I2 was >50%, indicative of substantial
heterogeneity, and the P-value from the Chi-squared test was
below 0.05, a random effects model was applied. The weight of
each study, for its effect on the pooled result, was determined
by the sample size and confidence interval. The effect sizes were
classified as small (<0.2), medium (0.2–0.8), or large (>0.8) (25).

A funnel plot was used to assess publication bias. Sensitivity
analyses were conducted by omitting low quality studies (single-
blind studies and without concealed treatment allocation) and
studies with a crossover design to determine their influence on
the effect size.

Analyses were performed with Review Manager, version
5.3 (26).

RESULTS

Of 1,737 articles identified in the electronic database search, 38
were included in the systematic review, involving a total of 1,074
subjects. The interrater reliability, measured by Cohen’s kappa,
was 0.86, demonstrating almost perfect agreement (27). Figure 1
shows a flow diagram of the selection process.

Characteristics of the Studies
Study characteristics are described in Table 1. All studies were
designed as RCTs, and six of these studies were designed as
randomized controlled crossover studies (28, 38, 46, 48, 52, 56).
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FIGURE 1 | PRISMA flow chart.

The real and sham rTMS conditions of the crossover studies
took place within the specific timeframes (i.e., <1, 1–3, 3–6,
>6 months post-stroke) and the wash-out periods ranged from
30min to >1 week. The mean patient age in the studies ranged
from 46 (52) to 75 (50) years. Nineteen studies (28–32, 34, 38–
40, 45, 49, 51, 53, 55, 56, 59, 60, 62–64) included patients more
than 6 months after stroke onset; six (33, 37, 41, 47, 52, 58)
between 3 and 6 months after stroke, and 12 within 1 month
after stroke. (35, 36, 42–44, 46, 48, 50, 54, 57, 65). The time
between stroke onset and start of treatment varied from 6 days

(36) to 4 years (39). Twenty-four studies were funded by grants
from universities, governmental agencies, hospitals, or medical
foundations. For 14 studies it was either explicitly mentioned
that the work was not supported by any grant from the public
or private sector or that there was nothing to disclose financially,
or information on funding was not available.

Treatment Characteristics
Different TMS treatment protocols were used in the included
studies. In 25 studies, 1Hz rTMS was applied to the unaffected
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TABLE 1 | Characteristics of the included studies.

References No. of

participants

(Exp/Ctr)

Mean age (years)

(Exp/Ctr)

Mean time

Post-stroke

rTMS protocol Coil*/Location Control

condition

Arm/hand outcome

measurement

Additional

intervention

Ackerley et al. (28) 10 (crossover) 60 28m i/cTBS, 90% AMT, 600 stimuli, 1
session

UH, AH M1 Sham coil ARAT Upper-limb motor
training

Ackerley et al. (29) 18 (9/9) 61/71 20/18m iTBS, 90% AMT, 600 pulses, 10
sessions

AH M1 Sham coil ARAT, FMA PT

Askin et al. (30) 40 (20/20) 58.8/56.75 28.35/24.35m 1Hz, 90% RMT, 1,200 pulses, 10
sessions

UH M1 Only PT BRS, FMA, BBT, MAS,
FIM, MMSE, FAS

PT

Avenanti et al. (31) 30 (8/8/14) TMS-PT:
60.9/PT-TMS:
64.0/64.0

30.75/
27.5/34.14m

1Hz, 90% RMT, 1,500 pulses, 10
sessions

UH M1 Tilted coil JTT, NHPT, BBT PT

Barros et al. (32) 20 (10/10) 57.4/64.6 9/8m 1Hz, 90% MT, 1,500 pulses, 10
sessions

UH M1 2 coils (1
connected and 1
disconnected)

MAS, FMA, FIM PT

Cha et al. (33) 30 (15/15) 64.1/63.3 4.1/3.9m 1Hz, 90% RMT, 1,200 pulses, 20
sessions

Right hemisphere,
P3 10/20 EEG
system

Sham coil Grip strength, BBT Conventional
rehabilitation

Chang et al. (34) 17 (9/8) 58.1/59.5 11.8/8.1m 5Hz, 80% RMT, 1,000 pulses, 10
sessions

AH M1 Tilted coil JTT Motor learning task

Conforto et al. (35) 30 (15/15) 54.8/56.7 27/28.3 d 1Hz, 90% RMT, 1,500 pulses, 10
sessions

UH M1 Tilted coil JTT, FMA, MRS Conventional
rehabilitation

Du et al. (36) 69 (23/23/23) LF: 56.78/HF:
56.78/53.61

LF: 6/HF:
7/8 d

LF: 1Hz, 110–120% RMT, HF: 3Hz,
80–90% RMT, both: 1,200 pulses, 5
sessions

UH, AH M1 Tilted coil FMA Conventional
rehabilitation

Emara et al. (37) 60 (20/20/20) HF: 50.9/LF:
55/55.9

HF: 2.5/LF:
6.5/3.5m

HF: 5Hz, 80–90% MT, 750 pulses,
LF: 1Hz, 110–120% MT, 150 pulses,
both10 sessions

