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Background: Early differentiation of neoplastic and non-neoplastic intracerebral

hemorrhage (ICH) can be difficult in initial radiological evaluation, especially for extensive

ICHs. The aim of this study was to evaluate the potential of a machine learning-based

prediction of etiology for acute ICHs based on quantitative radiomic image features

extracted from initial non-contrast-enhanced computed tomography (NECT) brain scans.

Methods: The analysis included NECT brain scans from 77 patients with

acute ICH (n = 50 non-neoplastic, n = 27 neoplastic). Radiomic features including

shape, histogram, and texture markers were extracted from non-, wavelet-, and

log-sigma-filtered images using regions of interest of ICH and perihematomal edema

(PHE). Six thousand and ninety quantitative predictors were evaluated utilizing random

forest algorithms with five-fold model-external cross-validation. Model stability was

assessed through comparative analysis of 10 randomly drawn cross-validation sets.

Classifier performance was compared with predictions of two radiologists employing the

Matthews correlation coefficient (MCC).

Results: The receiver operating characteristic (ROC) area under the curve (AUC) of

the test sets for predicting neoplastic vs. non-neoplastic ICHs was 0.89 [95% CI (0.70;

0.99); P < 0.001], and specificities and sensitivities reached >80%. Compared to

the radiologists’ predictions, the machine learning algorithm yielded equal or superior

results for all evaluated metrics. The MCC of the proposed algorithm at its optimal

operating point (0.69) was significantly higher than the MCC of the radiologist readers

(0.54); P = 0.01.

Conclusion: Evaluating quantitative features of acute NECT images in a machine

learning algorithm provided high discriminatory power in predicting non-neoplastic vs.

neoplastic ICHs. Utilized in the clinical routine, the proposed approach could improve

patient care at low risk and costs.
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INTRODUCTION

While quality and resolution in both computed tomography
(CT) and magnetic resonance imaging (MRI) technology has
greatly increased in the past decades, the interpretation of images
remains largely descriptive, subjective, and non-quantitative (1).
With the expansion of computational power and information
content in clinical imaging data, novel machine learning-based
algorithms increasingly contribute to patient-specific diagnosis
and treatment, especially in neuro-oncology (2, 3).

About 10% of intracerebral neoplastic lesions initially present
as spontaneous hemorrhagic stroke (4). Acute non-contrast-
enhanced computed tomography (NECT) imaging is the
preferred screening method when intracerebral hemorrhage
(ICH) is suspected; however, follow-up imaging is required
for final diagnosis (4, 5). Interpretive challenges emerge from
intra-hemorrhage and spatial heterogeneity as well as from
the wide variety of different encompassing entities (6). Hence,
initial radiological evaluation may be unreliable (4, 7). A recent
pooled analysis identified 18 reported cases of glioblastoma-
induced hemorrhage that were misdiagnosed as hypertensive
ICHs, leading to significant diagnostic delays in two-thirds of
the cases (7). Frequently, time-consuming and often negative
neurovascular workup is being performed additionally (7). In
these cases, extraction of quantitative radiomic image features
and evaluation of these data in automated machine learning
approachesmight offer additional information for discriminating
neoplastic and non-neoplastic ICHs. Facilitating early and
sensitive detection of neoplastic hemorrhage, such an approach
could optimize diagnostic workup, reduce misclassifications and
delayed final diagnosis, and hence improve patient care at low
risk and cost in the clinical routine.

Radiomic analysis is built on the hypothesis that imaging
data reflect the underlying morphology and dynamics of smaller-
scale biologic phenomena (8, 9). In this context, two important
imagingmarkers of ICH have been described: firstly, the presence
and extent of perihematomal edema (PHE), and secondly, the
dynamics of hemorrhage attenuation (4, 10). However, radiomic
analysis aims to capture also image information not assessable
by human eyes, such as texture metrics or the evaluation of
filtered images.

We hypothesized that quantitative radiomic image features
extracted from NECT brain scans can be used to differentiate
neoplastic and non-neoplastic ICHs. To test and evaluate this
hypothesis, we employed a previously published and established
radiomics machine learning approach on NECT brain scans
of patients presenting with acute ICH of unknown etiology
(3, 11). Furthermore, we evaluated the predictive performance
of the proposed algorithm in comparison to conventional visual
assessments of two radiologist readers.

