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One-fourths of the patients have medication-resistant seizures and require seizure

detection and treatment continuously to cope with sudden seizures. Seizures can be

detected by monitoring the brain and muscle activities, heart rate, oxygen level, artificial

sounds, or visual signatures through EEG, EMG, ECG, motion, or audio/video recording

on the human head and body. In this article, we first discuss recent advances in

seizure sensing, signal processing, time- or frequency-domain analysis, and classification

algorithms to detect and classify seizure stages. Then, we show a strong potential

of applying recent advancements in non-invasive brain stimulation technology to treat

seizures. In particular, we explain the fundamentals of brain stimulation approaches,

including (1) transcranial magnetic stimulation (TMS), (2) transcranial direct current

stimulation (tDCS), (3) transcranial focused ultrasound stimulation (tFUS), and how

to use them to treat seizures. Through this review, we intend to provide a broad

view of both recent seizure diagnoses and treatments. Such knowledge would help

fresh and experienced researchers to capture the advancements in sensing, detection,

classification, and treatment seizures. Last but not least, we provide potential research

directions that would attract seizure researchers/engineers in the field.

Keywords: seizure detection, biosignal processing, biosignal classification, brain stimulation, EEG

1. INTRODUCTION

Epileptic seizure is a transient occurrence of signs or symptoms due to abnormal excessive or
synchronous neuronal activity in the brain (1). Currently, about 2.3 million adults and more than
450,000 children and adolescents in the United States live with epilepsy. About 150,000 people
are diagnosed with epileptic seizures each year (2). Epileptic seizures all start in the brain with
sudden abnormal electrical discharges1. Among patients with epileptic seizures, two-thirds can
control seizures through anti-epileptic medication, and another 8-10% could benefit from surgery.
The remaining 25% have medication-resistant epileptic seizures and experience sudden seizure
symptoms (3). Therefore, it is essential to notify the patient’s medication-resistant epileptic seizure
to the caretaker and analyze the pattern of related signals before, during, and after the seizure onset.

This article contributes to organizing seizure detection, classification, and treatment. We also
provide potential research directions that would attract seizure researchers/engineers in the field.
The existing seizure surveys reviewed seizure detection (4), classification (5–8), or treatment (9, 10).

1https://www.epilepsysociety.org.uk/epileptic-seizures#.XsfrI2hKiHs
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This paper discusses state-of-the-art techniques for (1) capturing
the physiology signals of seizures, (2) detecting and classifying
types of seizures, (3) seizures therapy, and (4) the challenges and
potential seizure-related research directions.

First, accurately and reliably capturing physiology signals
related to seizure is a critical step for designing robust seizure
detection systems. Monitoring brain activity signal (e.g.,
Electroencephalogram, EEG) is the most common method to
detect seizures. The EEG recording of patients with epileptic
seizures has two categories of abnormal activity: interictal,
abnormal signals recorded between epileptic seizures, and ictal,
the activity recorded during an epileptic seizure (6). We focused
on epileptic seizure detection and considered interictal and
ictal EEG signals except postictal state to detect abnormal EEG
signals. The EEG signature of an inter-ictal activity is occasional
transient waveforms, while that of an ictal activity is composed
of a continuous discharge of polymorphic waveforms of variable
amplitude and frequency (11). There are two kinds of traditional
EEG recording techniques: Invasive EEG and scalp EEG. The
invasive EEG recording is necessary to do surgery to implant the
electrodes in the brain. In the case of the scalp EEG, the user
is required to attach multiple electrodes that are connecting to
a monitoring device through many wires. Therefore, Patients
have to suffer the inconvenience of inserting something into
the body or attaching multiple electrodes. Also, for the scalp
EEG, a trained physician does such a complicated setup,
and the studies are often conducted in hospitals. Besides the
traditional EEG-based approach, epileptic seizures can also be
detected through eye (lid) movement, heart rate, blood pressure,
arterial oxygenation (SpO2), respiration, sweating, and so
on (4). These activities can be captured from physiology signals,
including Electrooculography (EOG), electrocardiography
(ECG), electromyography (EMG), electrodermal activity (EDA),
motion, audio/video recording, and multimodality sensing
approaches (4, 7).