UH, AH M1 Tilted coil Finger tapping, MRS PT

Etoh et al. (38) 18 (crossover) 59.7 29.9m 1Hz, 90% RMT, 240 pulses, 5
sessions

UH M1 Tilted coil FMA, ARAT, STEF, MAS PT

Fregni et al. (39) 15 (10/5) 57.7/52.6 3.52/3.97 y 1Hz, 100% MT, 1,200 pulses, 5
sessions

UH M1 Sham coil JTT, PTT, reaching time –

Higgins et al. (40) 9 (4/5) 74/60 134/95m 1Hz, 110% RMT, 1,200 pulses, 8
sessions

UH M1 Sham coil BBT, WMFT, MAL, grip
and pinch strength

Functional task practice

Hosomi et al. (41) 39 (18/21) 62.4/63.2 46.1/45.1 d 5Hz, 90% RMT, 500 pulses, 10
sessions

AH M1 Tilted coil BRS, FMA, FIM,
NIHSS, hand grip,
finger tapping

Conventional
rehabilitation

Hsu et al. (42) 12 (6/6) 56.8/62.3 22.0/20.8 d iTBS, 5Hz, 80% AMT, 1,200 pulses,
10 sessions

AH M1 Tilted coil FMA, ARAT Conventional
rehabilitation

Khedr et al. (43) 36 (12/12/12) LF: 54.7 HF:
59.0/60.0

LF: 16.3 HF:
17.2/17.7 d

LF: 1Hz, 100% RMT, 900 pulses HF:
3Hz, 130% RMT, 900 pulses, both: 5
sessions

UH, AH M1 Tilted coil Strength hand grip,
Keyboard tapping, PPT

Conventional
rehabilitation

(Continued)
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TABLE 1 | Continued

References No. of

participants

(Exp/Ctr)

Mean age (years)

(Exp/Ctr)

Mean time

Post-stroke

rTMS protocol Coil*/Location Control

condition

Arm/hand outcome

measurement

Additional

intervention

Khedr et al. (44) 48 (16/16/16) 3 Hz: 58.25/10
Hz: 58.37/58

3 Hz: 8, 10
Hz: 6/6.2m

(1): 3Hz, 130% RMT, (2): 10Hz,
100% RMT, both: 750 pulses, 5
sessions

AH M1 Tilted coil Strength hand
grip/shoulder
abduction/hip flexion

Conventional
rehabilitation, medical
treatment

Lai et al. (45) 38 (21/17) 62.6/62.1 10.4/10.6m iTBS, 80% AMT, 600 pulses, 10
sessions

AH M1 Sham coil WMFT, finger tapping PT

Liepert et al. (46) 12 (crossover) 63 7.3 d 1Hz, 90% RMT, 1,200 pulses, 1
session

UH M1 Sham coil Grip strength, NHPT –

Lüdemann-Podubecka
et al. (47)

40 (20/20) 68.3/65.7 1.6/1.7m 1Hz, 100% RMT, 900 pulses, 15
sessions

UH M1 0% RMT WMFT, MESUPES,
finger tapping

Functional task practice

Lüdemann-Podubecka
et al. (48)

10 (crossover) 71.9 1m 1Hz, 110% RMT, 900 pulses, 1
session

UH M1 0% RMT JTT, BBT –

Malcolm et al. (49) 19 (9/10) 68.4/65.7 3.9/3.8 y 20Hz, 90% MT, 2,000 pulses, 10
sessions

AH M1 Sham coil WMFT, MAL, BBT Conventional
rehabilitation

Matsuura et al. (50) 20 (10/10) 72.2/74.7 9.4/9.8 d 1Hz, 100% RMT, 1,200 pulses, 5
sessions

UH M1 Tilted coil FMA, PPT, grip strength –

Motamed Vaziri et al.
(51)

12 (6/6) 55.17/57 24/23m 1Hz, 60–80% MT, 1,200 pulses, 10
sessions

UH M1 ns BRS, FMA, grip
strength

Conventional
rehabilitation

Nowak et al. (52) 15 (crossover) 46 1.93m 1Hz, 100% RMT, 600 pulses, 1
session

UH M1 Vertex Finger tapping, reach
to grasp

–

Özkeskin et al. (53) 21 (10/11) 55.7/64.5 10.5/24.5m 1Hz, 90% RMT, 1,500 pulses, 10
sessions

