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Acute stroke is often superimposed on chronic damage from previous cerebrovascular

events. This background will inevitably modulate the impact of acute injury on clinical

outcomes to an extent that will depend on the precise anatomical pattern of damage.

Previous attempts to quantify such modulation have employed only reductive models

that ignore anatomical detail. The combination of automated image processing,

large-scale data, and machine learning now enables us to quantify the impact of

this with high-dimensional multivariate models sensitive to individual variations in the

detailed anatomical pattern. We introduce and validate a new automated chronic

lesion segmentation routine for use with non-contrast CT brain scans, combining

non-parametric outlier-detection score, Zeta, with an unsupervised 3-dimensional

maximum-flow, minimum-cut algorithm. The routine was then applied to a dataset of

1,704 stroke patient scans, obtained at their presentation to a hyper-acute stroke unit

(St George’s Hospital, London, UK), and used to train a support vector machine (SVM)

model to predict between low (0–2) and high (3–6) pre-admission and discharge modified

Rankin Scale (mRS) scores, quantifying performance by the area under the receiver

operating curve (AUROC). In this single center retrospective observational study, our SVM

models were able to differentiate between low (0–2) and high (3–6) pre-admission and

discharge mRS scores with an AUROC of 0.77 (95% confidence interval of 0.74–0.79),

and 0.76 (0.74–0.78), respectively. The chronic lesion segmentation routine achieved a

mean (standard deviation) sensitivity, specificity and Dice similarity coefficient of 0.746

(0.069), 0.999 (0.001), and 0.717 (0.091), respectively. We have demonstrated that

machine learning models capable of capturing the high-dimensional features of chronic

injuries are able to stratify patients—at the time of presentation—by pre-admission and

discharge mRS scores. Our fully automated chronic stroke lesion segmentation routine

simplifies this process, and utilizes routinely collected CT head scans, thereby facilitating

future large-scale studies to develop supportive clinical decision tools.
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INTRODUCTION

The functional organization of the brain is highly complex.
The clinical consequences of focal brain injury therefore
depend not merely on the volume of damaged tissue but also
on its anatomical location (1, 2). In stroke, a multiplicity
of locations is commonly affected, forming a complex
anatomical pattern shaped by the vascular supply to the
brain. Optimal prediction of clinical outcomes in stroke
then depends on understanding the relation between the
patterns of injury and the underlying functional anatomy.
This relation is commonly oversimplified, treating most of
the resultant variability as noise, with interventional studies
usually modeling only the volume of the lesion, or its gross
anatomical location, and prognostic studies usually identifying
a small number of variables, such as the proportion of the
corticospinal tract affected (3–6). The unmodeled variability
degrades the sensitivity for detecting interventional effects
(7) and limits the predictive power of prognostic measures.
Given sufficient data, machine learning-enabled, high-
dimensional models drawing on thousands of anatomical
variables taken together can capture the underlying complexity,
with potentially dramatic impact on inferential and predictive
performance (8–10).

These considerations apply not only to acute stroke, but also
to the background ischemic damage frequently superimposed
on it, with an estimated 10 additional silent infarcts for every
symptomatic stroke (11). Such infarcts unsurprisingly have been
shown to worsen prognosis (12, 13), confirming the need to
model their impact on the acute outcome.

We seek to quantify the predictive value of high-dimensional
modeling of background ischemic damage in stroke, and
to enable such modeling at large scale, within the current
clinical routine.

MATERIALS AND METHODS

Patients
In this single center retrospective observational study, we
evaluated all patients presenting to St George’s Hospital,
London, UK between January 2015 and December 2016,
recorded in the local collected Sentinel Stroke National Audit
Programme (SSNAP) database, managed within the hyper-acute
thrombolysis pathway, and imaged with a computer tomography
(CT) head scan on admission. Three hundred and eighty-
seven patients who presented with intracerebral hemorrhage
were excluded. Also excluded were 403 patients where the
images were corrupted by motion or metal artifact or were
acquired at external centers. We included all patients with
a diagnosis of acute ischemic stroke (n = 1,704), and a
randomly drawn subset of patients without evidence of acute
or chronic stroke on CT (n = 78), and another randomly
drawn subset of patients with only chronic injury (n = 50).
This study was approved by the Health Research Authority,
Local Research Ethics Committee (London—Camden & King’s
Cross REC).