We also discuss in detail the key components of these state
of the art systems to provide a detailed picture of recent efforts
on extracting these physiological signals for seizure detection.
These systems often include some essential components as
following: (1) signal acquisition, (2) signal processing, (3) feature
extraction. The signal acquisition component is designed to
capture physiological signals that are directly or indirectly
related to seizures (4, 12). These signals often contain a lot of
noises, which will be processed further using novel, yet complex
algorithms to extract the signal of interests (13, 14). Next, many
recent efforts have focused on building a stable setup features
representing the presence of seizures to improve the detection
accuracy (15–18). Hybrid time-frequency analysis features are
often used to overcome the impact of human motion artifacts as
well as to improve the system sensitivities (19–21). Specifically,
wavelet transform analysis (WT) approaches are employed (22)
to provide detailed resolutions of the seizure-related signatures
on both time and frequency domains (23).

Second, after capturing the physiology signals, it is important
to accurately detect and classify the type of detected seizures (5,
6, 24). Existing seizure classification methods primarily include
classical machine learning approaches [e.g., support vector

machine (SVM)] and novel deep-learning solutions [e.g.,
artificial neural network (ANN) (7)]. SVMdivides data belonging
to two groups into a hyperplane (25, 26). The original SVM is
a binary classification, whereas the class for seizure is divided
into at least three (focal seizure, generalized seizure, and healthy).
State of the art SVM-approaches only can classify two classes of
seizures (seizure vs. non-seizure) with high accuracy (27, 28). It is
not sufficient for seizure classification. Multiclass SVM methods
have been used by splitting one multiclass problem into several
binary classification problems (29, 30). Although many related
works have used multiclass SVM to classify various seizure types,
it is impractical due to the low classification accuracy and many
false alarms (29, 31, 32). Many recent efforts have focused on
developing more complex learning algorithms. Especially, deep-
learning solutions to detect a variety of seizures attract much
attention from researchers (33). The classification performance
depends on how the system structures hidden layers, such
as multilayer perceptron neural network (MLPNN), adaptive
neuro-fuzzy inference system (ANFIS), radial basis function
neural network (RBFNN), convolutional neural network (CNN),
and recurrent neural network (RNN) (34). ANN is the preferred
method over SVM because it is not affected by the number
of classes.

Third, after detecting and classifying different types of
seizures, treatment methods need to be developed to reduce or
remove the impact of seizures on patients’ normal life. Even
though it is difficult to find existing works in this direction, we
believe that these can be done by exploring the uses of state
of the art brain stimulation technique. We also discuss how
the recent development in brain stimulation and interventions
would help to treat seizures, such as decreasing cortical
excitability with low-frequency magnetic stimulation (35) or
counterbalancing the neuronal hyper-excitation through electric
neural modulation (36). In particular, brain stimulation has
been noted as an alternative to drug therapy to decrease the
frequency of seizure or reduce the symptom. It is mostly
divided into invasive and non-invasive. Although the invasive
brain stimulation stimulates the problematic seizure part of
the brain directly and provides a fast and accurate effect, it
is necessary to do surgery to implant the stimulator inside
the brain. It is very costly and may damage the brain during
the operation. Thus, many patients are reluctant to this type
of therapy. For non-invasive brain stimulation, there are two
principal methods: transcranial magnetic stimulation (TMS) and
transcranial direct current stimulation (tDCS) (10). TMS uses the
principle of electromagnetic induction to focus induced current
in the brain (37). Themagnetic fields generated by TMS penetrate
human tissue painlessly and induces electric currents that can
depolarize neurons or their axons in the brain (38). tDCS is
one of transcranial electrical stimulation (tES) and applies low-
amplitude direct currents via scalp electrodes and penetrate the
skull to enter the brain (37). Unlike other tES methods, tDCS
delivers a sustained current (39) and can make the therapeutic
effect through the sustained current. However, TMS and tDCS
provide low spatial resolutions, which lead to modulate neuronal
activity not only in the target but also in surrounding circuits
(40). Transcranial focused ultrasound (tFUS) is emerging as a
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method that can complement the low degree of spatial focality of
TMS and tDCS. We examine how brain stimulation can reduce
seizures based on these three approaches.

