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Seizure patterns observed in patients with epilepsy suggest that circadian rhythms and

sleep/wake mechanisms play some role in the disease. This review addresses key topics

in the relationship between circadian rhythms and seizures in epilepsy. We present

basic information on circadian biology, but focus on research studying the influence

of both the time of day and the sleep/wake cycle as independent but related factors

on the expression of seizures in epilepsy. We review studies investigating how seizures

and epilepsy disrupt expression of core clock genes, and how disruption of clock

mechanisms impacts seizures and the development of epilepsy. We focus on the overlap

between mechanisms of circadian-associated changes in SCN neuronal excitability and

mechanisms of epileptogenesis as a means of identifying key pathways and molecules

that could represent new targets or strategies for epilepsy therapy. Finally, we review the

concept of chronotherapy and provide a perspective regarding its application to patients

with epilepsy based on their individual characteristics (i.e., being a “morning person”

or a “night owl”). We conclude that better understanding of the relationship between

circadian rhythms, neuronal excitability, and seizures will allow both the identification of

new therapeutic targets for treating epilepsy as well as more effective treatment regimens

using currently available pharmacological and non-pharmacological strategies.

Keywords: clock gene, neuronal excitability, voltage-gated sodium (Nav) channels, inward rectifying K channels,

chronotherapy

INTRODUCTION

Across evolution, nearly all eukaryotic organisms, including humans, have relied on predictable
cycles of sustained activity and rest for survival. Cycles of activity and rest occur in essentially
all cells of the body (peripheral oscillations), but they are largely governed by a primary
oscillating mechanism (sometimes referred to as a “master clock”) that occurs in neurons of
the suprachiasmatic nucleus (SCN) of the hypothalamus (1, 2). In addition to influencing the
sleep/wake cycle, protein products of the primary oscillating mechanism have broad impact on
homeostatic processes at the cellular (e.g., cell cycle regulation, energy metabolism) and systems
(e.g., endocrine, immune, cardiovascular, pulmonary, gastrointestinal, and nervous) levels.
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In the present paper, we review circadian influences relevant
to nervous system dysfunction associated with epilepsy. We
describe clinical studies and studies using experimental animals
showing that alteration of genes mediating function of the
mammalian biological clock can influence the expression of
seizures, and conversely that seizures can alter the expression
of clock genes and activity in related gene pathways. We then
discuss the clinical significance of the relationship between the
time of day and excitability of the nervous system leading to
a seizure, highlighting studies that report patterns into which
seizures cluster in several types of epilepsy.

An overarching postulate guiding this review is that circadian
factors underlie mechanisms that lead to abnormal neuronal
excitability in specific “epileptogenic” areas of the brain, resulting
in seizures and epilepsy. At the same time, there is also focus
on the idea that individual seizures disrupt both biological clock
mechanisms and brain function related to circadian or diurnal
rhythms. This may lead to biomolecular changes required to
initiate the process of epileptogenesis, and establish chronic
epilepsy. The goal of this work is to provide better understanding
of the interrelationship between circadian rhythms, clock genes,
and neuronal excitability, thereby providing deeper insight into
the nature of seizure activity, and aiding initiatives to develop
new strategies for the treatment of epilepsy.

TIME OF DAY AND SLEEP/WAKE EFFECTS
ON SEIZURES IN EPILEPSY

A seizure is defined broadly as a period of abnormal, synchronous
excitation of a populous of neurons and neural pathways
resulting from an imbalance of GABAergic and glutamatergic
neurotransmission (3). Seizures may occur due to reversible
insults such as infection, fever, trauma, hypoglycemia, stroke
or tumor. They may be triggered by sleep deprivation or by
withdrawal from drugs of abuse. In contrast, epilepsy is a
chronic condition of unprovoked recurrent seizures, arising
from a persistent dysfunction in neuronal excitability (4). When
it develops as a result of an irreversible insult, it is known
as acquired epilepsy. Epilepsy that develops in the absence
of any known cause is generally considered to have a strong
genetic component and is referred to as idiopathic. An epilepsy
syndrome describes patients who can be grouped by their
phenotypic similarities with respect to electroencephalography
(EEG) findings, age of onset, response to medications and other
clinical characteristics. The formal definition of epilepsy was
recently updated by a Task Force of the International League
Against Epilepsy (5).

For some people with epilepsy, seizures occur in a predictable
pattern or cycle over the course of a month, week, or day (6).
Seizures may be clearly associated with sleep/wake states. For
other patients, seizures appear to be random events. Clinical
studies making use of seizure tracking databases as well as
those examining patients undergoing video-EEG monitoring
have revealed significant trends between time of day and/or
circadian phase and peak occurrence of seizures in specific types
of epilepsy. Thus, analysis of records from the SeizureTracker

database between the years of 2007 and 2015 (1,118 patients
included) revealed that 14–22% of patients demonstrated seizure
cycles >3 weeks, 7–21% showed strong weekly cycles, and
over 80% exhibited a phenotype in which seizure rate was
influenced either by the time of day (i.e., by the hour), circadian
rhythms, or sleep/wake state (7). These data suggest that the
majority of people with epilepsy exhibit seizures with some
degree of periodicity.

Different seizure phenotypes have been shown to occur more
frequently at different times of the day (we define daytime as
6:00–18:00 and nighttime as 19:00–5:00) and sleep/wake state.
Focal seizures of temporal lobe origin have been documented to
occur mainly during wakefulness and to peak in the afternoon
and early morning (8–14). Seizures originating from the occipital
lobe have also been linked to wakefulness and daytime (8, 9).
In addition, wakefulness and daytime have been associated with
generalized, atonic, myoclonic, and hypomotor seizures (15, 16).
Wakefulness specifically has been tied to auras and epileptic
spasms, as well as absence, gelastic and dialeptic seizures (9, 16,
17). Conversely, there are seizure phenotypes that typically occur
during the night and while sleeping. These include automotor,
hypermotor, tonic, and clonic seizures (9, 16, 17), along with focal
seizures originating from the frontal (8–11) and parietal lobes
(8, 16). Juvenile myoclonic epilepsy (JME), a common form of
generalized epilepsy, is characterized by EEG and clinical seizures
that are associated closely with the sleep/wake cycle, especially
transition phases such as falling asleep and awakening (18).

In a few studies, the time at which certain seizure types
peaked was influenced by patient age. For instance, in one report,
focal seizures originating from the frontal lobe occurred typically
at night in adolescents but during the day in infants, with a
trend for increased seizure probability at night as age increased
(15). An additional variable that warrants consideration is
seizure severity, which appears to be highest during the day
(19). In particular, status epilepticus has been reported to
occur most frequently later in the day in infants and in the
morning in older children (20, 21). For both infants and
older children, status epilepticus occurrences appear to diminish
at night.

