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Epileptic seizures are generally classified as either focal or generalized. It had been

traditionally assumed that focal seizures imply localized brain abnormalities, whereas

generalized seizures involve widespread brain pathologies. However, recent evidence

suggests that large-scale brain networks are involved in the generation of focal seizures,

and generalized seizures can originate in localized brain regions. Herein we study

how network structure and tissue heterogeneities underpin the emergence of focal

and widespread seizure dynamics. Mathematical modeling of seizure emergence in

brain networks enables the clarification of the characteristics responsible for focal and

generalized seizures. We consider neural mass network dynamics of seizure generation

in exemplar synthetic networks and we measure the variance in ictogenicity across the

network. Ictogenicity is defined as the involvement of network nodes in seizure activity,

and its variance is used to quantify whether seizure patterns are focal or widespread

across the network. We address both the influence of network structure and different

excitability distributions across the network on the ictogenic variance. We find that

this variance depends on both network structure and excitability distribution. High

variance, i.e., localized seizure activity, is observed in networks highly heterogeneous

with regard to the distribution of connections or excitabilities. However, networks that

are both heterogeneous in their structure and excitability can underlie the emergence of

generalized seizures, depending on the interplay between structure and excitability. Thus,

our results imply that the emergence of focal and generalized seizures is underpinned by

an interplay between network structure and excitability distribution.

Keywords: focal seizures, generalized seizures, neural mass model, ictogenic network, network structure,

excitability

INTRODUCTION

Seizures are the hallmark of epilepsy. They are transient events of highly synchronous neuronal
activity (1). According to the International League Against Epilepsy, seizures can be classified
as focal or generalized, depending on whether one or the two hemispheres are involved at the
initial manifestations of seizure activity (1). Seizures may also be classified as unknown onset,
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FIGURE 1 | Flowchart of our methodology and illustrative examples of focal and widespread seizure activity. Panel (A) displays a schematic summary of our methods:

we use a mathematical model to understand the role of network structure and node excitability on the emergence of focal and generalized seizure activity by means of

computing the B̂NI and subsequently the ictogenic variance. We consider synthetic networks such as the networks represented in (B,D). We then place a model of

seizure transitions onto the nodes of the networks and compute the emerging dynamics in the networks. (C,E) show model generated activity in the networks (B,D),

respectively. High amplitude spike activity represents epileptiform activity in this model. In panel (C), node 1 produces a higher rate of spike activity compared to other

nodes, whereas in (E) all nodes generate similar activity. Consequently, the Ictogenic Variance (IV) is higher in network (B), IV ≈ 3, compared to network (D), IV ≈ 0.

when the available information is insufficient to decide
whether they are focal or generalized. The classification of
seizures precedes the diagnosis of epilepsy type (2), which
in turn determines the first line of treatment and respective
prognosis (3).

Focal and generalized seizures exhibit distinct
electroencephalographic features (1). Whilst generalized seizures

are usually associated to generalized spike-wave discharges and
polyspike-and-wave complexes (4), focal seizures may emerge in

a number of different localized EEG patterns, such as rhythmic

spikes, sinusoidal discharges, fast discharges, sharp activity, and
background flattening (5). Traditionally, it had been assumed

that focal seizures result from localized abnormalities, whilst
generalized seizures are the consequence of more widespread
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pathologies (6). In fact, brain structural abnormalities observable
in MRI are a key feature to identify the epileptogenic zone
in people considered for epilepsy surgery (7). On the other
hand, generalized epilepsies have been associated to widespread
structural changes (8). However, recent evidence shows that focal
pathologies can be underpinned by widespread and even bilateral
phenomena (9, 10), whereas localized foci can drive generalized
seizures in rat models (11, 12). It has also been shown that
generalized spike wave discharges can be preceded by an increase
in neuronal activity in the thalamus and regional decreases in the
cortex (13, 14). In the case of refractory epilepsies, the possible
involvement of widespread networks in the generation of focal
seizures may explain why surgery is often unsuccessful (15, 16).

To address the role of networks in the generation of seizures,
a mathematical framework has been proposed (17). Here we
extend this mathematical framework to understand the role of
network structure and excitability within brain regions across
the network on the emergence of focal and widespread seizure
activity. In this work we address (i) whether focal seizures
are underpinned by heterogeneities in local excitability; (ii)
whether generalized seizures are supported by specific network
structures that promote global network communication; and (iii)
how excitability and network structure interact to give rise to
emergent seizure patterns.”

