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Measurement of the width of fetal lateral ventricles (LVs) in prenatal ultrasound (US)

images is essential for antenatal neuronographic assessment. However, the manual

measurement of LV width is highly subjective and relies on the clinical experience of

scanners. To deal with this challenge, we propose a computer-aided detection framework

for automatic measurement of fetal LVs in two-dimensional US images. First, we train a

deep convolutional network on 2,400 images of LVs to perform pixel-wise segmentation.

Then, the number of pixels per centimeter (PPC), a vital parameter for quantifying

the caliper in US images, is obtained via morphological operations guided by prior

knowledge. The estimated PPC, upon conversion to a physical length, is used to

determine the diameter of the LV by employing the minimum enclosing rectangle method.

Extensive experiments on a self-collected dataset demonstrate that the proposed

method achieves superior performance over manual measurement, with amean absolute

measurement error of 1.8mm. The proposed method is fully automatic and is shown to

be capable of reducing measurement bias caused by improper US scanning.

Keywords: biometric measurement, computer-aided diagnosis, ultrasound, fetal head, deep learning, lateral

ventricle

1. INTRODUCTION

Ultrasound (US) is widely used in prenatal diagnosis because it is non-radiative, noninvasive,
real-time, and inexpensive (1, 2). Ventriculomegaly, one of the most common abnormal findings
in prenatal diagnosis, is often a sign of central nervous system malformation, chromosomal
abnormalities, intrauterine infections, or other problems (3, 4). Ventriculomegaly can be diagnosed
by measuring the fetal lateral ventricles (LVs) in standard plane images of the fetal brain. Currently,
to measure the width of LVs, human scanners determine the maximum distance by marking two
endpoints on the inner and outer edges of the LV. The line segment between these endpoints is
considered the diameter of the LV and its length is generally referred to as the LV width (5), as
shown in Figure 1A. However, such manual measurement requires extensive and comprehensive
clinical knowledge of fetal LVs. It is a challenging task, especially for novice scanners. Additionally,
scanners often suffer from repetitive stress injuries caused by multiple keystrokes (6). Therefore, it
is necessary to develop automatic methods for fetal LVmeasurement, and crucial image-processing
issuesmust be resolved to achieve amore accurate and efficient obstetric examination. Although the
automatic measurement of fetal biometrics—such as head circumference (7, 8) and femur length
(9, 10)—has attracted widespread attention in recent years, work on fetal LV measurement is rare.
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FIGURE 1 | (A) Scanner-located LV width; the yellow crosses represent the endpoints, and the physical length of the LV is shown in the lower right corner. (B) Fetal LV

images in different ultrasound instruments.

To the best of our knowledge, this is the first study to propose an
automatic measurement method for fetal LV width based on two-
dimensional (2D) US images using deep learning. Several sample
images of fetal LVs and the caliper in different US instruments are
shown in Figure 1B.

Automatic measurement of fetal LV width remains a
challenging task, as illustrated in Figure 2. The difficulties lie
in three aspects: (1) The poor quality of the image can be an
obstacle to accurate detection and segmentation of the fetal
LV. For instance, the boundary of the LV may be blurred, as
indicated by the white arrows in Figures 2A,D, which can result
in a large overlap with adjacent tissues or anatomical structures,
as highlighted by the yellow arrows in Figure 2B. (2) Because
of differences between the location and type of calipers used,
indicated by the blue arrows in Figures 2C,D, it is difficult
to obtain the essential pixels-per-centimeter (PPC) parameter,
which is the number of pixels in one centimeter of an image
and is used to convert pixel length to physical length. (3) The
subjectivity of manual measurements can cause issues, and the
poor performance of the manual implementation is attributable
to a lack of standardized training. Although standard definitions
of the LV width are available, the widest part of the LV is
determined by scanners manually marking two points on its
inner and outer edges, as shown in Figure 1A.

To tackle these challenges, we develop a framework for

automatic LV measurement based on deep learning. Specifically,

we decompose the LVmeasurement task into three subtasks. First

we train a Mask R-CNN (11) convolutional network on 2,400

images of fetal LV. The trained model can effectively learn and

extract discriminative features from the training images and is
able to perform joint classification, detection, and segmentation
tasks simultaneously. Morphological operations (12) and prior
knowledge are combined to enable extraction of the caliper
scales in such a way that interference with other structures and
tissues in the images is avoided. In the second step, we extract
the caliper scales using prior knowledge. From these scales the
PPC is calculated precisely. Then, we employ the minimum
enclosing rectangle (MER) method to find the diameter and use
the Euclidean distance to calculate its pixel length. Finally, the
pixel length is transformed to the physical length of the LV by
the PPC. The proposed method is evaluated on a self-collected
dataset. Experimental results reported inTable 4 demonstrate the
superior performance of the method.