Study Outcomes and Predictors
All patients underwent a plain CT head scan on admission,
typically within the first hour of assessment and 3 h of estimated
symptoms onset. All imaging was performed on a Siemens
SOMATOM definition flash CT scanner and consisted of axially
acquired 512 × 512 volumes of typical in-plane resolution of 0.3
× 0.3mm and a z-plane resolution between 3 and 5 mm.

The following demographic and clinical information were
extracted from the routine SSNAP record: age, sex, hypertension,
diabetes, congestive heart failure, atrial fibrillation, pre-
admission-mRS (pre-mRS), discharge-mRS (dis-mRS), and
NIHSS scores. Fifteen patients did not have dis-mRS scores and
were excluded from their respective analysis.

Outcome measures were dichotomized to enable the
application of classification models. For pre-mRS and dis-mRS,
the two categories were low (0–2) vs. high (3–6); for patients
who received intravenous (IV) thrombolysis therapy, those with
an increase in NIHSS score by more than 2 points after 24 h vs.
those whose did not; and patient sex.

High Dimensional Modeling and Model
Evaluation
For each of the 1,704 patients with ischemic stroke, our novel
lesion and tissue segmentation and registration routine described
below was applied to the admission CT brain scan. This yielded
a series of derived volumetric maps projected in standard
stereotactic space (Montreal Neurological Institute [MNI]) at a
resolution of 4× 4× 4 mm3. The maps included a binary “lesion
mask” where voxels falling within injured tissue are distinguished
from all others; an “anomaly map” where voxels are labeled by a
statistical measure, zeta (14), of their degree of abnormality; and
the gray and white matter tissue probability maps.

We trained a series of SVM models based on LibSVM
(15) using the demographic, co-morbidities and neuroimaging
data. The models in the series are hierarchically organized
to incorporate progressively more information as it naturally
becomes available during a patient’s admission. We thus first
examined models using age only, and incrementally increased
the complexity by adding history and examination features
followed by neuroimaging. Neuroimaging features included total
lesion volume, voxel-level lesion mask, and the combined voxel-
level lesion mask and zeta map. Radial basis function (rbf)
kernels were used to train the SVM models and were evaluated
using a k-fold (k = 10) cross-validation technique (16). The
optimal parameters were identified using a grid search with the
performance for each parameter combination being the area
under the receiver operator curve (AUROC) averaged across
the 10-folds. Model AUROC values were compared (17), and a
bootstrapping technique (n = 1,000) was applied to obtain the
95% confidence intervals (CI) for each of the optimal models.

Background Lesion Segmentation
All CT image pre-processing was performed in SPM12 (18) and
in-house developed software written in MATLAB 2016 (19). Pre-
processing of the CT image involved affine alignment to the mid-
sagittal plane, and a signal intensity transformation using the
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method described by Rorden et al. (20), to emphasize the tissue-
cerebrospinal fluid contrast. SPM12’s combined segmentation-
normalization routine (21) was then used to generate the
transformation parameters to warp the CT image between MNI
and the CT scan’s native space.

We address the problem of lesion segmentation by first
creating 3 binary maps describing regions that are non-lesion
(healthy tissue, sulci and ventricles). The image was thresholded
at 100 Hounsfield units (HU) to remove bone, while all voxels
below zero were clamped to zero, and the image filtered using a
Total Variation (TV) algorithm (22) to improve the tissue-CSF
contrast. For the healthy tissue map the TV processed image was
passed through a top-hat filter. For the sulci map, the TV image
was clustered into 3 classes based on signal intensity (14, 24, and
34 HU) using a 3-dimensional Maximum Flow Minimum Cut
(23–25) (MFMC) algorithm. The probability map based on the
guide signal value of 14 HU was then thresholded. Third, for
the ventricular system, the TV image was passed to the MFMC
algorithm, but this time clustered into two classes (20, 27 HU).
The probability map for the lower guide signal was thresholded to
reveal the ventricular system. As the ventricular system exhibits
symmetry across the mid-sagittal plane, each voxel was assessed
to determine whether its mirror-pair was similarly labeled, and
incongruent voxel pairs removed. Finally all three maps were
then processed individually with a 2-dimensional watershed
transform (26) to cluster similar voxels together.

A map identifying lesioned regions is created from the TV
image, by using the MFMC algorithm and specifying a signal
range with a higher sensitivity for lesion voxels. From this lesion
map, the 3 non-lesion maps are subtracted. Clusters residing
along the medial margins of the lateral ventricles, that extend
across the mid-sagittal plane were removed. This forms the first
binary lesion mask.