Whereas seizures occur more often during wakefulness
in patients with generalized epilepsy, interictal epileptiform
discharges occur with greater frequency during sleep,
predominantly non-rapid eye movement (NREM) sleep,
with the highest rate of epileptiform discharges observed in the
hour following onset of sleep and in the hour prior to the onset
of wakefulness (22). Brief epileptiform electrical disturbances
are not known to be directly correlated with behavioral seizures;
however, individuals who exhibit abnormal EEG discharges
are more likely to develop epilepsy (23) and drug treatment
of interictal EEG abnormalities reduces epilepsy-associated
comorbidities (24). Thus, it is possible that epileptiform
discharges may represent a type of kindling phenomenon
such that accumulation of electrical disturbances during sleep
leads to the expression of seizures during wakefulness. Further
research is required to fully elucidate the relationship between
epileptiform discharges during sleep and behavioral seizures
during wakefulness.
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Interaction between sleep and seizures in certain forms of
epilepsy occurs independent of the time of day, suggesting
that there are fundamental mechanisms of sleep that increase
the electrical excitability of neurons participating in seizure
initiation. Sleep spindles are an electrographic signature of sleep
that correlate in frequency with interictal spike-wave discharges
(25) and may be biomarkers of epilepsy in humans (26). They
are relevant in both generalized (27) as well as focal epilepsy
(28) and display altered morphology in many epilepsy patients
(29). Sleep spindles are also subject to regulation by circadian
rhythms (30). They may occur independently or may occur
in association with epileptiform discharges (31). In addition
to serving as biomarkers of epilepsy, sleep spindles may also
have functional significance (32), such as in absence epilepsy
where they may evolve into spike wave discharges (33). The
reticular nucleus of the thalamus controls both sleep spindles and
epileptiform discharges (34), an anatomical correlation that is
consistent with a functional role for sleep spindle mechanisms in
seizures and epilepsy. Although animal models provide support
for an association between sleep spindles and epilepsy (35),
recent evidence indicates that spike-wave discharges are not
pathological sleep spindles (36). Additional research is required
to clarify possible mechanistic links between changes in sleep
spindle characteristics and epileptogenesis.

Other sleep-related phenomena to consider in relation to
epilepsy include neocortical slow oscillations, which are seen in
cortical and thalamic neurons when consciousness is suppressed,
including during coma and natural sleep (37). At the cellular
level, these oscillations are characterized by depolarized “Up”
states and hyperpolarized “Down” states, with neurons in the Up
state having increased firing rate and decreased input resistance.
A few studies suggest that these states are also present in epileptic
seizures that occur both in humans (38) and rodents (39),
which is interesting, given that many seizure types also inhibit
consciousness. One study using in vivo whole-cell recordings in
a rat model of focal limbic seizures found that the membrane
potential of frontal cortical secondary motor cortex layer 5
neurons oscillated during seizures and produced Up and Down
states comparable to those seen during anesthesia (39). Taken
together, these findings shed light on mechanisms potentially
linking sleep with certain types of seizures in epilepsy.

Within the context of sleep influences on epilepsy, syndromes
of sleep-related hypermotor epilepsy are noteworthy (40). These
syndromes include what previously were known as nocturnal
epilepsies; however, a change in name was recommended to
emphasize that these epilepsies are associated with sleep rather
than the time of day. Sleep-related seizures involve characteristic
and complex motor features that are often unique to individual
patients (40). They generally arise from frontal cortex although
they may also originate from other cortical areas. Compared
to patients with seizure foci in the frontal cortex, sleep-
related hypermotor seizure patients with foci in other cortical
areas exhibit seizures with a longer duration and a shorter
electrographic to behavioral latency (41).

There is a strong association between focal cortical dysplasia
(FCD) and medication refractory sleep-related hypermotor
epilepsy (42). FCD is classified into several types based on severity

and cortical pathology, and is caused in part by somatic cell
mutations that lead to abnormal development of the cerebral
cortex (42). Mutations in genes involved in the mammalian
target of rapamycin (mTOR) signaling cascade and the GATOR
complex that negatively regulates mTOR signals have been
implicated in FCD with sleep-related hypermotor epilepsy,
including DEPDC5, NPRL2, and NPRL3 (43).

Pharmacotherapy of sleep-related epilepsies is syndrome
dependent (44). Progress in understanding the genetic
contributions to sleep-related epilepsies (45), especially the
role of mutations in genes that encode subunits of acetylcholine
receptors (46), has led to more rational treatment strategies
including nicotine patches and other drugs that modify
cholinergic neurotransmission; however, like common forms of
epilepsy, up to one-third of patients are refractory to available
medications (47, 48). Despite advances in making diagnoses for
the sleep-related epilepsies based on genetic testing, causative
mutations are documented in only about 30% of cases (45).
Figure 1 [based on (55)] summarizes the types of epilepsy in
which seizures cluster in daily patterns, relating sleep/wake states
with major factors that promote changes in circadian phase.

Terminology and Definitions
Zeitgebers
Environmental stimuli (e.g., blue light or temperature) that are
cues to entrain the circadian rhythm of an organism.

Diurnal Rhythm
The oscillation of a phenotype (e.g., feeding behavior or gene
expression) over the course of a day in the presence of a zeitgeber.

Circadian Rhythm
A daily (roughly 24 h) behavioral or physiological process of
an organism that is regulated by an endogenous, entrainable
oscillator, which is maintained in the absence of zeitgebers.

Suprachiasmatic Nucleus (SCN)
A brain region within the hypothalamus, and dorsal to (i.e.,
above) the optic chiasm, that is responsible for controlling
circadian rhythms.

Zeitgeber Times (ZTs)
ZTs relate to the current position of an organism within the
light/dark cycle (56). In the context of preclinical research,
laboratory animals are typically subjected to 12 h of light and 12 h
of darkness. In this example, ZT0 represents light onset, whereas
ZT12 represents darkness onset (i.e., lights off).

Circadian Times (CTs)
A standard unit of time based on the endogenous free-running
period of a rhythm. For example, CT can relate to the current
phase within the entire span of the circadian period that is being
experienced by the organism in the absence of a zeitgeber.