UH M1 Sham coil FMA, JTT, BRS Hand manipulation +

UL training

Pomeroy et al. (54) 24 (realreal:
6/realsham:
4/shamreal:
7/shamsham: 7)

69.2/64.8/78.9/81 25.2/34/27.3/
26.9 d

1Hz, 1.2 × MT, 200 pulses, 8
sessions

AH M1 Sham coil ARAT Voluntary muscle
contraction

Rose et al. (55) 19 (9/10) 64.7/64.6 60.4/62.8m 1Hz, 100% RMT, 1,200 pulses, 16
sessions

UH M1 Sham coil WMFT, ARAT, FMA,
MAL, MAS

Functional task practice

Sankarasubramanian
et al. (56)

15 (crossover) 62.13 57m M1: 1Hz, PMd: 5Hz, both: 90%
AMT, 1,500 pulses, 1 session

UH M1, UH PMd Tilted coil Reaching time –

Sasaki et al. (57) 29 (HF: 9/LF: 11/9) HF: 65.7/LF:
68.6/63.0

HF: 18.4/LF:
17.0/15.4 d

HF: 10Hz,1,000 pulses, LF: 1Hz,
1,800 pulses, both: 90% RMT, 5
sessions

AH, UH M1 Tilted coil BRS, grip strength,
tapping frequency

–

Seniow et al. (58) 40 (20/20) 63.5/63.4 41.7/38.0 d 1Hz, 90% RMT, 1,800 pulses, 15
sessions

UH M1 Sham coil WMFT, FMA PT

Takeuchi et al. (59) 20 (10/10) 58.4/59.6 25.2/28.7m 1Hz, 90% RMT, 1,500 pulses, 1
session

UH M1 Tilted coil Pinch force Motor training

Takeuchi et al. (60) 20 (10/10) 61.2/63.4 25.4/34.4m 1Hz, 90% RMT, 1,500 pulses, 1
session

UH M1 Tilted coil Pinch force and
acceleration

Motor training

(Continued)
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hemisphere, with 200–1,800 pulses per session (30–33, 35, 38–
40, 46–48, 50–55, 58–60, 62–66). Three studies applied high-
frequency rTMS to the affected hemisphere with frequencies
ranging from 5 (500 and 1,000 pulses) to 20Hz (2,000 pulses)
(34, 41, 49). Intermittent TBS to the affected hemisphere with
600 or 1,200 pulses was applied in three studies (29, 42, 45).
Seven studies applied a combination of low- and high-frequency
rTMS (ranging from 1 to 10Hz) or a combination of continuous
and intermittent TBS (ranging from 150 to 1,800 pulses) to the
unaffected or affected hemispheres, respectively [crossover study
design (26, 38), low/high or continous/intermittent group and
sham group (33, 35, 47, 48, 54)].

In all studies the primary motor cortex was targeted, of which
two studies also targeted the premotor cortex (56, 64). One study
was an exception, as only the P3 area (based on a 10/20 EEG
system) was targeted (33).

All studies used a figure-of-eight coil for real rTMS treatment.
Sham stimulations were executed with sham coils, tilted coils or
real coils without stimulator output, or by vertex stimulation.
One study did not describe details of the sham rTMS (51). The
treatment protocol period ranged from 1 session (28, 46, 48, 52,
56, 59, 60, 63) to 24 sessions (65).

Ten different additional therapies were used in combination
with the rTMS protocol. The program of the therapy was
not always defined, and conventional rehabilitation differed
between studies, e.g., conventional rehabilitation could consist
of physical therapy and occupational therapy, but could also
involve functional task practice or passive limb movement.
Conventional rehabilitation (eleven studies) and physical therapy
(eight studies) were the most frequently applied additional
therapeutic interventions. Virtual reality training, reach to
grasp training, a motor learning task and voluntary muscle
contraction were used in the other studies. For the studies
with an outcome assessment 3 months post-stroke, it was
unclear if patients received the additional therapy (i.e., physical-,
conventional-, and physiotherapy) also after rTMS. Seven studies
did not report or included a therapeutic intervention in addition
to rTMS.

Outcome Measurements
The arm/hand motor scales on which outcomes were assessed
varied across the studies, and some studies used multiple
outcome measures. For meta-analysis, eight different arm/hand
motor scales were selected and classified as measures of (body)
function: Fugl-Meyer Arm (FMA), Reaching Time (RT), Grip
Strength (GS), Tapping Frequency (TF), and Pinch Force (PF),
or as measures of activity: Jebsen Taylor Test (JTT), Wolf
Motor Function Test (WMFT), and Action Research Arm
Test (ARAT). Measures of (body) function signify measures of
motor impairment.