By spatially normalizing a set of healthy brains, we can then
index each voxel in our test brain according to how different it is
from the reference population, thereby creating a map defining
abnormal regions based on location and signal value (27). Here
we use the zeta anomaly score, using a method detailed and
validated in Mah et al. (28) to identify the lesioned regions. A
second binary lesion mask is created by subtracting the sulci and
ventricle binary maps from the zeta map and thresholding the
resultant image.

The two binary lesion masks are combined to form a single
binary mask, and then clustered using a 2-dimensional watershed
transform created from the CT image. Only watershed regions
with a minimum occupancy of 50% are preserved. Finally, a noise
reduction step is performed to remove small clusters and very
large clusters that only span a single plane. A flow diagram of the
process is available in the Supplementary Material.

To validate the accuracy of our automated background lesion
segmentation routine, 50 lesion masks of chronic stroke lesions
were manually segmented from the axial CT scans in native space
with ITK SNAP (29) by a neurologist experienced in the task
(YM) and reviewed by an experienced neuroradiologist (ADM).
These manual lesion masks represented the “ground truth” for
the chronic lesion parameters against which the automated
segmentation masks were compared. The performance of the

TABLE 1 | Population statistics and feature distribution for the three datasets.

Acute ischemic

stroke

No acute or

chronic lesion

Chronic

lesion

Subjects 1,704 78 50

Age, mean (SD), yr 73 (15) 49 (16)* 73 (12)

Male (%) 853 (50.0) 35 (44.9) 25 (50.0)

Diabetes (%) 470 (27.6) 15 (19.2) 22 (44.0)

Hypertension (%) 1,105 (64.8) 29 (37.2) 39 (78.0)

Atrial fibrillation (%) 422 (24.8) 4 (5.1) 14 (28.0)

Congestive cardiac failure (%) 123 (7.2) 9 (11.5) 6 (12.0)

A total of 1,704 patients were included who had a diagnosis of acute ischemic stroke.

A randomly drawn subset of patients without evidence of acute or chronic stroke on CT,

and another randomly drawn subset of patients with only chronic injury. There was a

significant difference in age between the subset of patients without evidence of acute or

chronic stroke on CT, and the other two groups (*); while there was no significant difference

between the acute ischemic stroke dataset and the chronic injury dataset. No significant

difference was found between any of the other pairings with a Mann-Whitney U-test.

lesion routine was assessed using statistical metrics of sensitivity,
specificity, and Dice Similarity Coefficient (30) (DSC), with all
statistics derived from images in MNI space.

RESULTS

The mean (standard deviation, SD) age of the acute ischemic
stroke dataset was 73 (15) years, and the 50 patients with
only chronic lesions was 78 (49) years. The reference dataset
of CT scans without evidence of acute or chronic lesions
was significantly younger [mean 49 (16) years] compared
against the other two datasets (p < 0.001 for both). All
comparisons with co-morbidities and sex did not reach statistical
significance (Table 1). The relevant patient characteristics and
clinical information for the acute ischemic stroke dataset and its
subsequent dichotomization are shown in Table 2.

No significant difference was found between the dichotomized
groups except for age, where patients were older in the high
pre-mRS and dis-mRS groups. The prevalence of identified
background injury was 1,520/1,704, in the context of
a distribution pre-mRS scores consistent with previous
studies (31).

The anatomical pattern of injury across the population shows
the highest density in the anterior and posterior watershed
territories of the middle cerebral artery, and posterior thalamus,
with lower densities around the cerebellum and posterior fossa
(Figure 1).

Pre-admission mRS: 0–2 vs. 3–5
Classification models trained to discriminate between the low
and high pre-mRS groups showed increasing performance
with the incremental addition of clinical and imaging features
(Figure 2).

Models based on clinical features alone performed worst,
exhibiting an AUROC of <0.60. The addition of lesion volume
to clinical features increased this to 0.70 (95% CI 0.67–0.73). In
comparison, the combined lesion mask and zeta map alone was
significantly different at 0.76 (95% CI 0.73–0.79, p = 0.008). The
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TABLE 2 | Population characteristics and feature distribution for the 1,704

patients.