Diurnal vs. Nocturnal
These two terms typically relate to the phase in the light/dark
cycle in which the species or individual in question is active.
Diurnal organisms such as humans are active and exhibit
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FIGURE 1 | Examples of factors that promote changes in sleep/wake state and seizure types associated with each sleep/wake state. Mammals have two main

cycles: the 24 h sleep/wake cycle and multiple 90min slow wave sleep (SWS, i.e., NREM)/REM sleep cycles that typically occur within a 6 to 8 h period of

sleep/inactivity. The sleep/wake state of an individual is influenced by various levels of endogenous clock products (that oscillate in a circadian rhythm) as well as

external stimuli (zeitgebers) and allostatic factors (relate to the regulation and maintenance of sleep homeostasis) that act on the suprachiasmatic nucleus (SCN).

Daylight is an example of a zeitgeber. It acts on melanopsin-containing retinal ganglion cells that transmit signals indicating the levels of environmental light (and thus

the likely time of day) through the retinohypothalamic pathway to neurons of the SCN (49). Diminishing daylight reduces the inhibitory signaling of SCN projections to

the pineal gland, enabling melatonin secretion. The SCN also regulates sustained sleep/wake states, as lesions of the SCN in rodents disrupt circadian rhythms and

lead to random short bursts of sleep and wakefulness (50). Influences on flux in the direction of SWS: Arrow 1: adenosine accumulating from daytime glycogen use,

increased release of melatonin in the evening and beyond; Arrow 2: adenosine activating ventrolateral preoptic area (VLPO) “sleep” neurons (foot on SWS gas pedal)

(51–53), decreased activity of orexinergic neurons, and allostatic factors (e.g., leptin release after large dinner) promoting VLPO firing. Influences on flux in the direction

of REM sleep: Arrow 3: glutamate activating the “REM-ON” neurons of the sublaterodorsal nucleus (SLD, foot on REM gas pedal) (54); Arrow 4: decreased excitatory

input to REM-OFF neurons of the ventrolateral periaqueductal gray matter (vlPAG, foot off REM brakes); Arrow 5: orexinergic dysfunction (e.g., narcolepsy). Influences

on flux in the direction of wakefulness: Arrow 6: adenosine levels diminishing from glycogen regeneration, decreasing melatonin secretion; Arrow 7: VLPO receiving

inhibitory input from “wakefulness neurons” including orexinergic neurons in the lateral hypothalamus, noradrenergic (NE) neurons in the locus coeruleus, serotonergic

(5HT) neurons in the raphe nuclei, histaminergic neurons of the tuberomammillary nucleus, and cholinergic neurons of the pons, basal forebrain, and medial septum

(foot off wake brake), and a lack of excitatory adenosine (foot off SWS gas pedal); arrow 8: diminished firing of NE and 5HT at vlPAG (foot off wake brake); arrow 9:

REM-OFF activated by orexinergic, 5HT, and NE neuronal firing (foot on wake gas).

catabolic activity mostly during the light phase, whereas
nocturnal organisms such as mice and rats are active and exhibit
catabolic activity mostly during the dark phase. Consequently,
diurnal and nocturnal organisms are in an inactive/anabolic state
during the dark and light phases, respectively.

More information on terminology is found in Karatsoreos
and Silver (56), Karatsoreos Eban-Rothschild and Bloch (57), and
Voigt et al. (58).

CORE CLOCK MECHANISMS INFLUENCE
NEURONAL EXCITABILITY

Time of day-dependent gene expression pathways generate
circadian rhythms in most all somatic cells in the body, taking

cues from the SCN and hypothalamus driven by zeitgebers
(See Terminology Section). Critical protein products of this
primary oscillating mechanism are encoded by period (Per1,
Per2, Per3) and cryptochrome (Cry1, Cry2) genes (49). Figure 2
[adapted from (59)], provides a more comprehensive summary
of core circadian clock genes and also draws connections
between critical clock feedback loops and epilepsy. Overall,
two main feedback loops lead to the cyclical fluctuation of
levels of “clock proteins” that go on to activate/inactivate
other biomolecular processes/substrates (e.g., “clock-controlled
genes”) in a time-dependent manner, i.e., circadian regulation
(60). These oscillations occur in both primary time-keeping cells
(i.e., those of the SCN) and peripheral cells (i.e., essentially all
other cells, both nervous and otherwise), though the circadian
phase may be shifted from tissue to tissue within an organism,
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FIGURE 2 | Core clock mechanism in the context of epilepsy. The core clock mechanism consists of three main feedback loops, which are thought to involve

PER/CRY, REV-ERB/ROR, and DBP/NFIL3, respectively. Key proteins involved in these loops, whose levels fluctuate over the course of the day, are thought to also

influence the expression of genes involved in seizure susceptibility or epileptic processes. Green arrows represent transcriptional activation, whereas red lines

represent transcriptional repression. Rectangles represent genes and other DNA sequences of note, whereas ovals represent proteins. For a more comprehensive

review on the processes underlying the molecular clock, please refer to (59) [Figure modified from (59)].

depending on how the tissue is connected to or responds to
signals originating from the SCN, including photic and non-
photic cues (i.e., feeding schedules).

Insight into the relationship between circadian rhythms and
seizures comes first from studies showing that the time of day
regulates neuronal excitability (61). Circadian-associated changes
in intrinsic membrane properties of SCN neurons modulates
inputs from other brain areas including thalamus and retina,
especially at synapses utilizing GABA, a neurotransmitter whose
altered function has been long-associated with epilepsy (62–65).
GABA receptor activity governing excitability of SCN neurons
changes in a circadian fashion via degradation mediated by a
signaling mechanism involving the clock-related gene Fbxl4 (66).
Interestingly, mutations in FBXL4 cause a mitochondrial disease
characterized by a clinical syndrome that includes epilepsy (67).

Diverse ion channel proteins expressed uniquely in various
subtypes of neurons determine the electrophysiological
properties of neuronal membranes. In primary time-keeping
neurons, cellular redox conditions govern circadian-dependent
fluctuations in ion channel function and membrane excitability
that underlie time of day-related behavior (68, 69). Specific
potassium channels have emerged as particularly relevant to
time of day effects on neuronal excitability. In a discovery
approach to the elucidation of circadian pacemaker mechanisms
in Drosophila melanogaster, Ir, a gene encoding a protein

that mediates an inward-rectifying potassium current was
identified as playing a key role in regulating the excitability of
pacemaker neurons (70). Reducing Ir expression in pacemaker
neurons increased larval light avoidance and lengthened the
period of adult locomotor rhythms, consistent with increased
excitability, whereas increased Ir expression eliminated daily
behavioral rhythms and dampened PER protein oscillations.
Mutations and common variants of KCNJ10, the gene encoding
the inward-rectifying potassium channel Kir4.1, are associated
with rare and common forms of epilepsy, respectively (71–
74). Studies documenting the important role of Kir4.1 in the
retina (75) and altered retinal function in epilepsy patients
with KCNJ10 mutations (76) suggest a potential mechanistic
link between circadian rhythms and epilepsy that deserves
further examination.