METHODS

This single-center retrospective study was approved by the
ethics committee (Ethik-Kommission der Ärztekammer
Hamburg, WF-054/19), and written informed consent was
waived according to paragraph 9 section 2 of the Hamburg

federal state legislation and paragraph 15 section 1 of the medical
association’s professional code of conduct in Hamburg. All study
protocols and procedures were conducted in accordance with
the Declaration of Helsinki. The data that support the findings
of this study are available, upon reasonable request from the
corresponding author, if in accordance with the institution’s data
security regulations.

A graphical flow chart of the proposed machine learning-
based prediction of the ICH etiology is shown in Figure 1, its
components are detailed in the following.

Patients
We retrospectively reviewed the database of our center for
patients with acute ICH in whom NECT imaging was performed
from January 2010 through December 2017. Patients were
consecutively included according to inclusion following
criteria: (1) acute, non-traumatic single subcortical, or lobar
ICH, (2) NECT imaging within 72 h, (3) MRI follow-up
imaging confirming cause of acute ICH, and (4) documented
time of symptom onset. In cases of suspected vascular
malformation, additional digital subtraction angiography
(DSA) was performed. Out of 560 systematically reviewed
patients, 136 patients met the inclusion criteria. Fifty-nine
patients were retrospectively excluded from the study for the
following reasons: intraventricular hemorrhage or subarachnoid
hemorrhage (SAH)–predominant cases (n = 43); multiple
hemorrhagic lesions (n = 9); cerebral venous thrombosis as
cause of ICH (n = 5); and aneurysm-associated ICH (n = 2).
Extracted clinical patient data comprised patient age and patient
sex. Seventy-seven patients (n = 27 with neoplastic, n = 50 with
non-neoplastic ICH) remained in the final study population
(Table 1). Median age of patients with neoplastic ICH was
71 years [inter-quartile range (IQR): 63–75], 40.7% females;
median age of patients with non-neoplastic ICH was 72 years
(IQR: 54.8–79.0), 56% females. Among the 77 study patients,
11 had primary ICHs (n = 11), 12 patients had an underlying
vascular malformation or a cavernoma (AVM, n= 5; cavernoma,
n = 7); 6 patients had an underlying amyloid angiopathy (n
= 6); 21 patients had an unclear but neither neoplastic nor
vascular pathology (n = 21), 21 patients had underlying brain
metastasis (n = 21), and 6 patients had primary brain tumors
(n = 6). All diagnoses were confirmed by follow-up MRI. Study
patients were dichotomized for the binary outcome neoplastic
vs. non-neoplastic ICH. Age, sex, time interval from symptom
onset to NECT, and localization of ICH were not significantly
different (P > 0.05; Table 1).

Image Acquisition
All patients received stroke imaging protocols at admission with
NECT performed in equal order on 256 dual slice scanners
(Philips iCT 256). NECT brain images were obtained from
the vertex to the skull base (120 kV, 280–320mA, 4.0mm
slice thickness, <0.6mm in plane resolution). Additional CT
angiography (CTA) was partially performed when atypical ICH
was suspected. CT perfusion (CTP) was omitted. All NECT data
sets were inspected for quality and excluded in case of severe
motion artifacts as described in the section above.
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FIGURE 1 | Conceptual overview of proposed neoplastic intracerebral hemorrhage prediction. Conceptual overview of the proposed machine learning approach

showing the major processing steps: CT-based image acquisition and segmentation, feature extraction (n = 2,713), and statistical learning (random forest algorithm).

NECT, non-contrast-enhanced computed tomography; ICH, intracerebral hemorrhage; PHE, perihematomal edema.

Segmentation of Intracerebral Hemorrhage
and Perihematomal Edema
ICH and PHE were segmented semi-automatically by two MDs
(UH: 8 years clinical experience in diagnostic neuroradiology in
an academic full-service hospital, research with focus on clinical
applications of image processing and predictive modeling; JN:
2 years clinical experience in diagnostic neuroradiology in an
academic full-service hospital) on the basis of the original NECT
images. Both readers were blinded to all clinical information.
Regions of interest (ROIs) were delineated using Analyze 11.0
Software (Biomedical Imaging Resource, Mayo Clinic, Rochester,
MN). Consensus ROIs were derived based on overlapping
segmentations of both readers.

Machine Learning Approach
Machine learning-based classification was performed using
random forest algorithms [Python scikit-learn environment
v0.18.1 (12)]. Random forest classifiers were shown to have a

comparably low tendency to overfit (13) and allow classification
tasks also for data sets with a large number of heterogeneous
predictors. Based on stability analysis of the total model out-of-
bag error, the number of trees was set to 500, and the number of
features per node was set to the square root of the total number
of features (13).