Pre-admission

mRS (0–2)

Pre-admission

mRS (3–5)

Total

Subjects 1,372 332 1,704

Age*, mean (SD), yr 71 (15) 83 (10)

Male (%) 740 (53.9) 113 (34.0) 853

Diabetes (%) 365 (26.6) 105 (31.6) 470

Hypertension (%) 874 (63.7) 231 (69.6) 1,105

Atrial Fibrillation (%) 302 (22.0) 120 (36.1) 422

Congestive Cardiac Failure (%) 83 (6.0) 40 (12.0) 123

Thrombolysis (%) 274 (20.0) 31 (9.3) 305

Door to CT, median (IQR), min 25 (11–119) 23 (11–92.3) 24

Onset to CT, median (IQR), min 150 (90–270) 162 (95–253) 153

Onset to thrombolysis, median

(IQR), min

130 (101–183) 128 (100.3–179.5) 130

Discharge mRS

(0-2)

Discharge mRS

(3–6)

Subjects 761 935 1,696

Age*, mean (SD), yr 68.7 (15) 77.0 (14)

Male (%) 450 (59.1) 400 (42.8) 850

Diabetes (%) 201 (26.4) 267 (28.6) 468

Hypertension (%) 480 (63.1) 621 (66.4) 1,101

Atrial Fibrillation (%) 126 (16.6) 296 (31.7) 422

Congestive Cardiac Failure (%) 31 (4.1) 91 (9.7) 122

Thrombolysis (%) 135 (17.7) 169 (18.1) 304

Door to CT, median (IQR), min 35 (12–134) 20 (10–93) 24

Onset to CT, median (IQR), min 162 (92.3–228.5) 143 (90–252) 153

Onset to thrombolysis, median

(IQR), min

131 (105.5–180) 127 (100–186) 130

Increase in NIHSS

≤ 2

Increase in NIHSS

>2

Subjects 281 24 305

Age, mean (SD), yr 72.8 (15) 72·9 (14)

Male (%) 145 (51.6) 18 (75.0) 163

Diabetes (%) 48 (17.1) 23 (95.8) 71

Hypertension (%) 169 (60.1) 14 (58.3) 183

Atrial Fibrillation (%) 61 (21.7) 5 (20.8) 66

Congestive Cardiac Failure (%) 16 (5.7) 3 (12.5) 19

Thrombolysis 281 (100) 24 (100) 305

Door to CT, median (IQR), min 12 (7–17) 12 (10–17.5) 12

Onset to CT, median (IQR), min 94 (72–131.8) 101 (74–174) 95

Onset to thrombolysis, median

(IQR), min

130 (100.5–179) 136 (105–210) 130

There were 8 patients who did not have a discharge modified Rankin Scale score and

were excluded from the respective analyses. For each prediction model (pre-admission

modified Rankin Scale score, discharge modified Rankin Scale score, and deterioration in

National Institute of Health Stroke Score of more than 2 points) the data has been arranged

according to the corresponding binary groups. Apart from age (*) in the pre-admission

and discharge mRS score analyses, no significant difference was found between pairings

for the remaining features. For each of the pairings the median (IQR) door to CT, onset

to CT and onset to thrombolysis times are presented. No significant difference was

found between any of the parings with a Mann-Whitney U-test. For the respective timing

measures, the overall median time is shown in the “Total” column.

addition of clinical features did improve the AUROC to 0·77
(95% CI 0.74–0.79), whose receiver operating curve is shown
in Figure 3A, but the improvement did not reach significance
(p= 0.405).

Discharge-mRS Score: 0–2 vs. 3–6
Classification models trained to discriminate between the low
and high dis-mRS score groups showed a similar pattern of
performance with increasing clinical features. The model using
the pre-mRS score alone achieved an AUROC of 0.71 (95% CI
0.69–0.74) which was not significantly different to the model
using the combined lesion mask and zeta map (AUROC 0.72,
95% CI 0.70–0.74, p = 0.340). The optimal model incorporated
the clinical features, pre-mRS and imaging (in the form of the
combined lesion mask and zeta map) achieving an AUROC
of 0.76 (95% CI 0.74–0.78) (Figure 3B). However, it did not
perform significantly better than the same model with imaging
information excluded (AUROC 0.74, 95% CI 0.71–0.76, p
= 0.055).

Increase in NIHSS Score of More Than 2
Points Following Thrombolytic Therapy
There were 305 patients who received IV thrombolysis therapy
with available admission and 24-h post thrombolysis NIHSS
scores recorded. Increments in modeled clinical features (age,
co-morbidities, and admission NIHSS score) accompanied an
increase in AUROC, with the optimal model using all these
features (AUROC 0.75, CI 0.64–0.84). The addition of imaging
information did not result in a significant difference in predicting
future patient deterioration (Figure 4).