Melatonin is the primary hormone integrating circadian
rhythms and sleep/wake cycles, a role that it fulfills by directly
regulating neuronal excitability. Melatonin receptors signal
through G protein-gated inwardly rectifying potassium (GIRK)
channels in SCN neurons to regulate resting neuronal membrane
potential via hyperpolarization (77). Melatonin receptor-linked
GIRK channel activation in SCN neurons leads to phase advance
(early sleep), and both GIRK2 protein expression and current
amplitude oscillate over the sleep/wake cycle (77, 78). This
suggests that the gene encoding GIRK2 (KCNJ6) is under
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clock control. Interestingly, GIRK2 deficient mice demonstrate
increased susceptibility to chemically-induced seizures and
even exhibit spontaneous generalized seizures (79). Conversely,
activation of GIRK activity increases seizure latency and prevents
convulsions in epileptic animals (80). GIRK channels have also
been shown to be relevant to temporal lobe epilepsy (TLE).
In one line of study, kainic acid-induced status epilepticus led
to cleavage and dysfunction of GIRK1 and GIRK2 in rodent
hippocampal tissue (81), further promoting hyperexcitability
during the day, a period when individuals with TLE are
most susceptible to having seizures (17). Thus, the relationship
betweenGIRK and seizuresmay be bidirectional, both at the SCN
and other neuronal populations.

The relationship between mechanisms of melatonin action
and neuronal excitability related to seizures and epilepsy has
received considerable attention. In animal models, the earliest
studies show that melatonin inhibits expression of acute seizures
induced by either GABA antagonists or glutamate agonists
(82). These results are extended further by studies showing
melatonin has anticonvulsant activity against hyperthermia-
induced seizures and seizures induced by direct application
of penicillin to the cerebral cortex (83, 84). It also decreases
the frequency of spontaneous seizures arising after kainic acid-
induced status epilepticus (85). Exogenous melatonin also has
value as an adjunct to other anticonvulsants. Thus, it augments
the anticonvulsant activity of phenobarbital in neonatal rats
and of phenytoin and carbamazepine in mice (86, 87).
Moreover, limbic epilepsy developing after status epilepticus
induced by pilocarpine was significantly worse in rats that were
pinealectomized, suggesting that melatonin deficiency facilitates
epileptogenesis (88).

The anticonvulsant action of melatonin is mediated via
specific melatonin receptors that control seizure threshold (89,
90). Further, the melatonin receptor agonist ramelteon possesses
anticonvulsant effects and newer melatonin receptor drugs are
under development (91–93). Clinical studies show thatmelatonin
rhythm is normal in patients with epilepsy, but compared to
control individuals, melatonin levels are low (94, 95). Thus,
despite evidence that melatonin may be proconvulsant under
some conditions, it is recognized as having potential therapeutic
value in epilepsy and has been the focus of trials as an add-on
therapy (96–98). In some cases, temporal clustering of seizures
is in phase with the nocturnal rise in circulating melatonin,
suggesting a potential difference between the physiologic role
of endogenous melatonin and its action when administered as
a drug (99). This idea is supported by a study in amygdala-
kindled rats in which melatonin was effective at reducing seizure
frequency even though the highest after-discharge threshold (i.e.,
lowest seizure susceptibility) was in the morning whenmelatonin
reached trough levels (100).

Studies in Drosophila and mouse clock neurons led to
discovery of a general mechanism for circadian control of
membrane excitability. It involves two distinct sets of ion channel
systems: a system of sodium channels that is upregulated in
the morning and that mediates wakefulness, and a system
of potassium channels that is upregulated in the evening
and that mediates sleep (101). Functional upregulation of BK

potassium channels to dampen excitability occurs by reduction
of channel inactivation in the mouse SCN (102). Critical sodium
currents are regulated by the activation of glycogen synthase
kinase 3 (GSK3), which itself is activated via phosphorylation
in a circadian-dependent fashion and contributes to neuronal
excitability through regulation of the persistent sodium current,
INaP (103, 104). INaP exhibits a day/night difference in peak
magnitude, and inhibition of GSK3 in the SCN suppresses
persistent sodium current and reduces spontaneous firing rate of
these neurons during the light (inactive) phase in rodents (104).
The findings suggest that GSK3 activation of persistent sodium
current channels reduce action potential hyperpolarization,
which in turn increases SCN firing rate during the light
(inactive) phase. Interestingly, chronic GSK3 activation increases
neuronal firing during the dark (active phase). GSK3 also
regulates phosphorylation of the core clock gene protein product
BMAL1, thereby providing an important feedback mechanism
for circadian control (103, 105). Given that GSK3 inactivation
is reported to increase during the active phase (104), it is
possible that abnormal GSK3 activation could contribute to
daytime seizures.

The hippocampus is a brain region involved inmany common
forms of epilepsy, especially TLE, and hippocampal neurons
are subject to circadian control in ways that are similar to the
SCN (106). Like SCN neurons, circadian changes in membrane
properties of hippocampal neurons are associated with cellular
redox mechanisms that regulate ion channel function and alter
synaptic activity (107). All of the core clock genes are expressed
in the various subregions of the hippocampus; however, like other
brain regions, cyclic expression of clock genes in hippocampus
may have a smaller amplitude compared to SCN and for some
genes occurs in antiphase (i.e., 180 degrees out of phase)
(108–115). Similar to the SCN, core clock proteins such as
BMAL1 in the hippocampus are under the circadian control of
GSK3 (116).

The role of clock genes in the hippocampus is not fully
understood; however, several potentially important observations
have been made. For example, hippocampal mechanisms related
to long-term potentiation are under circadian control, and
molecular mechanisms related to circadian control of synaptic
plasticity as related to memory formation are highly conserved
over the course of evolution (117, 118). Clock mechanisms in
the brain, including hippocampus, involve Rev-Erbα (NR1D1),
a nuclear receptor expressed in all examined hippocampal
subfields which represses the transcription of circadian oscillators
(119, 120). Also, in the dentate gyrus, Per1 is linked to the
process of neurogenesis (121). As mentioned previously, seizures
experienced by patients with TLE tend to cluster during specific
times of the day, suggesting a potential role for circadian-
associated changes in hippocampal excitability (13).