Model Validation
Model validation was conducted using five-fold cross-validation
with independent training and validation sets in a model-
external approach (14). Model stability was examined
through comparative analysis of 10 randomly permuted
cross-validation sets.

Feature Extraction
Extracted radiomic features were defined according to the
PyRadiomics Python package v2.1.0 (11), ROIs were resampled
to 1 × 1 × 1mm isotropic resolution using sitk BSpline
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TABLE 1 | Demographic data of study population.

Baseline

characteristics

Non-neoplastic

ICH (n = 50)

Neoplastic

ICH (n = 27)

P-value

Age (years),

mean (mean ± SD)

72

(54; 79)

71

(62; 75)

0.70

Sex female,

n (%)

28

(56.0)

11

(40.7)

0.20

Time onset to

imaging (h),

median (IQR)

8.25

(2.88; 24)

21.0

(4.0; 54.0)

0.06

Localization

supratentorial,

n (%)

46

(92.0)

23

(85.2)

0.35

Density (HU),

mean (mean ± SD)

54.6

(54.8; 79.0)

48.0

(40.00; 54.6)

0.001

Total hemorrhage

volume (cm3 ),

median (IQR)

35.5

(16.7; 72.4)

47.2

(47.2; 108.2)

0.13

ICH volume (cm3),

median (IQR)

15.4

(63.8; 36.0)

13.2

(8.7; 32.1)

0.54

PHE volume (cm3),

median (IQR)

13.6

(7.7; 34.9)

38.2

(11.4; 80.5)

0.007

Continuous variables are represented as mean ± standard deviation (SD) and categorical

variables as number (n), and percentages (%). IQR, inter-quartile range; ICH, intracerebral

hemorrhage; PHE, perihematomal edema; HU, Hounsfield units.

interpolators. Extracted features comprised 252 first-order
features (thereof 18 based on unfiltered images, 144 based on
wavelet decompositions, 90 based on log-sigma Laplacian of
Gaussian filters), 902 texture features (thereof 68 based on
unfiltered images, 544 based on wavelet decompositions, 290
based on log-sigma Laplacian of Gaussian filters), and 14 shape
features. In total, 1,218 quantitative image features were extracted
from the ICH, PHE, and ICH plus PHE ROIs. Furthermore,
feature ratios of ICH/PHE and ICH/(PHE plus ICH) were
calculated, resulting in a total of 6,090 extracted quantitative
image features.

In brief, shape features were extracted from the hemorrhage
and edema ROIs and do not depend on gray level distributions
of the image. Shape features include descriptors of the three-
dimensional size and shape of the ROI, e.g., volume, surface
area, diameter, and sphericity. First-order and texture features
were derived from the original images, from wavelet filtered
images (high and low passes in three different directions), and
from log-sigma-filtered images [log-sigma function at different
sizes (1–5, 1mm increment]. First-order statistics describe the
distribution of voxel intensities within the image region defined
by the ROI through basic metrics, e.g., mean, median, percentiles,
and kurtosis. Texture features quantify the distribution of gray
levels in an image with regard to, e.g., the size and position of
zones of equal gray levels. The gray level co-occurrence matrix
(GLCM) represents the number of times specific combination
of gray levels occur in two pixels of an image that are separated
by a specific distance. The gray level size zone matrix (GLSZM)
quantifies specific gray level zones in an image. The gray level run
lengthmatrix (GLRLM) quantifies gray level runs that are defined

as the length of consecutive pixels that have the same gray level
value. The neighboring gray tone difference matrix (NGTDM)
quantifies the difference between a gray value and the average
gray value of its neighbors. The gray level dependence matrix
(GLDM) quantifies gray level dependencies in an image. A gray
level dependency is defined as the number of connected voxels
within a specific distance that are dependent on the center voxel.

Feature Selection
Selection of features with the highest predictive value was
performed separately for each training data set considering Gini
impurity measures (15). Feature sets with outliers greater than six
standard deviations (SDs) were excluded from the analysis. For
final model training and validation, we employed the 100 most
important features of each set.

Radiologist Reading
Two MDs (UH, JN) predicted the dignity of ICHs based on the
acute NECT images. For each ICH, the readers rated “neoplastic”
or “non-neoplastic.” Both readers were blinded to the ground
truth, the classifier prediction, and the other reader’s prediction.