MATERIALS AND METHODS

Mathematical Model
To understand what underpins the emergence of focal and
widespread seizure activity in brain networks, we consider a
phenomenological model of seizure dynamics, the theta model
(18, 19), and a collection of exemplar synthetic networks. In these
networks, nodes represent brain regions capable of generating
seizure activity, and edges correspond to white matter fibers
connecting the regions. In the model, each node is described by
a phase which can either fluctuate close to a fixed stable phase
or oscillate. These states represent normal and seizure activity,
respectively. The transitions between them are driven both by
noise and dynamical interactions across the network (see the
Supplementary Material for a detailed description of themodel).
An important parameter in this model is node excitability, which
determines how likely a node is in isolation to transit from the
stable phase to oscillations. In other words, it defines how close
a phase oscillator is to the transition point. This simple model
has been shown to be a computationally efficient and reliable
approximation of amore complex and biophysical realisticmodel
of epileptiform dynamics (18). Here we use it to understand how
network structure and tissue heterogeneities determine how focal
or widespread seizures are.

Ictogenic Variance
To quantify network dynamics, we use the concept of Brain
Network Ictogenicity (BNI) (17–21). The BNI represents the
propensity of a network to generate seizures and is computed
as the average time that each node spends in seizure activity
(see the Supplementary Material for a detailed description of
BNI). This quantity depends on a global scaling of the coupling,

via the parameter K. As K is increased, interactions between
nodes become stronger and consequently the network becomes
more likely to seize (BNI increases) (18). Different nodes are
characterized by different curves of BNI as a function of K, where
the most ictogenic nodes are those for which BNI is larger at all
values of K. In order to account for these changes in BNI as a
result of changes in coupling strength, we calculate the quantity
B̂NI, which is the integral of BNI as a function of K (see the
Supplementary Material).

To distinguish whether a network generates focal or
generalized seizure activity, we introduce the Ictogenic
Variance (IV):

IV = Var(B̂NI)

IV is the variance of the B̂NI across network nodes (B̂NI =

{B̂NI1, B̂NI2, . . . , B̂NIN}, where B̂NIi is the B̂NI of node i, and N
is the number of nodes in the network). Low IV values imply
that most nodes have similar ictogenicities, whereas high IV
values mean that nodes differ widely with respect to ictogenicity.
Low IV is thus interpreted as indicative of a network that
supports generalized activity, whereas high IV indicates the
existence of foci. This definition of IV further allows us to
study the mechanisms of seizure emergence as belonging to
a spectrum spanning from focal to generalized, rather than
classifying seizures binarily as generalized or focal. Figure 1
illustrates our framework.

Network Topologies and Heterogeneous
Excitabilities
To understand what underlies the emergence of more focal
or generalized seizure patterns across networks, we compute
the IV for a variety of different network topologies. We
consider regular, small-world, random, and scale-free networks,
both directed and undirected consisting of 64 nodes (see the
Supplementary Material for more details about the construction
of networks and parameters used). We focused on these network
topologies in order to study limiting cases with regards to
key network properties. We studied 1,010 networks in total
(see Supplementary Table S1). Furthermore, we considered both
networks with homogeneous and heterogeneous excitabilities.
Node excitabilities define how likely a node is to generate
seizures in isolation. Hence, when all node excitabilities are
the same (homogeneous), node ictogenicity is exclusively a
function of network structure; whereas for heterogeneous
excitabilities, ictogenicity across the network is determined
by both network topology, and excitability distribution. We
consider two heterogeneous excitability distributions apart from
a homogeneous excitability distribution. In the first case, we
introduce a small fraction of hyper-excitable nodes in the
network (i.e., nodes with higher excitabilities compared to
others). Our aimwas to understand whether the presence of these
hyper-excitable nodes could increase the IV of the networks.
In the second case we consider node excitabilities proportional
to the inverse of the node degree (see implementation details
in the Supplementary Material). In this case, we aimed to
test whether a heterogeneous excitability distribution could
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FIGURE 2 | Ictogenic variance (IV) in different network structures and

excitability distributions. (A) IV as a function of the network re-wiring probability

p (Watts-Strogatz algorithm). At p = 0 the network is regular, whereas at p = 1

the network is random. In between, 0 < p < 1, the networks are small-world.

(B) IV as a function of the exponent γ (static model). The exponent γ

characterizes the heterogeneity of a scale-free network with regards to node

degree: lower γ corresponds to higher degree heterogeneity. In both (A,B),

excitabilities across network nodes were homogeneous. Black lines represent

the average IV across 10 network realizations per network topology, and the

shaded areas represent the maximum variability across these network

realizations. (C) IV in regular (Reg), small-world (SW, p = 0.1), and random

(Rand) networks with heterogeneous excitability distributions. In these

networks, a small fraction of nodes (∼9%) was selected at random and

defined as hyper-excitable. (D) IV in small-world, random, and scale-free

networks (SF1: γ = 2.3, and SF2: γ = 5). In these networks, node excitability

was defined as inversely proportional to node degree. The boxplots in (C,D)

correspond to different runs over 10 network realizations per network

topology. The boxes in (C) further consider five different runs per network

realization using different random assignments of hyper-excitable nodes. All

networks were undirected and consisted of 64 nodes and had a mean degree

c = 4. See the Supplementary Material for a detailed description of how the

networks were constructed and the excitability distributions implemented.

balance the effect of network degree heterogeneity. According
to our previous findings (18), we expect that nodes with high
number of connections are the most ictogenic (higher B̂NIi), and
therefore we posed the question as to whether by decreasing their
excitability the IV across the network would decrease.