Animal models support this concept. Analysis of slices
prepared from rats killed at different points of the light/dark
cycle reveal a larger steady-state amplitude of calcium current
together with increased spike after-depolarization and slower
adaptation of firing frequency after the start of the dark phase
in CA3 neurons (122). Further, these changes were correlated
with plasma levels of cortisol, a result consistent with a published
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clinical report showing higher cortisol levels are associated with
greater seizure frequency in women with epilepsy being treated
with anti-epileptic drugs (122, 123).

Although circadian effects on neuronal excitability of
hippocampal neurons are well-documented, the specific events
linking clock gene pathways to rhythmic changes in hippocampal
synaptic activity, or to changes in the intrinsic properties of
neuronal membranes, are not firmly established. Kcna1 encodes
the Kv1.1 voltage-gated potassium channel, which is highly
expressed in pyramidal neurons of mouse hippocampus as well as
in many other types of neurons. Mutant mice deficient in Kcna1
exhibit a generalized seizure phenotype with diurnal periodicity
and altered rest/activity rhythms (124). Electrophysiological
study of hippocampal slices from epileptic Kcna1 knockout mice
reveals that the intrinsic passive properties of CA3 pyramidal
cells are normal but antidromic action potentials are recruited at
lower thresholds (125). In the same study, synaptically-mediated
long-latency epileptiform burst discharges were triggered by
mossy fiber stimulation. Furthermore, there is a circadian
periodicity to spontaneous seizures, with frequency peaking in
the first 12 h of the ZT cycle (125). Interestingly, more seizures
arise out of sleep in diurnal conditions, whereas under constant
darkness, the majority occur out of the wakeful state (126).
Together, these results suggest that loss of Kv1.1 from CA3
neuronal axons and terminals results in increased recurrent
axon collateral excitability and the seizure phenotype of Kcna1
knockout mice (125). Also, of note, metabolism-based therapy
with a ketogenic diet proved efficacious in lowering seizure
frequency and restoring normal behavioral rhythms in this
model (124).

A link between disrupted glial cell function and epilepsy
has strong experimental support [reviewed in (127)]; therefore,
circadian effects on glia may contribute to the timing of
seizures in individual patients. Glial cells, including astrocytes,
have been shown to regulate hippocampal processes, including
synaptic transmission and excitability (128, 129), and to
drive seizure threshold (130). TLE is often characterized by
hippocampal sclerosis which includes synaptic reorganization,
gliosis and neuronal loss (131). Astrocyte swelling associated with
neuronal excitability is thought to occur through glial inwardly
rectifying potassium channels (Kir channels) and water input via
aquaporin-4 (AQP4) channels (132). Circadian and sleep/wake
processes within astrocytes may also relate to time of day changes
in excitability of hippocampal neurons. For example, diurnal
changes in the expression and subcellular localization of brain
fatty acid binding protein, Fabp7, occur in the hippocampus
(133, 134). Fabp7 expression has been shown to increase in
hippocampal astrocytes following kainic acid-induced seizures
(135). Since Fabp7 expression is regulated by the circadian factors
Rev-Erbα (136) and BMAL1 (137), and Rev-Erbα expression
is affected by electroconvulsive seizure (138) while BMAL1
regulates seizure susceptibility (139), Fabp7 may represent a glial
factor that contributes to epileptiform activity. Indeed, Fabp7 is
known to control sleep/wake states in multiple species, including
flies, mice, and humans (140, 141), therefore, Fabp7 expression
in astrocytes may represent a functional node integrating neural
activity, circadian rhythms and behavioral state.

Another neurotransmitter that links circadian rhythms
and neuronal excitability is neuropeptide Y (NPY). This
molecule is released by thalamic neurons, inducing phase
advances in the SCN that are accompanied by suppression of
PER2 and are mediated by long-term depression of neuronal
excitability in a phase-specific manner (142). This is consistent
with findings in other brain regions where NPY-induced
persistent hyperpolarization underlies mechanisms of energy
homeostasis, anxiety-related behavior, and thalamocortical
synchronous firing, the latter being particularly relevant to the
pathophysiology of absence epilepsy (143). PER2 expression
is also dependent upon functional voltage-gated potassium
channels including Kv4.2, which is encoded by KCND2, a gene
that causes TLE when mutated (144, 145).

DISRUPTION OF CORE CLOCK
MECHANISMS: RELATION TO SEIZURES
AND EPILEPSY

It is recognized that the interaction between circadian rhythms
and epilepsy is bidirectional, with alteration of clock mechanisms
acting as a susceptibility factor for epilepsy, and seizures acting as
disruptors of the internal clock. Evidence from an experimental
animal model of TLE that develops following electrically-induced
status epilepticus reveals a phase shift in circadian control
of population spike firing rate during the latent phase of
epileptogenesis, demonstrating directly that circadian effects on
neuronal excitability are relevant to the development of seizures
and epilepsy (146).

Daily photoperiod controls excitability of the brain as reflected
by behavioral responses to experimental seizure stimuli. In mice
treated with pentylenetetrazol, an acute photoperiod change from
12h/12h to 18h/6h light/dark cycle lowered seizure threshold,
whereas decreasing the length of the light phase had no effect.
On the other hand, chronic photoperiod alteration, either shorter
or longer, decreased seizure threshold compared to animals
maintained under a 12h/12h light/dark cycle (147). Further
evidence comes from a study showing that maximal electroshock
seizure threshold is lowest during the light (inactive) phase
of the light/dark cycle, a time-dependent variation that was
absent in Bmal1 knockout mice (139). Bmal1 knockout mice
also exhibit significantly lower seizure thresholds compared to
wild type littermates, suggesting a direct link between molecular
clock mechanisms and seizure susceptibility, and implicating
BMAL1 as an influence on neuronal excitability leading to
seizures (139). It is noteworthy that Bmal1 knockout mice
do not develop spontaneous seizures (i.e., epilepsy), suggesting
that clock-related mechanisms function as susceptibility factors,
providing a substrate upon which downstream factors interact
to cause epilepsy. A corollary to this perspective is that clock-
controlled genes influence intracellular signaling, membrane
potential, and subsequent neuronal firing patterns, all of which
are highly relevant to seizure manifestation and development
of epilepsy.

In addition to controlling susceptibility to acute seizures,
BMAL1 also has a role in the process of epileptogenesis, as
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suggested by a study showing that the time course of the
reduction in hippocampal Bmal1 expression in pilocarpine-
treated rats parallels the development of spontaneous seizures
(148). It is also likely that biomolecular mechanisms of epilepsy
interacting with clock genes differ according to cellular subtype
or brain region, given that different epilepsies are characterized
by seizures that originate in distinct brain regions and occur at
distinct points of the circadian cycle.