Statistics
The shown receiver operating characteristic (ROC) curve was
calculated based on means of all cross-validation sets. For each
set, classifiers were trained and tested on the set’s unique training
and validation samples employing the 100 most important
features of the respective training data. Hence, mean ROC
curves can be considered as unbiased estimates of general
model classification performance. Statistical significance of the
mean area under the curve (AUC) was assumed if P < 0.05
for all cross-validation sets. Model prediction instability was
derived from the SD of ROC curves. P-values were calculated
according to Mann–Whitney/Wilcoxon U statistics using the
verification R-package v1.42 (16). Confidence intervals (CIs) for
sensitivities and specificities were bootstrapped (2,000 replicates)
using pROC v1.10 (17) and qwraps2 v0.3.0 R-packages. Statistical
significance of differences in specificities was evaluated with
McNemar test statistics (DTComPair v1.0.3 R-package). Total
classification performance of radiologist readers and the machine
learning classifier was compared using the Matthews correlation
coefficient (MCC) (18). MCC integrates all fields of the confusion
matrix and is generally considered as a favorable metric for
unbiased comparisons of binary classifiers (19). Further, MCC
evaluates balance ratios of the four confusion matrix categories
(true positives, true negatives, false positives, false negatives) and
allows comparison of classifiers also for unbalanced data sets
(20–22). With TP: true positives, TN: true negatives, FP: false
positives, and FN: false negatives, MCC is defined as:

MCC =
TP x TN − FP x FN

√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

Statistical significances of differences in MCC were calculated
using the “psych” v1.8.12 R-package.
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RESULTS

Our analysis includes NECT images of 77 patients with acute
ICH, thereof 50 with non-neoplastic and 27 with neoplastic cause
defined by final diagnosis in follow-up MRI.

Classifier Performance
ROC AUC of the validation sets for predicting the dignity of ICH
was 0.89 [95%CI: (0.70; 0.99); SD: 0.013]; all P< 0.01. Depending
on selected cutoff values, the classifier yielded specificities and
sensitivities of>80% (Figure 2A). The highest MCCmeasures of
0.69 were calculated at 70% sensitivity and 95% specificity with a
Youden index of 0.65 and accuracy of 86% (Table 2).

Feature Importance
The top-100 features with the highest predictive power were
mainly derived from ROIs comprising both PHE and ICH
segmentations (52% of total predictive power). The lowest
predictive value was calculated for ICH segmentations alone (8%)
(Figure 3A). Regarding feature classes, fist-order histogram-
based measures and texture features ranked highest with 52
and 46% of total predictive power, and shape-based features
only contributed 2.5%. Filter-based extractions significantly
increased predictive power: Wavelet and log-sigma-filtered
images contributed 44 and 37%; unfiltered images contributed
only 20% to total predictive power (Figure 3B). Of the 100
most important feature values, 86 were significantly different
for neoplastic and non-neoplastic ICHs (P < 0.05). Normalized
feature value box plots of the 10 most important predictors
demonstrate differences in feature expressions for non-neoplastic

and neoplastic ICHs and show typical radiomic signatures of the
entities (Figure 3C). The most important feature comprises both
ROIs, PHE, and ICH, andmeasures the 10th percentile of a 2mm
log-sigma-filtered image. Features #2 to #5 are first-order density
metrics extracted from original and wavelet low-pass filtered
(LLL) images.

Radiologist Reading
Reader 1 predicted the dignity of ICHs with a sensitivity of 85%
and a specificity of 72%; accuracy was 77%, Youden index was
0.57, and MCC was 0.55. Reader 2 achieved 70% sensitivity at
84% specificity with accuracy of 79%, Youden index of 0.54, and
MCC of 0.54 (Figure 2B, Table 2).

Comparison of Classifier and Radiologist
Reader Prediction Performance
Comparative analysis of specificities at the reader’s sensitivity
set points suggests that classification performance of the
machine learning algorithms was equal or superior for all
evaluated metrics. Whereas reader 1 achieved classification
results equivalent to the proposed algorithm, the metrics of
reader 2 were lower, with specificity at −11% (84 vs. 95%, P
= 0.06) and MCC at −0.15 (0.54 vs. 0.69, P = 0.08). When
comparing the combined human rating results (reader 1 and
reader 2) with the classifier’s predictions at its optimal operating
point, MCC of the proposed algorithm (0.69) was significantly
higher than MCC of the radiologist readers (0.54); P = 0.01
(Table 2).