The FMA was the most frequently used test in the included
studies (n = 16), of which five used this as the primary outcome
measure (30, 32, 36, 51, 61). The other outcome measures were
less frequently used and aminority of the studies (n= 6) included
the WMFT or TF (Table 1) (40, 52, 56, 59, 60, 63). All studies
assessed the scales mentioned above before and after treatment.
More than half of the included studies (n= 21) had only a single
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post-intervention measurement. The remaining studies included
outcomemeasurements at multiple time-points, up to 1 year (44)
after the intervention.

Methodological Quality and Risk of Bias
Total scores on the PEDro scale for the included studies ranged
from 4 (51) to 10 (29, 32, 33, 36, 37, 40, 47, 55, 58, 65). There
were no low quality studies (PEDro score≤ 3). Eligibility criteria,
random allocation, between-group statistical comparisons, point

estimates and measures of variability were reported in all studies.
Seventeen (45%) studies did not report if treatment allocation
was concealed, and in another 17 studies the treating therapists
were not blinded (Table 2).

Meta-Analysis
Subacute vs. Chronic Treatment
When assessed with the FMA, the benefit of early treatment
(<1 month post-stroke) was larger than that of treatment

TABLE 2 | Assessment of risk of bias of the included studies.

References Criteria Total (max. score 10) Quality

1 2 3 4 5 6 7 8 9 10 11

Ackerley et al. (28) Y 1 0 1 1 1 1 1 1 1 1 9 Fair

Ackerley et al. (29) Y 1 1 1 1 1 1 1 1 1 1 10 Excellent

Askin et al. (30) Y 1 1 1 0 0 1 1 1 1 1 8 Good

Avenanti et al. (31) Y 1 1 1 1 1 1 1 0 1 1 9 Excellent

Barros et al. (32) Y 1 1 1 1 1 1 1 1 1 1 10 Excellent

Cha et al. (33) Y 1 1 1 1 0 1 1 1 1 1 10 Excellent

Chang et al. (34) Y 1 0 1 1 0 0 1 1 1 1 8 Fair

Conforto et al. (35) Y 1 1 1 1 1 0 1 1 1 1 9 Excellent

Du et al. (36) Y 1 1 1 1 1 1 1 1 1 1 10 Excellent

Emara et al. (37) Y 1 1 1 1 1 1 1 1 1 1 10 Excellent

Etoh et al. (38) Y 1 0 0 1 1 1 1 1 1 1 8 Fair

Fregni et al. (39) Y 1 0 1 1 1 1 1 1 1 1 9 Fair

Higgins et al. (40) Y 1 1 1 1 1 1 1 1 1 1 10 Excellent

Hosomi et al. (41) Y 1 1 1 1 0 1 1 1 1 1 9 Excellent

Hsu et al. (42) Y 1 0 1 1 1 1 1 1 1 1 9 Fair

Khedr et al. (43) Y 1 1 1 1 1 1 1 1 1 1 9 Excellent

Khedr et al. (44) Y 1 1 1 1 0 1 0 1 1 1 8 Good

Lai et al. (45) Y 1 0 1 1 1 0 1 1 1 1 8 Fair

Liepert et al. (46) Y 1 0 0 1 0 1 0 0 1 1 5 Fair

Lüdemann-Podubecka et al. (47) Y 1 1 1 1 1 1 1 1 1 1 10 Excellent

Lüdemann-Podubecka et al. (48) Y 1 1 1 1 0 1 0 0 1 1 7 Good

Malcolm et al. (49) Y 1 0 1 1 1 1 1 1 1 1 9 Fair

Matsuura et al. (50) Y 1 0 1 1 0 1 1 1 1 1 8 Fair

Motamed Vaziri et al. (51) Y 1 0 1 0 0 0 0 0 1 1 4 Fair

Nowak et al. (52) Y 1 0 1 0 0 0 1 1 1 1 6 Fair

Özkeskin et al. (53) Y 1 1 0 1 0 1 1 1 1 1 8 Good

Pomeroy et al. (54) Y 1 1 0 1 1 1 1 1 1 1 9 Excellent

Rose et al. (55) Y 1 1 1 1 1 1 1 1 1 1 10 Excellent

Sankarasubramanian et al. (56) Y 1 0 0 1 0 0 1 1 1 1 6 Fair

Sasaki et al. (57) Y 1 0 1 1 0 1 1 1 1 1 8 Fair

Seniow et al. (58) Y 1 1 1 1 1 1 1 1 1 1 10 Excellent

Takeuchi et al. (59) Y 1 0 1 1 1 1 0 0 1 1 7 Fair

Takeuchi et al. (60) Y 1 0 1 1 1 1 0 0 1 1 7 Fair

Tosun et al. (61) Y 1 0 1 0 0 1 1 0 1 1 6 Fair

Theilig et al. (62) Y 1 1 0 1 0 1 0 0 1 1 6 Good

Vongvaivanichakul et al. (63) Y 1 0 0 0 0 0 1 1 1 1 5 Fair

Wang et al. (64) Y 1 1 1 1 1 0 1 1 1 1 9 Excellent

Zheng et al. (65) Y 1 1 1 1 0 1 1 1 1 1 10 Excellent

Criteria numbers: 1, eligibility criteria; 2, random allocation; 3, concealed allocation; 4, similar groups at baseline; 5, blinding subjects; 6, blinding therapists; 7, blinding assessors; 8,