Last but not least, inspiring from the recent development
in seizure detection and classification method, we found that
more efforts are needed to put into the following research
direction to realize a complete, reliable, and low-cost seizure
detection systems. First, we believe that the state-of-the-art
seizure detection system performance is sufficient to build a
robust and reliable wearable device that could be used for daily
seizure monitoring and classification. Second, as the seizure
signatures are detected andmonitor, the recent brain-stimulation
techniques can be used to reduce seizure. We also suggest
different directions on how to build reliable and wearable seizure
therapy systems. Lastly, we discuss how to build an integrated
monitoring and stimulating seizure.

In the following, we first describe the state-of-the-art approach
to capture physiological signals related to seizures in section 2
reliably. Next, we discuss recent efforts on building machine
learning techniques to detect and classify seizures in section 3. In
section 4, we discuss the different approaches to seizure therapy.
Lastly, we summarize the overall contents of this article and
provide the prospect of future research.

2. ANALYZING PHYSIOLOGY SIGNALS OF
EPILEPTIC SEIZURE

Seizure detection and therapy systems generally consist of five
processes: (1) signal acquisition, (2) signal processing, (3) feature
extraction, (4) classification, and (5) therapy (5, 6, 24). The
processes mentioned above are illustrated in Figure 1. In this
section, we discuss the needed signal processing steps to analyze
the captured physiology signals of epileptic seizures. Upon the

processed data, detection and classification algorithms could
be built.

2.1. Collecting Seizure-Related Signals
A seizure can be detected by monitoring various physiological
signals from the human body through (1) EEG, (2) EMG, (3)
ECG, (4) motion, and (5) audio/video recording (4, 7). Among
these physiological signals, EEG is the most popular choice
because of its advantages, such as (1) the ability to capture
the neural activation of the brain, (2) high temporal, and (3)
spatial resolutions. However, the main limitation of traditional
EEG measurement lies in its obtrusiveness and complicated
setup, so it can only be performed in a controlled environment
by a specialized technician. Also, some kinds of seizures like
generalized onset motor seizures can be detected more clearly by
measuring body movements or other physiological signals (18,
41). Thus, researchers have developed seizure detection devices
using various non-EEG signals as well as EEG signals (17, 18). In
the following discussion, we discuss how these recorded signals
are used to detect seizure events by dividing into EEG and
non-EEG methods.

2.1.1. Electroencephalogram (EEG)-Based Approach
EEG recording is the most common method to get the biosignals
for seizure detection. It measures the electrical activity of the
brain. Since epileptic seizure activities appear as abnormal signal
patterns on the EEG, we can use the EEG signal variation to detect
seizures. EEG signals with paroxysmal abnormality show spikes,
spike-and-slow waves, and sharp waves in Figure 2A. Spikes are
the primary form, and their time length is 20–70 ms. The spike-
and-slow waves appear after spike-wave, and their time length is
200–500ms. Sharp waves are similar to spike-wave, but their time
length is 70–200 ms (5).

The EEG recordings of patients with epileptic seizures show
two categories of abnormal activity. Interictal has the abnormal

FIGURE 1 | Seizure detection and therapy overview.
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FIGURE 2 | EEG waveform. (A) EEG waveform with paroxysmal abnormality. (B) Sudden death in epilepsy recorded in ambulatory EEG (42).

signals recorded between epileptic seizures, and ictal is the
activity recorded during an epileptic seizure (6). We focused
on epileptic seizure detection and considered interictal and
ictal EEG signals except postictal state to detect abnormal EEG
signals. The EEG signature of an inter-ictal activity is occasional
transient waveforms, while that of an ictal activity is composed
of a continuous discharge of polymorphic waveforms of variable
amplitude and frequency (11).

Many studies have been carried out for seizure detection using
scalp EEG. Among them, we have selected and summarized
some studies from past to recent which clearly explained the
seizure detection procedure, as shown in Table 1. Attaching EEG
electrodes on all parts of the scalp is reasonable because there
are many types of seizures, and the initial location which was
generated the abnormal EEG signal is different. However, it
causes mobility impairment, increases the cost of the measuring
device, and is inappropriate for patients who need continuous
seizure monitoring.