A possible means by which alteration in BMAL1 activity leads
to seizures and epilepsy is via the mTOR pathway. Using a mouse
model of tuberous sclerosis complex, a neurodevelopmental
disorder involving epilepsy, in which the Tsc1 gene was
conditionally deleted in forebrain, BMAL1 activity was shown to
be upregulated in an mTOR-dependent manner and reduction of
BMAL1 to control levels was able to rescue themutant phenotype
(149). BMAL1 also acts to regulate translation of mTOR protein,
linking activity of the mTOR pathway with circadian rhythms
(150). The mTOR pathway has been implicated previously as
being highly relevant to the development and treatment of
epilepsy (151).

Regulation of cellular metabolism may be another way by
which BMAL1 controls seizure threshold. Defects in cellular
energy metabolism are known to be causative in certain forms
of epilepsy and the anti-epileptic effect of the ketogenic diet
may be related to alteration of cellular energy metabolism
pathways (152). Disruption of BMAL1 causes hypoinsulinemia,
diabetes, and defects in synaptic vesicle assembly, which could
affect neuronal excitability and lead to seizures (153). A
search for BMAL1 target genes revealed many that encode
central regulators of metabolic processes, further supporting the
possibility that regulation of seizure threshold by BMAL1 is
related to changes in the expression of genes controlling cellular
energy homeostasis (154). Interestingly, another circadian factor,
the transcription factor D-albumin binding protein (DBP),
affects hippocampal function and enhances seizure susceptibility
via upregulation of glucagon-like peptide-1 receptor, a protein
involved intimately in carbohydrate metabolism and cellular
energy production (155, 156). Consistent with the findings
on DBP/GLP-1 is evidence that glycogen in particular is
an important energy molecule related directly to epilepsy
(157). Relationships between BMAL1, seizure susceptibility and
regulation of cell metabolism warrant further investigation with
regards to the treatment of epilepsy.

A key protein interacting with BMAL1 is CLOCK, a molecule
that is deficient in temporal lobe tissue from patients undergoing
surgery for drug-refractory TLE (158). Deletion of the mouse
Clock gene in cortical pyramidal neurons caused spontaneous
epileptiform discharges in excitatory neurons associated with
decreased inhibitory post-synaptic currents and decreased
seizure threshold (158). The authors also report that the mutant
mice have defects in dendritic spines similar to spine defects
seen in human epileptogenic tissue. In a post-status epilepticus
rat model, epileptogenesis is associated with loss of rhythmic
expression of Clock transcripts and decreased levels of Clock
transcripts at all ZTs studied, suggesting that Clock expression
and neuronal activity in the hippocampus are linked (159).
Subsequent study reveals that levels of Clock transcripts in

hippocampus of pilocarpine-treated rats are not different from
those in naïve rats at early time-points after treatment, but
at later time points they are significantly reduced, suggesting
that decreasing Clock expression is involved in the process of
epileptogenesis (148). Dysregulation of Clock expression parallels
disturbance of spontaneous locomotor activity, indicating a
possible role for seizure as a non-photic behavioral cue, possibly
related to neuronal activity in the hippocampus (148).

Per1 is upregulated in the hippocampus following induction of
experimental epilepsy, further evidence that seizures can perturb
integral components of the clock (160). Clock mechanisms in
extra-hippocampal brain regions are also perturbed by seizures.
For example, one study showed that noise induces alteration
of core clock gene expression in the inferior colliculus, a
finding relevant to the elicitation of audiogenic seizures (161).
Yet another study showed that electroconvulsive seizures in
rats alter the expression of core clock genes in the frontal
cortex (138). In the SCN, the time of day or ZT at which
a seizure occurs has an influence on the rhythmicity of core
clock gene expression and can also differentially affect sleep
homeostasis (162). In the rat pilocarpine model, epileptic and
naïve rats were compared at specific ZT points following the
development of spontaneous seizures, with results showing
that development of epilepsy is associated with alterations in
rhythmic changes of all three period genes (Per1, Per2, and Per3)
(159). In a subsequent study, Per1 expression increased and
Per2 expression decreased at early time points after treatment,
preceding the development of spontaneous seizures, whereas
Per3 expression was unchanged (148). Neuronal death in the
hippocampus CA1 region in an experimental stroke model is
enhanced in Per1 knockout mice, a factor that may contribute
to the risk for developing epilepsy following cerebrovascular
insults (163). Overall, the strong bidirectional relationship
between clock genes and seizures or epilepsy provides a
compelling rationale for pursuing therapeutic strategies in
this domain.

CLOCK GENES AS CAUSATIVE OR RISK
FACTORS FOR EPILEPSY

Mutations in human clock-related genes cause syndromes that
include epilepsy in the phenotype. Specifically, mutations in the
RORα gene (RORA) link to a syndrome known as Intellectual
Developmental Disorder with or without Epilepsy or Cerebellar
ataxia [IDDECA (164)]. Whole exome sequencing identified
RORA mutations in eleven IDDECA patients exhibiting
developmental delay and autism spectrum symptoms, with or
without epilepsy or ataxia (164). A consortium organized by
the International League Against Epilepsy (ILAE) is generating
whole exome sequence data on 25,000 individuals with common
forms of human epilepsy and a subset of patients with less
common forms of developmental epileptic encephalopathy
(DEE). Known as Epi25K (http://epi-25.org/), the project will
also generate dense single nucleotide polymorphism maps for
use in genome wide association studies (GWAS). The Epi25K
group and ILAE consortium published preliminary findings
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on the GWAS and rare variants in the expanding cohort
(165, 166). The first analysis of rare variants in over 9,000
patients from Epi25K is available on the web (https://epi25.
broadinstitute.org/), and results show that rare mutations are
found in the RORA gene significantly more often in the
DDE patients than in controls. On the other hand, RORA
mutations are not found in excess in patients with common
forms of generalized and focal epilepsy, consistent with the rare
IDDECA phenotype.

It is noteworthy in this context that the causative mutation
in the “staggerer” (sg) mouse is a deletion in the RORA
gene leading to defective Purkinje cell development in the
cerebellum and an ataxic phenotype (167). Sg mice have
spontaneous seizures, a finding consistent with the description
of several rare human disorders in which development of
epilepsy follows the development of ataxia, especially when the
DNA polymerase gamma gene is mutated (168, 169). Thus,
RORA gene mutations are linked to both ataxia and epilepsy
in humans.