Sex Prediction
The gray and white matter probability maps for the 1,704 patients
were extracted from the normalized plain CT scans and used to
train an SVM model to determine the sex of the patient, as an
internal quality control of the image segmentation process and
subsequent modeling. The linear kernel model using gray matter
maps performed the best, achieving an AUROC of 0.95 (95% CI
0.94–0.96), shown in Figure 4.

Automated Chronic Lesion Segmentation
Evaluation
The mean (SD) sensitivity, specificity and DSC of the
segmentation routine were 0.746 (0.069), 0.999 (0.001), and 0.717
(0.091), respectively. The individual performance statistics are
shown (Figure 5).

DISCUSSION

With the digitization of neuroimaging and its extensive use in
stroke medicine, there is an opportunity to capitalize on recent
advances in machine learning to develop predictive models of
sufficient individual-level accuracy to support clinical decisions.
We have shown that complex, high-dimensional models of brain
injury have better predictive power compared with simple, low-
dimensional ones incorporating only age and lesion volume. Our
fully automated chronic lesion segmentation routine simplifies
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FIGURE 1 | Overlay coverage of the 1520 lesion segmented CT brain scans, and example automated segmentation results. The overlay shows the coverage of the

1520 lesions segmented using the automated routine (A). The underlay image is the mean image created from the subset of 78 patients without evidence of acute or

chronic stroke on CT, sliced axially at the following co-ordinates: −27, −20, −12, −6, 2, 8, 12, 16, 20, 22, 32, 38, 44, 52, and 60. Axial slices through patients’ 3 (B)

and 49 (C) CT brain scan in native space. The borders of the lesion are depicted in red for manual segmentation and green for the automated segmentation routine.

the necessary image pre-processing, facilitating the interrogation
of the large datasets high-dimensional modeling requires.

We have shown that incremental additions of clinical and
imaging features improve the performance of predictive models
estimating a patient’s pre-mRS and dis-mRS scores. Although the
high mRS groups for both pre-mRS and dis-mRS analyses were

significantly older (p < 0.001), the models using age alone, or
in combination with co-morbidities failed to exceed an AUROC
of 0.68. This result is likely due to the variability in functional
level for a specific age, with co-morbidities and age probably
acting synergistically as a surrogate marker of the general health
of the patient.
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FIGURE 2 | AUROC results for different SVM models trained to predict pre-admission and discharge mRS scores. The bar chart shows the Area Under the Receiver

Operator Curve (AUROC) values obtained for different support vector machine (SVM) models using a radial basis function (rbf) kernel. The comorbidities included in

the models were diabetes, hypertension, atrial fibrillation, and congestive cardiac failure. Pre-admission mRS scores 0–2 vs. 3–5 (green), and discharge mRS score

0–2 vs. 3–6 (blue), with 95% confidence intervals shown as errors bars. Pairwise AUROC comparisons are shown with brackets and p-values adjacent.

Past studies have demonstrated that modeling the acute
lesion can predict a patient’s future functional ability, therefore
intuitively, modeling chronic lesions should provide an insight
into a patient’s pre-admission level of function, which is
reflected in our results. We also found that high-dimensional
neuroimagingmodels that use each voxel as a separate dimension
achieved better AUROC values, suggesting that there is an
additional benefit in modeling the pattern of damage. Focal
injuries are believed to influence the structure of the brain distant
to the original lesion, with diaschisis playing a critical role in
stroke recovery (32, 33). This phenomenon would be consistent
with the observed improvement in performance following the
addition of the zeta map to the lesion mask, with a significant
increase in AUROC (0.66 vs. 0.76 p < 0.0001) as the zeta
map encodes changes in the brain distant to the chronic lesion,
such as atrophy. The SSNAP database from which the co-
morbidity features were retrievedmay not reflect the information
available at presentation but instead accrued over the patient’s
admission. This will improve accuracy and minimizes missing
data but may positively bias the observed predictive performance
of the model using the clinical features to estimate pre-mRS
scores. Nevertheless, the addition of clinical features to the
combined lesionmask and zeta map did not significantly increase
the AUROC.