RESULTS

To understand how network structure and excitability
distributions determine whether emerging seizure dynamics
are widespread or focal, we measured the ictogenic variance in

a variety of network topologies with both homogeneous and
heterogeneous excitabilities across network nodes.

First, we focused on networks with homogeneous excitability
distributions, i.e., where all network nodes are equivalent apart
from network topological properties. We used two different
algorithms to generate network topologies: the Watts-Strogatz
algorithm (22) to obtain regular, small-world, and random
networks; and the static model (23) to generate scale-free
networks. Figure 2A shows the IV in regular (p = 0), small-
world [0 < p < 1], and random (p = 1) networks. We
observe that all IV values are close to zero, irrespective of
topology, meaning that emerging seizure patterns are widespread
in these networks. We note, however, that regular and random
networks are characterized by smaller IV values than small-
world networks. We interpret this as a consequence of regular
networks having all nodes equivalent and in random networks
heterogeneity being low, therefore activity is more generalized.
Note that if two nodes are equivalent, then their propensity
to be recruited into seizure dynamics is the same. In small-
world networks, IV values are slightly higher, showing that
heterogeneities in node degree (number of connections) and
mean distance between nodes across the network enable some
nodes to have higher ictogenicity than others, thus increasing the
overall IV.

Figure 2B shows IV values in scale-free networks
characterized by degree distributions P(k) ∝ k−γ . IV values
in Figure 2B are much larger than those observed in regular,
small-world, and random networks in Figure 2A, despite
the excitability distribution being homogeneous in all these
networks. Furthermore, we find that the smaller the degree
distribution exponent γ is, the higher the network IV is. Note
that the smaller the exponent is, the more heterogeneous the
network is with respect to node degree (24). Thus, we find that
the more heterogenous a network is with regards to node degree,
the more likely it is to generate more focal seizure dynamics.

We then considered two different excitability distributions
across network topologies: (i) six randomly selected nodes
were defined as “hyper-excitable;” and (ii) node excitabilities
were defined as inversely proportional to node degree, such
that nodes with high degree would have low excitability (see
the Supplementary Material for more details and motivation).
Figure 2C shows that the presence of a small collection of
hyper-excitable nodes increases the IV significantly in regular,
and small-world networks, but less so in random networks
(compare with Figure 2A). Given that in regular networks,
nodes are all equivalent apart from the hyper-excitable nodes,
it is clear that the hyper-excitable nodes define foci. The IV
of small-world networks is similar to that of regular networks,
but takes slightly lower values, presumably due to the existence
of long-range connections which allow activity to propagate
throughout the network. In contrast, hyper-excitable nodes
do not have such a strong impact in random networks,
where the IV is clearly lower than in regular and small-world
networks. The main difference between random and small-
world networks is that random networks have low clustering
coefficients (22). These results thus suggest that high clustering
promotes focal activity.

Frontiers in Neurology | www.frontiersin.org 4 February 2020 | Volume 11 | Article 74

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Lopes et al. Excitability and Structure in Ictogenesis

Figure 2D demonstrates the effect of setting node
excitabilities to values that are inversely proportional to
node degree. We find that in this case, small-world and
random networks display much higher IV values compared
to scale-free networks. Note that for homogeneous excitability
distributions, we observed much higher IV in scale-free
networks compared with the other networks (see Figures 2A,B),
whereas when excitability is inversely proportional to node
degree, we find the opposite (Figure 2D). Whilst in scale-free
networks with homogeneous excitabilities, nodes with high
degree are more likely to seize compared to other nodes, when
excitabilities are inversely proportional to node degree, low
excitability prevents highly connected nodes from being the
focus of seizure activity. Interestingly, whilst this choice of
excitability distribution reduces the IV in scale-free networks,
it increases the IV in both small-world and random networks.
This suggests that excitability may compensate the role of
degree heterogeneity in the generation of focal activity in
scale-free networks, whereas in small-world and random
networks it is responsible for promoting focal activity in
networks that would otherwise support widespread seizure
activity. Consequently, these results show that the emergence of
generalized and focal seizure dynamics may only be understood
if both network structure and excitability distribution are taken
into account.