Similarly, mutations in the clock-related gene FBXL3 link to
two rare disorders. The first includes intellectual developmental
disorder with short stature, facial anomalies and speech defects
(IDDSFAS) (170), although these patients do not suffer from
seizures. The second is a form of Batten disease known
as Ceroid Lipofuscinosis, Neuronal, 5 (CLN5) involving a
defect in lysosomal storage and degradation of damaged
or unwanted proteins. Batten disease leads to intellectual
disability, ataxia, visual disturbance, and epilepsy (171). This
form of Batten disease is caused by mutations in the CLN5
gene as well as mutations in FBXL3. Of interest is that
these two genes overlap each other on chromosome 13 and
transcribe from opposite DNA strands. Thus, it is possible
that mutations found in CNL5 or FBXL3 could affect the
expression or final function of either protein produced from this
genomic region.

Mutations in PER2 and CRY1 result in advanced phase sleep
disorder and delayed phase sleep disorder, respectively (172,
173); however, neither of these phenotypes includes epilepsy.
Core clock genes including CLOCK, BMAL1, FBXL21, PER1,
PER3, CRY1, and NR1D1 do not show evidence of harboring
mutations that cause epilepsy in humans. Likewise, there is little
evidence to date from human studies that genetic variations
within core clock genes act as susceptibility factors for epilepsy.
This is most likely because there has not been a systematic
investigation of polymorphisms in the core clock genes in
large populations of homogeneous epilepsy patients with respect
to the timing or clustering of seizures. Large scale GWAS
studies, such as the one being performed by ILAE, include tens
of thousands of patients; however, these studies suffer from
patient heterogeneity, possibly masking true genetic associations
that have a small effect on phenotype. Common variants of
CLOCK, PER2, and PER3 that had been associated with sleep
disturbance were tested, but none showed association with JME
in a cohort of <100 patients (174). Large scale GWAS with
homogenous patient populationsmay reveal positive associations
between core clock gene variations and epilepsy in the future,
but for now, that hypothesis remains to be tested rigorously.

Although there is yet little evidence that core clock gene variants
predispose or cause epilepsy, CLOCK RNA and protein are
downregulated in brain tissue resected from patients with TLE
(158). It is unclear if the downregulation is due to promoter
variation at the CLOCK gene itself or is a result of variation
in other non-core circadian genes. It is also unclear whether
this finding reflects a disease process or is due to the impact
of AEDs.

The gene whose variation appears to have the largest
impact on the development of epilepsy is SCN1A, encoding
Nav1.1, the major voltage-gated sodium channel expressed in
CNS neurons. Deleterious SCN1A mutations cause uncommon
monogenic forms of epilepsy, and common variants increase
the risk for more typical sporadic forms of epilepsy (166, 175).
Of note is the fact that Nav1.1 is critical for the oscillatory
function of the SCN, possibly contributing to sleep disturbance
mechanisms in patients with common or even uncommon forms
of epilepsy (176). Additional evidence that sleep disturbance in
epilepsy is due to underlying alteration of circadian rhythm,
rather than a side effect of anti-epileptic drugs, comes from
studies of a mouse model of Dravet syndrome, a severe DDE,
in which it was shown that an Nav1.1 mutation causing
reduced interneuron excitability and seizures also causes sleep
impairment (177).

CHRONOTHERAPY IN EPILEPSY

Currently, regimens to treat a number of chronic medical
conditions are beginning to apply concepts related to
chronotherapy, including asthma (178, 179), hypertension (180),
and type 2 diabetes (181, 182). The premise of chronotherapy
is to administer drugs (or other interventions) at strategic
points of patients’ circadian rhythms, particularly time periods
when the chronic condition is most severe or when the drug
would exhibit optimal bioavailability or effectiveness (183).
For instance, in type 2 diabetes, long and short-acting insulin
preparations are administered strategically, such that predictable
fluctuations in diurnal and meal-based glucose levels are
adequately covered (182).

As mentioned above, the ability to predict the time period
when it is most likely for an individual with a specific
type of epilepsy to experience a seizure has opened up
the possibility of utilizing chronotherapy to enhance the
effectiveness of treatment for many people with epilepsy.
The viability of chronotherapeutic strategies to optimize the
efficacy of anti-epileptic drug (AED) treatment is supported
by both clinical and basic research. In a study with rodents,
the anti-convulsant efficacy of valproic acid varied as a
function of the time in which it was administered (184).
Though valproic acid increased the latency to the first
pentylnetetrazol-induced seizure at all time points, the highest
and lowest increases were observed when the drug was
administered 7 and 19 h after light onset, respectively. The
authors reasoned that these effects may have been influenced
by circadian variation in drug disposition. For instance,
some studies have found that drug clearance is greatest
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during dark exposure while others indicate that absorption of
valproate is substantially delayed if taken after consuming a
meal (14).

Results from human AED chronotherapy studies indicate
direct clinical relevance. In one study, adults suffering from
nighttime tonic-clonic seizures demonstrated improved seizure
control and reduced side effects when a greater percentage
of the daily divided dosage of phenytoin and carbamazepine
was administered in the evening (185). By shifting the
administration of AEDs from earlier in the day to 20:00,
therapeutic drug levels were more readily achieved. This
practice of uneven drug distribution is known as differential
dosing. When children suffering from nighttime or early
morning seizures were dosed differentially, such that the
evening dose was twice that of the morning dose, at least
a 50% reduction in seizure frequency was observed in 88%
of patients (186). In another study with nighttime seizure
patients, the differential dosing of clobazam (i.e., greater
than half of the daily dosage was taken after 18:00) led to
a median seizure reduction of 75% compared to a seizure
reduction of 50% for the evenly dosed control group (187).
Interestingly, the differentially dosed group also tolerated
a higher total dose than the control group in terms of
adverse effects.

An important consideration with regard to chronotherapy
is patient chronotype (i.e., whether the individual is more
morning or evening-oriented). Since people with evening
chronotypes tend to go to bed later, their biological
oscillating mechanisms (including those generating products
that modulate seizure threshold/susceptibility) are likely
shifted. That is, at 6:00 AM, the morning TLE patient will
have different levels of relevant clock products than the
evening TLE patient (as they are on different circadian
times). For this reason, it may be reasonable to shift
the recommended AED administration time according
to the patient’s chronotype and not base it on a specific
time of day. Further, one study found that patients adapt
self-administration of AEDs to their chronotype (188). Morning-
oriented patients would often self-administer medications
well before the recommended 8:00 time, whereas evening-
oriented patients would often do so well after 8:00. The
latter was especially true during “off days” (i.e., weekends,
holidays), when the evening patients slept extra late in
order to reduce their sleep debt. Therefore, an additional
benefit of shifting AED dosing to later in the day is increased
consistency of medication timing. This concept is illustrated
in Figure 3.