In the dis-mRS prediction models, the combined lesion mask
and zeta mapmodel achieved a similar performance as the model
using pre-mRS scores. The optimal dis-mRS model combined

all clinical information and neuroimaging into a single model.
This was significantly better than using the pre-mRS scores alone,
however failed to reach significance when compared against the
model using all clinical information (p= 0.055).

Early prognostication is a difficult task, especially when
information is reliant on human recall or patient interaction,
in the hyperacute phase of admission. The THRIVE score (34)
used age, stroke severity (as determined with the NIHSS score)
and comorbidities (hypertension, diabetes and atrial fibrillation),
to estimate the likelihood of an mRS score of <3 at 90 days.
When applied to patients who received endovascular treatment,
their AUROC was 0.71, and 0.29 in those who received IV
thrombolysis therapy (35). These results are comparable to our
model using age and co-morbidities (AUROC 0.68), however
their analysis did not include a significant proportion of patients
who did not receive recanalization therapy, limiting the clinical
application of the THRIVE score. In comparison the ASTRAL
score (36) is an integer-based method to estimate the 90-day level
of function based on a dichotomized mRS score of 0–2 vs. 3–6, in
the emergency room. It managed an impressive AUROC of 0.90,
and 0.79 when externally validated on the VISTA cohort (37).
The ASTRAL score predominantly used information pertaining
to the acute injury, and included an assessment of the visual
fields, which can be very challenging in an aphasic or somnolent
patient. In contrast our models only used information from the
past, with the neuroimaging focusing on the pattern of chronic
injury, to estimate the functional independence at discharge
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FIGURE 3 | ROC curves for the optimal SVM model predicting pre-admission

and discharge mRS scores. (A) The receiver operator characteristics curve for

the best performing support vector machine model (combined lesion mask

and zeta map) trained to classify patients as either 0–2 or 3–5 based on the

pre-admission mRS score. The Area Under the Receiver Operator Curve

(curved line) is 0.77 (95% CI 0.74–0.79, green shaded area). (B) The receiver

operator characteristics curve for the best performing support vector machine

model (combined lesion mask and zeta map with pre-admission modified

Rankin Scale score) trained to classify patients as either 0–2 or 3–6 based on

the discharge-mRS score. The Area Under the Receiver Operator Curve

(curved line) is 0.76 (95% CI 0.74–0.78, blue shaded area). The straight black

line represents a predictive performance of pure chance.

FIGURE 4 | Area under the receiver operator curve results for different support

vector machine models trained to predict sex and deterioration in NIHSS

score. The sex discrimination models (red) were trained using linear kernels,

while the increase of more than 2 points in the NIHSS score (yellow) used

radial basis function kernels. 95% confidence intervals shown as error bars.

The comorbidities included in the models were diabetes, hypertension, atrial

fibrillation, and congestive cardiac failure.

rather than at 30 days. By using the information contained within
the admission CT head scan, our model achieved an AUROC of
0.72, and thereby minimizes the reliance on operator and patient
co-operation. Future work incorporating both the pattern of
chronic and acute injury, may improve the performance further.

Our models demonstrate the potential of applying machine
learning to neuroimaging to produce clinical tools of value
in the clinical management of stroke patients. At the hyper-
acute stage, one study has examined the development of
patient selection tools to help identify suitable candidates
for IV thrombolysis (38) and endovascular clot retrieval
(39). The pre-mRS score was identified as an independent
predictor of outcome at 90 days, as was a previous history
of stroke. Though the interaction with treatment was small,
a patient’s history of stroke was treated as a binary measure,
ignoring the burden of chronic damage, still less its anatomical
pattern. Clearly, different patterns of injury will have different
functional consequences; a reductive approach ignores valuable
information which may shed light on the general health
of the patient’s brain and its ability to recover from the
acute insult.

Sex determination was used as an internal quality control
technique for both the image segmentation and subsequent
modeling. Comparable work based on MR volumetric imaging
has shown sex differences in gray and white matter patterns (40),
and are able to differentiate the sex of the subject with an accuracy
of 89% (41). Our models based on the gray and white matter
probability maps derived from CT scans performed similarly,
with an AUROC of 0.95 and 0.90, respectively, and suggests
our technique preserves the individual’s tissue class differences
present in the non-contrast CT scan.
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FIGURE 5 | Performance of the automated segmentation routine for the 50

chronic stroke lesions. Filled circles, crosses, and open circles correspond to

specificity, sensitivity, and Dice similarity coefficient (DSC), respectively. The

mean (SD) values for specificity (dashed line), sensitivity (solid line), and DSC

(dotted line) are 0.746 (0.069), 0.999 (0.001), and 0.717 (0.091), respectively.