outcome obtained in more than 85% of the subjects; 9, intention-to-treat analysis; 10, between-group statistical comparisons; 11, point estimates and measures of variability.
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FIGURE 2 | Effects of rTMS on the FMA scale, comparing different treatment onset times. Estimates of effect size are shown with 95% CIs. Final value and change
scores combined as mean differences. The mean difference (MD) and 95% confidence intervals (CIs); No studies within 3–6 months post-stroke subgroup.

in the early subacute phase (1–3 months) and chronic phase
(Figure 2). Separate analyses indicated the difference between
the different post-stroke phases. The acute to early subacute
phase (<1 month) explicitly compared to the early subacute (1–3
months) phase showed a significant subgroup difference in favor
of the acute to early subacute phase (p = 0.02). The acute to
early subacute phase also showed a benefit when compared to
the chronic phase (p = 0.002) (Supplementary Figures 1–3 in
Supplementary Table 2). For the other scales, ICF function and
activity measures, the effects of early and late treatment did not
differ (Supplementary Figures 1–8 in Supplementary Table 3).
However, the ICF function measures RT and FT (Supplementary
Figures 1, 2 in Supplementary Table 3) did show an overall
positive effect of rTMS on upper limb function for the early
treatment group (FT), which was not observed when treatment
was started later. Sensitivity analysis showed minimal impact
on the results after removal of the crossover, single-blind
and no treatment allocation studies (Supplementary Table 4).
The funnel plot showed that the estimated treatment effects
scattered around the total overall estimate of the meta-
analysis (Supplementary Table 5). Asymmetry in the funnel plot
is noticeable.

Function vs. Activity
There were no differences between the early and late treatment
groups for studies categorized as assessing ICF function (FMA,
GS, FT, and PF) and activity (JTT, ARAT, and WMFT) measures

(Figures 3, 4). A benefit of real rTMS was only observed
when outcomes were assessed with an ICF function measure
(Figure 3). Sensitivity analysis showed minimal impact on the
results after removal of the crossover, single-blind, and no
treatment allocation studies (Supplementary Table 4).

Treatment Within 1 Month and Outcome at
3 Months
rTMS intervention within 1 month after stroke improved upper
limb function at 3 months (p < 0.0001; Figure 5) (ICF function
measures: FMA and GS).

Other Subgroup Analyses
Subgroup analyses (number of treatment sessions, additional
therapy, rTMS frequency/site of stimulation) revealed
statistically significant beneficial treatment effects on
the ICF function measures, but not on the ICF activity
measures (Supplementary Table 6). In the analysis in
which the number of treatment sessions was divided into
different subgroups (1 session, 2–10 sessions, and 11–20
sessions), improved upper limb function was found for
all the different number of treatment sessions on the ICF
function measures (all p < 0.05) (Supplementary Figures
1–5 in Supplementary Table 6). Subgroup analysis of rTMS
alone and rTMS combined with additional therapy showed
significant effects on upper limb ICF function measures for
both rTMS treatment approaches (Supplementary Figures 6, 7
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FIGURE 3 | Effects of rTMS on the ICF Function domain, comparing different treatment onset times. Estimates of effect size are shown with 95% CIs. The
standardized mean difference (SMD) and 95% confidence intervals (CIs); ICF Function measures: Fugl-Meyer Arm, Grip Strength, Finger Tapping, and Pinch Force.

in Supplementary Table 6). In another subgroup analysis,
significant mean effect sizes were found for both low-
and high frequency rTMS (to the unaffected and affected
hemispheres, respectively) (Supplementary Figures 10, 11
in Supplementary Table 6). In all the subgroup analyses no
significant differences were found between different rTMS
post-stroke onset times.

DISCUSSION

This systematic review andmeta-analysis demonstrate that rTMS
within 1 month after stroke leads to greater improvement on the
FMA than rTMS applied after 1–3 months or after 6 months. In
addition, independent from treatment onset time, rTMS seems
to have a positive effect on upper limb function if assessed with

tests that targeted (body) function specifically, which was not
evident with tests assessing activity. Lastly, when rTMS treatment
was started in the first month after stroke, upper limb function
was still improved at 3 months after stroke, the time of outcome
assessment in most acute stroke trials.