2. MATERIALS AND METHODS

The framework of the proposed method is summarized in
Figure 3. Given heterogeneous sources of US images, Mask R-
CNN can automatically detect and segment the caliper and the
fetal LV simultaneously. Then, the PPC is obtained from the
detected caliper using prior knowledge, and the pixel length of
the LV is obtained by theMERmethod. Finally, the fetal LVwidth
measurement is obtained by transforming the pixel length to a
physical length using the PPC.

2.1. Image Acquisition
All examinations and diagnoses were carried out during routine
screenings at the First Affiliated Hospital of Sun Yat-Sen
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FIGURE 2 | (A) Obvious fetal LV. (B) Images sometimes contain other similar structures. (C) Different location of the caliper than in (A). (D) Fuzzy fetal LV, with a

different type of caliper from that in (A). Blue arrows indicate the caliper; yellow arrows indicate the LV and similar structures; white arrows indicate the LV.

FIGURE 3 | Flowchart of the proposed framework for automatic LV measurement.
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FIGURE 4 | Ultrasound fetal brain image: from left to right the columns show the raw image, the ground truth labeled by the scanner, and the result detected by Mask

R-CNN.

University, China, from March 2010 to February 2018, by a
team of 15 doctors with 3–22 years of experience. Images of
fetal standard transventricular planes are required to assess fetal
LVs, according to the guidelines of the International Society
of Professionals in Ultrasound for Obstetrics and Gynecology
(ISUOG). Ten different US machines provided by six different
manufacturers (GE Voluson 730 Expert/E6/E8/E10, Aloka SSD-
a10, Siemens Acuson S2000, Toshiba Xario 200 (Tus-X200),
Samsung UGEOWS80A, and Philips EPIQ 7C) were utilized for
data acquisition.

We acquired a total of 2,900 images, comprising 1,694
normal LVs, and 1,206 ventriculomegaly LVs, from the above US
instruments, as well as 2,079 US images containing only calipers.
To verify the robustness of the model, we collected 200 test
images that contain neither LVs nor calipers to serve as negative

samples. Our dataset is large enough to adequately represent
the various LV images commonly seen in clinical practice. The
ground truth of the LVs and calipers in these images were labeled
by three experienced scanners. We randomly selected 2,400
images containing LVs and calipers and 1979 images containing
only calipers to constitute the training dataset. The testing dataset
is made up of 300 images containing LVs and calipers as positive
samples and the 200 images without LVs and calipers as negative
samples. The 1,979 images containing only calipers are used to
improve the recognition of calipers.

2.2. The Mask R-CNN Model
The complex task of measuring the width of LVs can be
disentangled into a few simple problems that are easily solved
with convolutional neural networks (CNNs). We trained a

Frontiers in Neurology | www.frontiersin.org 4 July 2020 | Volume 11 | Article 526

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Chen et al. Automatic Measurements of Lateral Ventricles

FIGURE 5 | Visualization of background noise filtering: (A) raw image; (B) intercept of the caliper; (C) conversion to gray-scale; (D) edge detection by the Laplace

operator; (E) binarization from gray-scale to monochrome; (F) morphological open operation. (G) The result of no morphological processing on the image. The green

arrows indicate the difference between the treated image in (F) and the untreated one in (G).

Mask R-CNN to simultaneously perform two localization
tasks and two segmentation tasks. In previous studies,
deep learning has produced state-of-the-art results in many
computer vision and medical image analysis problems, including
prediction of protein function (13), classification of non-
metastatic nasopharyngeal carcinomas (14), discovery of m6A
sequences (15), image segmentation using new iterative tri-class
thresholding techniques (16), qualitative assessment of fetal
head US images (17), and detection of breast cancer (18). We
choose to employ the deep learning algorithm Mask R-CNN,
which combines object detection, object classification, and object
segmentation. Notably, the excellent feature extraction ability of
the deep learning network offers the potential of resolving the
aforementioned issues in LV width measurement.