DISCUSSION

In this study we examined how network structure and the
distribution of excitability throughout a network underpin the
emergence of widespread and localized seizure activity. We
explored regular, small-world, random, and scale-free networks
with homogeneous excitability distributions, and observed that
networks with more regular topologies, i.e., having structures
for which nodes are very similar, support generalized seizures,
whereas more heterogeneous networks, where nodes may
have significantly different number of connections, underlie
focal activity (see Figures 2A,B). Heterogenous excitability
distributions in networks that were otherwise homogeneous
(e.g., regular networks) also enabled the emergence of focal
seizure patterns (see Figure 2C). We further showed that
heterogeneous node excitability may reduce the ictogenic
variance, i.e., make seizure activity more widespread in networks
that supported otherwise more focal activity (compare IV
values of scale-free networks in Figures 2B,D). This shows
that whether seizure activity is more focal or widespread is
determined by a complex interplay between brain network
structure and tissue heterogeneities (here represented as
different excitabilities across the network). In particular,
heterogeneity in either intrinsic excitability or connectivity
of nodes is a necessary but not sufficient condition for
the emergence of focal seizure activity. In other words,
our results suggest that focal seizures are either due to
heterogeneity in network topology or due to a localized
“focus.” However, the existence of these heterogeneities does
not imply the emergence of focal activity, because the two

types of heterogeneity may balance each other. On the other
hand, homogeneous network topologies may support generalized
seizure activity provided that excitabilities are sufficiently
homogeneous across the network. Together, these findings
may help explain evidence showing that focal pathologies
can be underpinned by widespread phenomena (9, 10), and
localized foci can be responsible for generalized seizures in rat
models (11, 12).

Our findings may also be used to interpret the functioning
of healthy brain networks. Namely, healthy human connectomes
have been found to have rich-club structure (25), which is
a network structure highly heterogeneous with regard to the
distribution of connections. In these networks, it is conceivable
that connectivity and tissue excitability may balance each other
to sustain healthy brain activity.

LIMITATIONS

The framework used in this study has a few limitations. First, the
considered networks were abstract, and we did not account for
the spatial location of nodes. A node in our networks represented
a small brain region that is capable of generating seizure activity
without further concerns to the actual physiology and anatomy
of such brain tissue. Likewise, connections described ways
activity could propagate between nodes, and were therefore also
phenomenological in nature. Furthermore, by not taking into
account the physical location of nodes, the framework could
not describe whether nodes involved in seizure activity were
spatially close or distant from each other (e.g. in different brain
hemispheres). These choices meant that on one hand we could
not study spatial features of seizures, and on the other hand
we could not explore the potential physiological mechanisms
responsible for the generation of focal and generalized seizures.
Instead, we focused our analysis on the variability in their
involvement in seizure activity across networks. Thus, in this
study focal activity was inferred from the existence of network
nodes with dissimilar activities compared to the average activity
of other nodes. Whilst this measure of ictogenic variance
quantifies temporal patterns of network dynamics, it does not
take into account different activity patterns across nodes and
specific correlations therein. Furthermore, the framework does
not account for seizure onset and propagation (e.g., seizures
with secondary generalization). More sophisticated models
would need to be considered to describe these phenomena
(26). Also, we only considered a finite number of artificial
network topologies (regular, small-world, random, and scale-free
networks), rather than studying real brain network topologies.
The reason to focus on such networks was to study limiting
cases in order to build understanding (27). Finally, our model
is phenomenological, and thus does not include physiological
details of the brain. Instead, it describes fundamental mechanistic
principles that capture emergent dynamical phenomena (18).
In particular, the model assumes that the transition to seizures
is driven by noise and network activity and is described by a
specific bifurcation (see the Supplementary Material for details).
However, other mechanisms are possible (28–30). For example,
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it has been suggested that bistability may underlie the occurrence
of generalized absence seizures (28), whereas focal seizures have
beenmodeled as the consequence of a slowly changing parameter
(26). Thus, it is necessary to explore whether our findings are
model-dependent (31). Future studies may therefore address
these shortcomings to clarify the pathophysiological mechanisms
that underlie the emergence of focal and generalized seizures.
Crucially, our results indicate that both excitability distribution
and network structure should be taken into account in such
detailed studies.

CONCLUSIONS

In recent years, a substantial literature has focused on
trying to understand epilepsy as either a network change
(10, 32), or an imbalance between excitation and inhibition
at the microscale level (33). Our findings suggest that
to understand the mechanisms of seizure emergence, and
to develop diagnostic tools of epilepsy type, it may be
necessary to consider together network changes and dynamic
imbalances between excitation and inhibition within nodes
in the network. Heterogeneities in network structure or local
excitabilities may independently underlie the emergence of
focal seizures. However, the simultaneous occurrence of both
types of heterogeneity may constitute a balanced regime from
which generalized seizures can emerge. Future research should
aim to disentangle network structure from network node
excitabilities and find methods to measure the importance
of structure relative to tissue heterogeneities in emergent
seizure dynamics.
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