Timing of rTMS Treatment Onset After
Stroke
The beneficial effect of rTMS, applied within 1 month after
stroke, on the FMA score have not been previously described.
In an earlier systematic review and meta-analysis of rTMS
after stroke, which also evaluated the arm/hand motor scales
separately for upper limb function, no effect of rTMS followed
by upper limb training on motor outcome measures, including
the FMA, was found (11). However, this systematic review
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FIGURE 4 | Effects of rTMS on the ICF Activity domain, comparing different treatment onset times. Estimates of effect size are shown with 95% CIs. The standardized
mean difference (SMD) and 95% confidence intervals (CIs); No studies within 3–6 months post-stroke subgroup; ICF Activity measures: Jebsen Taylor Test, Action
Research Arm Test, and Wolf Motor Function Test.

FIGURE 5 | Effects of rTMS applied within 1 month with outcome assessment at 3 months post-stroke. Estimates of effect size are shown with 95% CIs. The
standardized mean difference (SMD) and 95% confidence intervals (CIs); ICF Function measures: Fugl-Meyer Arm and Grip Strength.

included only eight studies and patients treated within 1
month after stroke were excluded. A recent randomized
sham-controlled trial (n = 199) that was published after
the search period of our meta-analysis found no difference
between active and sham rTMS treatment groups, combined
with motor training, on the FMA (nor on the ARAT or
WMFT). This lack of difference may be attributed to the
inclusion of patients beyond 3 months after stroke (67).
The results from our meta-analysis also differ from findings
from a recent meta-analysis of transcranial direct current
stimulation treatments after stroke, in which increased capacity

of activities of daily living (ADL), but not increased arm
function, measured by the FMA, were reported after tDCS
(68). A reason for the discrepancy between these results
and our findings may be the difference in included post-
stroke time points (ranging between 3 days up to 8 years
post-stroke for the meta-analysis of tDCS treatments). The
discrepancy could also be attributed to the different mechanisms
underlying cortical excitability changes after rTMS and tDCS.
TMS can directly induce action potentials, whereas tDCS does
not evoke action potentials but modifies neuronal membrane
polarization (7, 69). This can result in different neuromodulatory
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responses between rTMS and tDCS stimulated neural networks.
Another explanation might be that the improvement in
ADL capacity is not a reflection of improvement in arm
function but of generalized treatment effects. In addition,
patients with a non-functional arm may be independent in
ADL (70).

Body Function Measures
The FMA, a measure of body function, has recently been
recommended as a primary outcome measure for intervention
trials targeting the upper limb throughout different phases after
stroke (71, 72). While rTMS improved FMA scores specifically
when applied in the first month, this effect was not observed
for other body function measures. This may at least partly
be explained by the higher number of studies that assessed
upper limb function with the FMA (n = 15) than with the
other body function measures (RT, FT, GS, and PF) (n ≤ 8).
Consequently, the low numbers of patients (sample sizes: 6–60)
in studies that used other measures and no power calculations
may have led to insufficient power to detect differences. Another
possible explanation may be that the FMA assesses multiple
components of the upper limb, such as the shoulder, elbow,
wrist, hand, fingers, and coordination, and is based on the
different sequential stages of motor recovery. According to the
FMA stages of recovery (based on the Brunnstrom Approach),
basic synergy patterns appear in one of the first stages, and
points can be awarded in each stage (73). By contrast, other
body function measures assess or focus on fine motor control,
and points are only awarded when the patient can move freely
from the synergy pattern. Consequently, some patients will
not be able to perform the fine motor tasks assessed with
these scales and possible improvements in distal musculature
cannot be captured. However, if rTMS treatment started in
the chronic phase post-stroke and outcome was assessed with
measures at ICF function level, other than the FMA, these
patients displayed a favorable response to the treatment. It is
possible that these patients developed compensatory movements
to accomplish the function tests, e.g., by using additional trunk
movements (74, 75).

Comparisons to Previous Studies
Two earlier meta-analyses also performed a subgroup analysis
for rTMS effects at different times after stroke (10, 76). These
analyses also showed more pronounced effects of rTMS
applied in the (sub)acute phase (2 weeks to 6 months) than
in the chronic phase (>6 months) post-stroke. However,
these meta-analyses pooled studies with outcome measures
at different levels of ICF (i.e., function and activity), which
increases methodological variation. Furthermore, not all
findings were corrected for multiple comparisons (76) and
few studies selectively included patients at specific post-stroke
stages (10).