We trained an end-to-end 50-layer ResNet (19) with
Feature Pyramid Networks (FPN) (20). Specifically, ResNet50
learns a set of image filters at multiple spatial scales and
produces hierarchical feature maps of increasing coarseness.
FPN combines the low-level features and high-level increase the
receptive field and invariance. Then, the feature map generates

many candidate region proposals through the Region Proposal
Network (RPN). The class branch outputs the categories and

confidence scores of the predicted anatomy. The bounding boxes
of the target are obtained by the box branch. Subsequently, the
mask branch learns to up-sample the coarse feature maps to
produce a pixel-wise label prediction at the resolution of the
input image. The hyperparameters are set as follows: the height
and width of the input images are scaled down to 600 pixels;
the training batch size is set to six images per batch; the initial
learning rate and the number of iterations of the model are set to
0.02 and 20,000, respectively; and the remaining hyperparameters
are set to their default values given in previous work (11).
The Mask R-CNN network was trained with a training dataset,
and the network output is shown in Figure 4. The network
produces three results: bounding boxes, pixel-wise segmentation,
and recognition confidence values for fetal LVs and calipers.

2.3. PPC Calculation With Morphological
Operations and Prior Knowledge
Because of differences in the type, shape, and location of the
caliper, it is difficult to obtain an accurate value for the PPC. To
measure the LV width accurately, we incorporate clinical prior
knowledge into our algorithm to guide the precise estimation of
the PPC.

Through observation, two types of calipers are identified,
which we refer to as the 10-caliper and the 5-caliper. For the
former, the physical length between adjacent scales is 10mm,
as shown by the blue arrow in Figure 2A; the latter has a
5mm distance between adjacent scales, as shown by the blue
arrow in Figure 2D. The caliper scales are embedded in the
ultrasonic structure, and the background noise poses an obstacle
to extraction of the scale, as indicated by the blue arrow in
Figure 2A. Obviously, the background and caliper scales cannot
be distinguished directly via a threshold approach.

To eliminate the effects of background noise on scale
extraction, we first crop the caliper from the raw image using
the bounding box given by Mask R-CNN and process it
separately. We then convert the caliper images into gray-scale.
The Laplace operator is used for morphological operations
after comparing with the experimental results. Large highlighted
blocks of complex background are effectively discarded, as
shown in Figure 5D. Next, we binarize the gray-scale image
using a threshold value of 127 to obtain a monochrome image
and then perform a morphological open operation on the
monochrome image to eliminate a small amount of background
noise. A visualization of these processing steps is shown in
Figure 5. Figure 5G displays a binary image without the Laplace
and open operations. As indicated by the green arrows in
Figures 5F,G, the highlighted object is successfully filtered and
the scales are preserved adequately after the Laplace and open
operations. The background noise filtering is used preliminarily
to filter out the part of the image that does not belong to
the caliper.
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FIGURE 6 | Visualization of contour filtering: (A) finding contours; (B) filtering out large contours; (C) filtering out edge contours; (D) filtering out inner contours. The

yellow rectangles indicate the scales of the caliper found by our method.

After morphological processing, the background noise is
minimized and all contours in the image are obtained by
using the “findContours” function of OpenCV, as shown in
Figure 6A. These contours consist of pixel points (x, y). From
our observations, the caliper scales follow three rules, as shown

in Figure 7A. First, the scales belonging to a caliper contain
a small number of pixel points. Second, the scales are all on
the same y-axis. Third, the distances between adjacent scales
are fixed.

Although the above step reduces the noise, it still cannot
achieve the full denoising effect. To this end, we further propose
contour filtering for taking into account prior knowledge of the
scale. The aim of the following steps is to thoroughly eliminate
noise, so as to identify the type of caliper and determine the
PPC more accurately. First, we filter out the contours that
have pixel numbers larger than the threshold value of 30, i.e.,
the large background contours that have not been cleaned by
the morphological processing, indicated by the green arrows

in Figures 6A,B. Next, we count the contours that intersect
with each y-axis by traversing all y-axes in the caliper image.
The y-axis with the greatest number of intersecting contours is
regarded as the axis along which the scales are located. This
step involves filtering out the small and medium contours of the
image edge, as indicated by the blue arrows in Figures 6B,C.
Then, the mode is obtained as the pixel distance between
adjacent scales via calculating and recording the distance between
adjacent contours. The position of each contour is represented
by the point at the upper left corner of the contour. Finally,
all scale contours are obtained via the pixel distance, and the
“minAreaRect” function of OpenCV is utilized to generate a
rectangular bounding box for each scale contour, to filter out
the small contours between scales. After these steps have been
applied, the remaining contours are considered the scales of
the caliper. This process is illustrated in Figure 6D, where the
yellow rectangles indicate the scales of the caliper obtained by
our method.
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FIGURE 7 | (A) The 5-caliper, with the green arrows indicating the “big-small-big” scale change law. (B) The 10-caliper, where the blue arrows indicate adjacent

scales of the same size. (C) Results of caliper type judgments and PPC calculations; in each image the green box bounds the position of the scales given by Mask

R-CNN, and the yellow box shows the caliper scales extracted by our method. The PPC value and caliper type are shown in the upper left corner of each image.