FIGURE 2 | Receiver-Operating-Characteristics curves for differentiation of neoplastic and non-neoplastic ICHs. (A) Receiver-Operating-Characteristics (ROC) curves

for differentiation of neoplastic and non-neoplastic ICHs of the proposed machine learning classifier based on quantitative radiomic image features. (B) Cut-out of

panel (A) showing classification results of human reader 1 and 2. Blue line shows ROC curve, grey area shows 95% confidence interval (CI). Red crosses show cut-off

points/prediction performance. AUC, area under the curve; CI, confidence interval; ROC, Receiver-Operating-Characteristics; ICH, intracerebral hemorrhage; MCC,

Matthews correlation coefficient.
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FIGURE 3 | Characterization of most important features. Feature importance contribution of 100 most important features in % (A) By applied filter and feature class

(B) by region and feature class. Texture feature class includes gray level size zone matrix, gray level dependence matrix, gray level run length matrix, and gray level size

zone. (C) Radiomic feature signatures of neoplastic and non-neoplastic intracerebral hemorrhage. Box-plots show normalized means of the 20 most important image

features. All mean feature values significantly different between neoplastic and non-neoplastic ICHs (P < 0.05). ROI, region of interest; ICH, intracerebral hemorrhage;

PHE, perihematomal edema; gldm, gray level dependence matrix; H, high-pass wavelet decomposition; L, low-pass wavelet decomposition; glnu-norm, gray level

non-uniformity normalized; RMS, root mean squared.

DISCUSSION

The main findings of our study are, firstly, that the proposed

machine learning approach employing quantitative image
features derived from NECT scans provides high discriminatory

accuracy in predicting neoplastic ICHs. Secondly, depending on
the classifier operating point, the proposed algorithm reaches
significantly higher MCC metrics compared to visual ratings.

The proposed classifier yielded an AUC of 0.89 for the
prediction of neoplastic ICHs with sensitivities and specificities
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TABLE 2 | Classification performance metrics of radiologist readers and machine learning classifier.

Prediction Cutoff

point

Sensitivity

(95% CI)

Specificity

(95% CI)

Accuracy Youden

index

MCC

Reader 1 – 85%

(70; 96%)

72%

(59; 84%)

77% 0.57 0.55

Reader 2 – 70%

(52; 86%)

84%

(73; 93%)

79% 0.54 0.54

Reader 1+2 – 78%

(66; 88%)

78%

(70; 86%)

78% 0.56 0.54 ←

←

Classifier Sensitivity: 85%

(R1)

85%

(80; 89%)

73%

(65; 81%)

77% 0.68 0.66

Classifier Sensitivity: 70%

(R2)

70%

(64; 75%)

95%

(93; 97%)

86% 0.65 0.69 p = 0.001

Classifier Sensitivity: 78%

(R1+R2)
78%

(72; 83%)

83%

(76; 90%)

81% 0.61 0.60

Classifier Maximum MCC 70%

(64; 75%)

95%

(93; 97%)

86% 0.65 0.69

Classifier metrics are shown at cutoff points according to radiologist readers’ sensitivities and at the classifiers’ optimal operating point. MCC at the classifier’s optimal operating point

(0.69) is significantly higher compared to the combined result of readers 1 and 2 (0.54); P = 0.01. MCC, Matthews correlation coefficient; CI, confidence interval.

reaching >80% depending on the cutoff value. Narrow CIs and
low SDs of ROC curves suggest high stability of predictive
performance. Whereas visual ratings of an 8-years-experienced
senior neuroradiologist (reader 1) yielded similar metrics, results
of the less experienced reader 2 were inferior, with a −11%
loss in specificity (P = 0.06). Overall, MCC, a widely accepted
metric for comparing binary classifiers, was significantly higher
for the machine learning algorithm, with 0.69 vs. 0.54 for visual
ratings of readers 1 and 2 (P = 0.01) (19). Hence, utilized
as a supportive decision tool in clinical practice, the proposed
algorithm improved and facilitated initial triaging, diagnostic
workup, and precision of final diagnosis in patients presenting
with acute ICHs. Also, the utilization of the tool for training
and quality control especially for inexperienced residents is an
interesting aspect, asMCCwas different between the resident and
the experienced neuroradiologist.