Earlier meta-analyses have considered the potential influence
of rTMS frequency/site of stimulation (10, 76), number of
sessions (76) and upper-limb training (11) on upper limb
function. Two meta-analyses revealed more pronounced effects
on upper limb function following low-frequency rTMS to the
unaffected hemisphere as compared to high-frequency rTMS to

the affected hemisphere (10, 76). Low-frequency rTMS protocols
have been more frequently used than high-frequency protocols
to promote upper limb recovery, throughout the different post-
stroke phases. In the current meta-analysis, both the low- and
high-frequency studies revealed significant effects on upper
limb function measured by ICF function measures. Outcome
measures have not previously been categorized according to
their measurement level (ICF) in meta-analyses. Prior studies
had shown that five rTMS sessions have the most beneficial
effects on upper limb function compared to a single session
or more than 10 sessions (76). In contrast to these findings,
our subgroup analyses showed that there were significant
beneficial effects on ICF function measures for varying amount
of treatment sessions (i.e., single treatment session, 2–10 or 11–
20 sessions), however this finding is based on few studies within
the different phases of treatment onset post-stroke. Regarding
additional therapy next to rTMS treatment, one study did not
find support that the combination of rTMS with upper-limb
training would be more beneficial on upper limb function
than upper-limb training alone (11). In our analysis, additional
therapy combined with rTMS was found to have a similar
effect as rTMS alone. However, the effect of specific types or
intensity of additional therapy, paired with rTMS, has not been
investigated yet.

Outcome Measure Selection
To effectively capture the multidimensional aspects of post-
stroke dysfunction and recovery, it has been recommended to
measure outcome at different levels of function, activity and
participation (ICF model) (71). Outcome measures at the level
of function are more directly linked to stroke-related brain
changes as compared to outcomemeasures at the level of activity,
which are also strongly affected by cognitive, environmental
and personal factors (18, 77). This could explain why we found
no effect of rTMS treatment on activity outcome measures.
High heterogeneity and wide confidence intervals of effect sizes
were found for some analyses on activity outcome measures,
which could also account for the absence of rTMS effects
in activity.

It is important that the selected outcome measures within
a trial reflect the underlying rationale or mechanism of the
intervention under study. Furthermore, interventions targeted
at one or more specific parts of the upper limb (i.e., arm,
hand, shoulder) should select an outcome measure that is
capable of specifically assessing effects on those parts or subtest
scores of an outcome measure should be reported to indicate
at what level of the upper limb the most significant effects
occur. However, for several tests it is not entirely clear to
which ICF domain they belong. For example, some outcome
measures at activity level (e.g., ARAT and WMFT) also contain
a number of test items at function level and vice versa. Effects
of interventions which directly influence neural activity, such
as rTMS, are probably best assessed with outcome measures
that are able to capture the neural recovery process. For motor
function, this may be achieved with the FMA. In addition,
inclusion of arm/hand motor scales at the level of activity and
participation as secondary outcomes can be valuable to evaluate
if treatment effects generalize to daily life. Objective kinematic
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measurements may offer a valuable addition to the existing and
widely used outcome measures. These quantitative assessments
can providemore detailed insights into key components of motor
recovery, such as individual finger movements, smoothness of
reaching, force control, and trunk displacement (78, 79). A
combination of outcome measures at different ICF domains,
including the use of kinematic measures, can also prevent a
patient from becoming discouraged if the performance on a
particular test fails.

Study Strengths and Limitations
The beneficial effect of rTMS applied in the acute to early
subacute phase post-stroke is in agreement with theories on
a critical time window post-stroke for obtaining recovery-
enhancing effects (14). Our review showed that when rTMS was
applied in the first month after stroke, a beneficial effect on upper
limb function could still be measured at 3 months post-stroke.
A three-month post-stroke assessment has been recommended
by the Stroke Recovery and Rehabilitation Roundtable for stroke
recovery trials, especially when interventions target neural repair
processes, which may be most prevalent during this timeframe
(71). In addition, assessment after 6 months can inform on
outcome at a stage when spontaneous recovery often reaches a
plateau, particularly in more severe strokes (80).

There are limitations in our review and meta-analysis that
need to be reported. Firstly, since our study was dependent
on the type and quality of the data in the individual studies,
risks of bias that could lead to inflation of the effect size
estimates should be acknowledged. Therefore, the results need
to be interpreted with caution. There were some examples of
risk of bias. In some subgroup analyses only one study was
representative of a subgroup. Heterogeneities in the results
of the individual studies included in the main analyses were
large, as suggested by funnel plot asymmetry. Measurement
of effect sizes of treatment was often based on a mixture
of change scores and final scores. However, unpublished
studies with negative findings may have been missed due to
publication bias, may also have led to funnel plot asymmetry.
The methodological quality of the studies was fair to excellent,
but almost half of the studies were single-blind and did not
conceal the treatment allocation or describe the allocation
procedure. Nevertheless, our sensitivity analyses showed no
significant changes in results when those studies were excluded.
Also, we might have missed relevant studies published in non-
English languages. Another potential source of bias in clinical
research is the type of funding or sponsorship. Although none
of the studies were funded by an industrial partner, bias can
also result from non-commercial funding sources with specific
interests. Secondly, because of the large variations in the study
populations, we could not examine possibly confounding effects
of differences in demographic and stroke-related characteristics
between the studies. Age, gender, level of cognition, depression,
severity of impairment and physical activity are examples of
confounders that could influence motor performance. Thirdly,
due to the limited data we could not adequately account
for differences in rTMS protocols and frequencies/sites of
stimulation, experimental designs, additional therapy, motor
scores (e.g., FMA subscores, clinical vs. kinematic measures), and