The mean (SD) age for the 50 manually segmented chronic lesions was 73 (12)

years, with 25 male patients.

Although this study has shown parameterizing the complex
pattern of chronic injury improves our ability to predict
the level of functional independence in patients, our work
presents some limitations. First, the optimal model to predict
a deterioration in NIHSS score after IV thrombolysis therapy
achieved an AUROC of 0.75 (95% CI 0.64–0.84). However,
unlike the mRS models, increases in model complexity did
not demonstrate a significant improvement in performance.
The unfavorable ratio of number of patients to number of
modeled features means these models may have struggled to
capture the high-dimensional signals in the data and would
be expected to perform better with a larger dataset. Second,
the lesion segmentation routine has been designed to extract
the pattern of chronic injury, there may be details relating to
the acute lesion in the imaging, as the zeta map is a whole
brain representation of anomaly, thus subtle reductions in CT
density from the acute lesion may be conveyed numerically to
the SVM algorithm. However, the median delay from symptom
onset to CT scan time was <3 h, therefore features of the
acute lesion are not expected to be readily visible on a plain
CT scan. Although we can presume information relating to
the acute lesion to be small, we cannot exclude it entirely.
Nevertheless, this result suggests the presence of chronic lesions
interacts with the presenting acute lesion, and the pattern
of injury confers meaningful information for predicting a
patient’s future course. Third, this retrospective study uses

information routinely gathered during clinical practice over
2 years and collected as part of the SSNAP initiative in the
UK. The modified Rankin Scale score is a general summary
measure of patients’ function, which is subject to moderate
variability, particularly in the clinical setting (31, 42). Although
converting the score to a binary outcome may obviate some
of this variability, both aspects will impact on our model’s
potential to accurately classify patients. Fourth, endovascular
clot retrieval (thrombectomy) is becoming more prevalent in
routine clinical practice either alone or in combination with
thrombolysis. While thrombectomy is the preferred hyperacute
intervention, it will only be possible where the thrombus is of
sufficient size to be accessed and desirable where thrombolysis
is not comparably effective. Currently, the proportion of eligible
patients is estimated to be 5–9% (43) and projected to increase
to around 22–25% (44). Therefore, the prospect of thrombolysis
being wholly superseded by thrombectomy is unlikely, with three
quarters of patients with acute ischemic stroke continuing to
receive either thrombolysis or no hyperacute treatment. Finally,
our study was a single center retrospective observational project,
exploring the impact of parameterizing the pattern of chronic
injury. Further validation studies are required to assess the
generalizability of the models before formal introduction into
clinical practice.

Our proposed method facilitates the analysis of large datasets
that can power the development of high-dimensional models
to address this issue with greater individual-level precision.
Our method of combining neuroimaging information can be
adapted to incorporate specialized sequences, such as intracranial
CT angiography or MR imaging. The substantial logistical
difficulties of sufficiently rapid MR, especially in patients with
abnormal consciousness or potential contraindications, mean
that CT will remain the first line modality of choice in most
stroke units for the foreseeable future. Were both CT and
MR are performed, the former to guide initial management
and the latter for subsequent decision-making, it is possible
to combine information from both scans, maximizing the
intelligence drawn from the available data. Regardless of the
modality, the clinical application of the quantified extent of
damage will be to capture additional variability in clinical
outcome parameters of any kind for prognostic or prescriptive
purpose. Our results further open the possibility of reducing
clinical reliance on the patient’s recall of his or her history, always
a potential problem where dysfunction of any part of the brain
may exist.

The detailed characteristics of a stroke patient’s CT brain
scan contain information about the patient’s functional status
and risk of deterioration. We have demonstrated that by
increasing the number of features used to parameterize the
spatial patterns of brain injury on CT, we are able to stratify
patients—at the time of presentation—by pre-admission and
discharge mRS scores, and to estimate who are likely to
have further deterioration in their NIHSS score following
IV thrombolysis treatment. Our image segmentation routine
exhibits excellent agreement with manual segmentation, and
extracts this information in an automated fashion, thereby
placing minimal demands on the operator. Our approach enables
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processing of routinely collected CT scans for training high
dimensional models that can support clinical and service decision
making, especially during a time-critical and challenging period
of the patient’s admission.
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