FIGURE 8 | (A) The minimum angle θ between the x-axis and the enclosing rectangle of the LV image is determined. (B) After rotating the image to make it horizontal,

the vertical green lines are candidate diameters; the red line is the longest diameter. (C) Two LV measurements obtained using our method; in each image the yellow

line inside the green box is the diameter of the LV as determined by our method, and the measurement results are shown near the yellow line.
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TABLE 1 | Caliper and LV prediction results.

Caliper
Predicted result

Total
Yes No

Ground truth

Yes 290 7 297

No 0 203 203

Total 290 210 500

Precision Recall Sensitivity Specificity Accuracy

100% 97.64% 100% 96.67% 98.6%

LV
Predicted result

Total
Yes No

Ground truth

Yes 280 15 295

No 5 200 205

Total 285 215 500

Precision Recall Sensitivity Specificity Accuracy

98.25% 94.91% 98.25% 93.02% 96%

TABLE 2 | Expert scoring results.

Score Number Percentage (%) Average

0 15 5

1 10 3.3

2 15 5

3 28 9.3

4 232 77.5

Total 300 100 3.5

After extracting the scales, we calculate the PPC. The two
kinds of calipers have their unique rules of change in scale size:
the 5-caliper has a “big-small-big” change rule, as shown in
Figure 7A, whereas the 10-caliper has adjacent scales of the same
size, as shown in Figure 7B. The type of caliper is determined by
these rules and the scales extracted using the above procedure.
In the case of the 5-caliper, the PPC of the image is the distance
between adjacent scales multiplied by 2; for the 10-caliper, the
PPC is the distance between adjacent scales. The caliper type and
PPC results are shown in Figure 7C at the upper left corner of
the image. The green box surrounds the position of the scales
obtained by Mask R-CNN, and the yellow box indicates the
caliper scale extracted by our method.

2.4. Locating LV Diameter and LV
Measurement
Clinically, the widest location of the LV is determined by
scanners, who mark two points on the inner and outer edges of
the LV. To find the widest location of the LV in images, the MER
method is used to simulate the judgment of scanners.

We obtain the angle θ between the x-axis and the edge
of the enclosing rectangle with the smallest angle to the x-
axis, as illustrated in Figure 8A. First, the image is rotated
by angle θ in the opposite direction to give a horizontal LV,
as shown in Figures 8A,B. Then, we traverse all y-axes and
obtain two points intersecting the contour of the LV; see

TABLE 3 | Accuracy of caliper type judgments.

Number Correct Error Accuracy (%)

Total 100 92 8 92

Black 20 19 1 95

Complex 80 73 7 91.25

TABLE 4 | Quantification of the performance of the proposed method in terms of

mean absolute error (MAE), standard deviation (SD), root mean squared error

(RMSE), and average time consumed (ATC).

MAE (mm) Percentage of MAE SD (mm) RMSE (mm) ATC (s)

1.8 18.92% 3.4 2.38 0.13

the green lines in Figure 8B. We calculate the pixel distance
between these two points using the Euclidean distance. The
largest pixel distance is regarded as the width of the LV, and
the diameter of the LV is obtained as the line connecting
the two points, i.e., the red line in Figure 8B. Finally, the
physical length of the LV diameter is calculated as the pixel
length divided by the PPC. Figure 8C shows a visualization of
the results.

3. RESULTS AND DISCUSSION

We conduct three experiments to assess the reliability and
efficacy of the proposed framework for automatic fetal LV
measurement: (1) To evaluate our method’s detection and
segmentation ability for LVs and calipers, we test the trained
network model with a testing dataset containing 500 images.
(2) We assess the accuracy of the PPC acquisition method.
(3) We compare the measurement errors between the LV width
measured by our method and the ground truth measured by
three scanners.

Our data were labeled by three experienced scanners.
The diagnosis results and measurements produced by their
consensus judgments serve as the ground truth in Table 1.
The physical lengths of the LVs in Table 4 were also measured
by doctors.

3.1. Detection and Segmentation Ability of
Mask R-CNN
As shown in Table 1, to evaluate the proposed method’s ability
to recognize LVs and calipers, we record its precision, recall,
sensitivity, specificity, and accuracy on the test set.

The results indicate that the trained Mask R-CNN
identifies the LV and the caliper with accuracies of 96
and 98.6%, respectively. The precision of the model is
100% for calipers and 98.25% for LVs and indicates
that the positive samples identified by the network have
high confidence. Our model performs well for negative
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FIGURE 9 | Scoring criteria of three ultrasound experts, who scored the degree of fitting between predicted LV contours and the ground truth on a scale from 0 to 4.