Although numerous interrelations between quantitative
image features and clinical diagnoses have been demonstrated,
radiomic analyses are still lacking wide clinical acceptance (2).
In particular, the missing link between quantitative metrics,
traditional imaging features, and the underlying biology has been
a major point of criticism (2). To address these concerns, we
evaluated the employed quantitative predictors with respect to
their interpretation in visual assessments and established ties
to traditional semantic imaging features. It is widely accepted
that tumors and metastases are surrounded by an extensive PHE
prior to a bleeding event. Preliminary studies underline the CT-
based diagnostic importance of this pathophysiological process,
as recently published (23). In line with this, Choi et al. (4)
have described that a reduced hematoma attenuation in ICH
can differentiate neoplastic from non-neoplastic lesions with
high diagnostic accuracy. Accordingly, our analysis of the 100
most important features demonstrates that intensity distribution-
based predictors (first-order histogram) contribute 51.9% of
the cumulated feature importance (Figure 3A). Corresponding
to classic semantic image readings, our by-region assessment

shows that image features extracted from the entire lesion
(ICH and PHE) yield the highest contribution (52%) to
predictive performance (Figure 3B). However, our analysis also
proves that the NECT imaging information is much richer:
With a 45.6% share in cumulated importance, texture features
play a similar important role as classic first-order predictors
(Figure 3A). Furthermore, differentiation of features by applied
filter demonstrates that wavelet and log-sigma-filtered images
with a contribution of 44 and 37%, respectively, yield superior
importance compared to non-filtered images, with a share of 19%
(Figure 3A). Figure 3C shows box plots of normalized feature
values of the 10 most important predictors for neoplastic and
non-neoplastic ICHs. The graph demonstrates that the 10th
percentile of log-sigma (2mm) filtered images is the metric
with the highest predictive power. This suggests that neoplastic
ICHs express significantly sharper density edges compared to
non-neoplastic ICHs. Features #2 to #5 are intensity measures
extracted from original and from wavelet low-pass filtered
images. In line with clinical studies proposing hematoma density
as a diagnostic marker for neoplastic ICH on CT (4), these
metrics suggest that neoplastic lesions are hypodense compared
to non-neoplastic ICHs.

To our knowledge, this is the first study that investigates
the use of quantitative radiomic image features extracted from
NECT scans to differentiate neoplastic and non-neoplastic ICHs.
The proposed method integrates the merits from quantitative
radiomic features and machine learning algorithms and relates
the employed predictors to traditional radiographic imaging
findings. Unlike our study, existing radiomics-based analyses
regarding CT imaging have mainly focused so far on prompt ICH
diagnosis and automated volume quantification (24, 25).

Our study had general limitations typically associated with
quantitative radiomics-based image analysis and classification
(3, 8, 26, 27). These limitations include differences in image
acquisition techniques, under- or overfitting of machine learning
algorithms, and potential misclassifications in the ground truth
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definitions. All of these limitations could bias classification and
may lead to less generalizable results. Furthermore, we observed
study-specific limitations: First, we only included a limited
number of patients in a retrospective analysis. An expansion
of sample size in a prospective study design would certainly
contribute to further improving generalizability of results. Small
sample sizes are a general concern for radiomics analysis and
are due to the limited availability of standardized multi-center
databases. However, results of our model stability analysis
suggest sufficient robustness for assessing general feasibility
and limitations of the proposed algorithm. Second, the manual
definition of ROIs still implies a certain degree of observer-
dependence within the machine learning process. To minimize
its influence, we employed consensus segmentations from two
independent readers and applied a semi-automated delineation
segmentation method that was shown to have favorable inter-
and intra-observer reliability (10). Noteworthily, variabilities are
lower in automatic vs. semi-automatic vs. manual delineation;
however, semi-automatic delineation was mandatory in our
case (28–31). Further, it was shown that radiomic features are
comparably stable with regard to variations in segmentations
(30, 32). Third, the underlying NECT images of our analysis
were acquired with the same scanner at the same hospital.
This might reduce generalizability of results. However, due to
standardized and calibrated quantitative imaging parameters and
signal intensity processing of CT scanners, we assume neglectable
bias on classifier performance in a generalized setting. Lastly,
the hematoma density difference between neoplastic and non-
neoplastic ICHs can be discussed critically, as symptom onset to
imaging time differed by trend between the two categories. As
ICH density decreases over time, this might have biased results.
However, the difference in onset to imaging times was statistically
not significant and in line with current literature (4).

From our results, we conclude that the additional imaging
information extracted through texture analysis and filtering
as well as the standardized and fully automated machine
learning algorithm is the main factor determining the observed
high prediction performance and stability. As this information
is not assessable by human eyes, the proposed approach
can be used as supportive tool to improve the radiologist’s
diagnostic decision. Through facilitating efficient triage, reducing

initial misclassifications, and preventing delayed diagnosis, the
proposed algorithm could improve patient care in the daily
clinical routine at low risk and costs.
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