In developing chronotherapeutic strategies in epilepsy, it is
important to consider that seizures may influence chronotype.
Thus, patients experiencing generalized seizures were 5 times
more likely to have a late chronotype than healthy controls,
and epilepsy patients do not appear to demonstrate the normal
positive correlation between age and morning-proclivity (189).
The former finding is interesting, given that the evening-heavy
differential dose intervention employed by Thome-Souza et al.
(187) was of most benefit to patients suffering from generalized
seizures. However, genetic factors also influence chronotype,

and so physicians must balance therapeutic regimens with
promotion of healthy lifestyle decisions (e.g., preventing the sleep
deprivation and circadian misalignment prevalent in evening-
oriented individuals).

Applying chronotherapy to the management of epilepsy
appears to be a prudent undertaking, particularly for patients
with highly predictable seizure patterns or severe, drug-resistant
epilepsy. Since every patient with epilepsy is unique, this practice
would need to be patient specific. However, further research is
required to better characterize the effects of chronotherapeutic
approaches on all types of seizures and epileptic conditions.
For instance, it may be useful to determine whether differential
dosing favoring daytime AED administration enhances seizure
suppression in patients that commonly experience focal seizures
from the temporal lobe, since these seizures more frequently
occur during the daytime and wakefulness. Interestingly, several
recent studies suggest that certain biological mechanisms
that change cellular redox state also correlate with neuronal
excitability, and that many of these mechanisms occur in
a circadian manner (68, 69). Indeed, diminished neuronal
activity at night correlates with an electrochemically reduced
intracellular state (69). Perhaps circadian variability in redox
state may explain why seizures in TLE tend to occur during
the day.

LIMITATIONS

We accepted several limitations in the development of this
review. One limitation was that our literature search did
not include non-English language studies, and so it is
possible that certain important information was omitted.
Another limitation was that our literature search focused
purely on peer-reviewed publications and did not consider
information from dissertations, abstracts, or presentations at
scientific conferences. Also, we did not include every relevant
research study, but rather focused critical assessment on
the most impactful work. Our literature review relied most
heavily on the Pubmed database and we placed the greatest
emphasis on studies published over the past decade. Our
search strategy combined the terms “seizure,” “epilepsy”
and “neuronal excitability” with the terms “circadian,”
“diurnal,” “time of day,” and “sleep.” Overall, while our
presentation encompasses the most relevant research
conducted over the past decade, the approach we used to
develop it did not fulfill journal criteria for a comprehensive
systematic review.

SUMMARY

Despite the armamentarium of available treatments for epilepsy,
many patients still experience variable numbers of seizures, some
on a daily basis. Many factors influence the time of day at
which a seizure will occur in a given individual with epilepsy,
and some of these factors directly involve mechanisms that
mediate circadian rhythms. Elucidation of genetic expression
pathways underlying the oscillating function of SCN neurons,
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FIGURE 3 | Example of how phenotype and chronotype permit implementation of chronotherapy for epilepsy, along with potential mechanisms responsible for

time-based seizure susceptibility. This depiction portrays likely patient circadian (daily) seizure threshold/neuronal excitability patterns. Zeitgeber times are on the

x-axis. Of the four “sample patients” illustrated, two have a morning chronotype (morning larks; curves depicted in lighter hues) and two have an evening chronotype

(night owls; curves depicted in darker hues). Two suffer from focal seizures originating in the temporal lobe (orange hues) and seizures in the two others originate in the

frontal lobe (blue hues). Since seizures are most likely to occur during the mid-day (12–15) and night (24–3) for temporal and frontal lobe epilepsies, respectively (9),

therapeutic drugs may be best suited to be administered soon before the high seizure tendency time window (white boxes). Boxes 1 and 2 (corresponding to light

orange and dark orange curves, respectively) represent AED time administration windows for TLE patients with morning and evening chronotypes, respectively. Boxes

3 and 4 (corresponding to light blue and dark blue curves, respectively) represent time windows for frontal lobe epilepsy (FLE) patients with morning and evening

chronotypes, respectively.

and the study of parallel pathways in epileptogenic regions
of the brain (e.g., hippocampus, cerebral cortex), provides a
basis for understanding links between circadian rhythms and
seizures or epilepsy at the molecular level. In particular, the
overlapping roles of specific ion channel proteins, both as
determinants of SCN neuronal function and as susceptibility
or causative factors for seizures and epilepsy, suggests potential
approaches to the development of new anti-epilepsy treatment
regimens. Mutations in certain ion channel genes important
for SCN function, such as SCN1A and KCNJ10, are well-
known to strongly associate with epilepsy phenotypes in
humans, and have served for many years as leads for AED
development without great success. However, a more complete
understanding of how such genes interact with circadian factors
could provide means to better exploit them as a source of
druggable targets.

A critical link between circadian rhythms and expression
of seizures relates to oscillations in the excitability of neuronal
membranes. Cyclic expression of core clock genes in SCN
neurons is synced with an oscillating pattern of membrane
excitability, and testing whether similar core clock gene
expression generates excitability oscillations in neurons from
other brain regions will be important for determining their
potential role in regulating circadian seizure susceptibility.
For example, extra-SCN brain regions show molecular and

cellular/neurophysiological rhythms that may be under
autonomous control (190). Isolated hippocampal slice cultures
from mPer2luc transgenic reporter mice show that PER2::LUC
expression continues to persist over several circadian cycles
(113), which could relate to circadian changes in hippocampal
electrophysiology (117). In this way, vulnerable neurons in
epileptogenic brain foci may be triggered to fire action potentials
inappropriately, thereby initiating a seizure, at times when
circadian-dependent membrane excitability is at a peak level.
Whether SCN oscillations regulate circadian gene expression
and electrophysiological properties of hippocampal or cortical
neurons is poorly understood and remains an important area
of future investigation. Deeper insight into the interaction
between oscillatory neuronal activity in the SCN and the
biophysical properties of epileptogenic neurons will lead
potentially to the identification of novel AED targets and to
the development of new medicines. In addition, development
of detailed patient chronotypes, including comprehensive
evaluation of the timing of seizure occurrence, may serve
as a means to personalize therapy for people with epilepsy.
This will not only facilitate the development of new drugs
designed to target novel molecules identified at interface between
circadian rhythms, neuronal excitability, and seizures, but
will also lead to an increase in effectiveness of treatments
that are currently available. Overall, further research into the
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relationship between circadian rhythms and epilepsy has the
potential to lead to novel treatment strategies that could benefit
many patients.
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