patient inclusion criteria. We focused on effects of rTMS applied
at different times post-stroke, whereby investigating the role of
(intensity of) additional therapy such as virtual reality therapy
and functional task practice, and single rTMS sessions could not
be performed.

CONCLUSIONS

rTMS treatment within the first month after stroke seems
more beneficial in increasing upper limb function than after
1–3 months or in the chronic phase post-stroke (>6 months).
Improvements after rTMS can most likely be detected with
outcome measures assessing body functions, like the FMA
score, than tests at the level of activity (e.g., JTT, ARAT).
However, rTMS treatment studies in stroke patients are highly
heterogeneous, with varying outcome measures and relatively
small sample sizes. Another source of uncertainty is that we are
unable to identify whether improved outcomes were primarily
caused by rTMS per se or by rTMS in combination with an
additional therapy (of a certain intensity). Further research and
international cooperation should be undertaken to develop a
standardized, core set of measurements for testing upper limb
function. We recommend to conduct measurements at the
different levels of function, activity (and participation). Future
studies should incorporate these standardized tests, include a
follow-upmeasurement at 3 months after stroke onset (if the trial
starts within 1 month post-stroke), and report their findings in a
uniform manner (e.g., using final scores or change scores, and
subtest scores).
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58. Seniów J, Bilik M, Leśniak M, Waldowski K, Iwanski S, Członkowska
A. Transcranial magnetic stimulation combined with physiotherapy in
rehabilitation of poststroke hemiparesis. Neurorehabil Neural Repair. (2012)
26:1072–9. doi: 10.1177/1545968312445635

59. Takeuchi N, Chuma T, Matsuo Y, Watanabe I, Ikoma K. Repetitive
transcranial magnetic stimulation of contralesional primary motor
cortex improves hand function after stroke. Stroke. (2005) 36:2681–6.
doi: 10.1161/01.STR.0000189658.51972.34

60. Takeuchi N, Tada T, Toshima M, Chuma T, Matsuo Y, Ikoma K. Inhibition
of the unaffected motor cortex by 1HZ repetitive transcranial magnetic
stimulation enhances motor performance and training effect of the paretic
hand in patients with chronic stroke. J Rehabil Med. (2008) 40:298–303.
doi: 10.2340/16501977-0181

61. Tosun A, Türe S, Askin A, Yardimci EU, Demirdal SU, Kurt Incesu T, et al.
Effects of Low-Frequency repetitive transcranial magnetic stimulation and
neuromuscular electrical stimulation on upper extremity motor recovery in
the early period after stroke: a preliminary study. Top Stroke Rehabil. (2017)
24:361–7. doi: 10.1080/10749357.2017.1305644

62. Theilig S, Podubecka J, Bösl K, Wiederer R, Nowak DA. Functional
neuromuscular stimulation to improve severe hand dysfunction after stroke:
Does inhibitory rTMS enhance therapeutic efficiency? Exp Neurol. (2011)
230:149–55. doi: 10.1016/j.expneurol.2011.04.010

63. Vongvaivanichakul P, Tretriluxana J, Bovonsunthonchai S, Pakaprot N,
Laksanakorn W. Reach-to-grasp training in individuals with chronic stroke
augmented by low-frequency repetitive transcranial magnetic stimulation. J
Med Assoc Thai. (2014) 97:3–8.

64. Wang CC, Wang CP, Tsai PY, Hsieh CY, Chan RC, Yeh SC. Inhibitory
repetitive transcranial magnetic stimulation of the contralesional premotor
and primarymotor cortices facilitate poststrokemotor recovery. Restor Neurol
Neurosci. (2014) 32:825–35. doi: 10.3233/RNN-140410

65. Zheng CJ, Liao WJ, Xia WG. Effect of combined low-frequency
repetitive transcranial magnetic stimulation and virtual reality training
on upper limb function in subacute stroke: a double-blind randomized
controlled trail. J Huazhong Univ Sci Technol Med Sci. (2015) 35:248–54.
doi: 10.1007/s11596-015-1419-0
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