FIGURE 10 | (A) Error recognition and (B) failure recognition for LVs. The first row shows the ground truth and error recognition; the second row shows the ground

truth and failure recognition.

samples, with a specificity of 96.67% for calipers and 93.02%
for LVs.

In addition, to verify the accuracy of the LV contour segments
obtained by Mask R-CNN, we invited three US experts to score
the degree of fitting between the predicted LV contours and
the ground truth on a scale from 0 to 4. The scoring criteria
are shown in Figure 9, and the results are reported in Table 2.
Predicted results scoring 4 points accounted for 77.4% of the

cases, with an average score of 3.5. To summarize, the network
appears to accurately predict the LV contours.

The accuracy of LV detection is lower than that of caliper
detection. A separate analysis of incorrect recognition cases, as
shown in Figure 10A, indicates that structures similar to LVs
are likely to be present in the images, demonstrating that object
detection in US images is still a challenging task. As can be
seen in Figure 10B, the unrecognized images are too dark, and
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FIGURE 11 | Measurement results obtained using our method (left) compared with the ground truth (right).

the contour of the LV is not obvious. A possible reason is that
the training dataset is insufficient. In future work, more LV
images will be collected and used for optimization of the network
structure to improve the detection of LVs.

Under the same hardware conditions (CPU Intel Core i7-7700
3.60GHz X8; GPU GeForce GTX 1060 6GB / PCIe / SSE2),
we train DeepLab V3+ networks with the same training set.
The hyperparameters are chosen as follows: train_crop_size is
set to 401 × 801, train_batch_size is set to 2, and the model is
iterated 40,000 times; the remaining hyperparameters are set to
their default values in previous work (21). Figure S1 shows the

comparison results. The experimental results indicate that the
performance is worse than that ofMask R-CNN, a possible reason
being that the images in the training set are relatively small, only
512 × 512. In contrast, the images in our training set are large
enough, with most of the sizes being 700× 1,400.

3.2. Accuracy of the PPC
The accuracy of the obtained PPC depends on the judgment
of the caliper type. To better represent the accuracy of
caliper type judgments with different data complexities, we
randomly select 20 images with black backgrounds and 80
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images with complex backgrounds to make up a 100-image test
dataset. Table 3 demonstrates the accuracy of our method in
caliper classification.

The experimental results indicate that our method performs
well in the recognition of caliper types against a black
background, with an accuracy of 95%; however, the accuracy of
recognition of caliper types against a complex background could
be further improved.

3.3. Measurement Error
Test sets consisting of 200 LV images measured by scanners
are used as the ground truth. We measure the same LVs using
our method and compare the results. Notably, the LVs are not
recognized in 19 of the 200 images; these images are considered to
be 0mm in the measurement error statistics. Figure 11 displays
LVmeasurement results obtained by our method, compared with
the LV ground truth provided by experts. The LV diameters
determined by our method are quite close to the ground
truth, and the measurement error is small. The mean absolute
error, standard deviation, root mean squared error, and time
consumption of our method are listed in Table 4. Because 19 of
200 images are considered to be 0mm, the standard deviation
is large, 3.4mm. The experimental results demonstrate that our
method is accurate and efficient for measuring fetal LV width; for
example, the time consumption is 0.13 s per image and the mean
absolute measurement error is 1.8mm.

4. CONCLUSION

This paper describes an automatic method for measuring the
width of LVs in 2D US images. To the best of our knowledge, this
is the first study proposing an automatic measurement method
for fetal LVs based on 2D US images using deep learning. Our
method is able to automatically recognize and locate the fetal LV
in 2D US images and can measure the width of the LV rapidly
and accurately. Moreover, our model, with slight modifications,
can be extended to the measurement of other fetal biometrics,
such as femur length and head circumference. The demonstrated
robustness of the model implies that it is also a promising tool
to be used with various ultrasonic instruments to facilitate quick
clinical prenatal diagnosis. The experimental results on 200 LV
images indicate that the performance of our proposed method
is close to the manual method of LV measurement in terms of
accuracy and efficiency.

The measurement errors of our method mainly arise from
three sources: inadequate fitting of the LV contour, inaccurate
PPC calculation, and inaccurate diameter location. In future

work, we will focus on reducing measurement errors by using
a greater amount of LV data, improving the network structure
to enhance its abilities of detection and segmentation, and
modifying the location algorithm for determining LV diameter.
Our long-term goal is to develop an automatic system that can
measure all biometrics based on fetal US images.
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