Capturing EEG signals around the ear is a promising finding
which can minimize the obtrusiveness of conventional EEG
methods. The evoked responses from the ear-EEG are typically
10–20 dB lower in amplitude than those of traditional scalp
EEG recordings while maintaining a similar signal-to-noise ratio
(SNR) (62). Mikkelsen et al. (63) compared 32 conventional
scalp electrodes with 12 ear electrodes. The measured signal
from the ear electrodes reflects the same cortical activity as
that from nearby scalp electrodes. Bleichner et al. (63) also
worked for the comparison between a traditional EEG cap setup
and their around-the-ear electrode array (cEEGrid). They have
shown that their system can capture meaningful EEG signals
such as eye-closing alpha wave, sleep spindles, and epileptic
spike-wave. Gu et al. (24) utilized the cross-head and unilateral
channels from the behind-the-ear EEG. Temporal waveform
and frequency content during seizures from behind-the-ear EEG
visually resembled those from scalp EEG. Especially, this paper
provides the coherence between the behind-the-ear EEG channel
and the best match-up scalp EEG channel on 12 patients like
Figure 3. McLean et al. (42) reported the sudden death in epilepsy
recorded in ambulatory EEG. In Figure 2B, the seizure activity
abruptly terminated, and the EEG became a flat line. The EEG
variation graph of Figure 2B shows that these EEG channels may

have significant patterns for detecting a seizure. Also, the EOG
from LT-LC and RT-RC have similar morphology to that from
Fp1-F7 and Fp2-F8, respectively.

2.1.2. ECG, EMG, Motion, Audio, and Video-Based

Approach
EEG-based measurement usually implies that the sensors need
to be attached to a human head for seizure defections. Also,
EEG monitoring is prone to errors in interpreting complex
signals of EEG and is mainly used to detect seizures from
temporal lobe epilepsies (2, 64). Therefore, researchers have
developed seizure detection devices with various other methods.
Among the relatively recent studies, we tried to select papers,
which use other signals more actively than EEG and follow
the clear seizure detection procedure, as shown in Table 1. For
example, contactless sensing devices such as mattress sensor
[Emfit2, MP53], carry-on devices such as smartwatches or wrist
devices [Cogan (65), Embrace (59), Inspyre4], smart textiles
(Neuronaute5), and temporary tattoos (4) can be used to detect
epilepsy. We found that ECG, EMG, motion, and audio/video
recording approaches have been used to monitor epilepsy.

Electrocardiography (ECG)monitoring measures the electrical
properties of the heart and detects heart rate (HR) and heart
rate variability (HRV). Most of the generalized tonic-clonic
seizures (GTCS) cause an increase in HR (66). Such events
subsequently increase the risk of sudden unexpected death in
epilepsy (SUDEP) (42). HRV is also useful to distinguish focal
seizures with physical exercise (51). The most common pattern
of HRV associated with focal onset impaired awareness seizures
is an initial steep acceleration at the onset of the seizure (67).
The HRV in temporal lobe seizures is different from that in
psychogenic non-epileptic seizures (68). ECG can be used to
detect a seizure. However, the accuracy and ability to detect a
seizure early are still very limited.

Electromyography (EMG) monitoring measures electrical
activity in response to a nerve’s stimulation of the muscle.Motion

2https://www.safetysystemsdistribution.co.uk/emfit-tonic-clonic-seizure-
monitor-basic/
3https://medpage-ltd.com/epileptic-tonic-clonic-seizure-alarm-MP5
4https://smart-monitor.com/about-smartwatch-inspyre-by-smart-monitor/
5https://www.bioserenity.com
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TABLE 1 | Seizure detection depending on the signal types.

References Signal

acquisitiona

Seizure typeb (43) Noise filtering Feature extractionc Experiment Resultsd

(44) Scalp EEG Focal onset seizures

and GTCS

High-pass filter

Low-pass filter

Time-frequency domain

features - WT

652 h of scalp EEG, including 126 seizures in 28 patients SEN 76%, false detection rate 0.34/h, median

detection delay 10 s

(45) Scalp EEG Focal onset seizures Band-pass filter Time-frequency domain

features - WT

The algorithm was tested on scalp EEG recordings from

14 patients, totaling 75.8 h with 63 seizures

SEN 90.5%, false detection rate 0.51/h, median

detection delay 7 s

(46) Scalp EEG Unspecified Band-pass filter

Butterworth filter

Frequency-domain

features—stationary WT

Scalp EEG records of 24–48 h of duration of 18 epileptic

patients

SEN 87.5% and SPE 99.9%

(47) Scalp EEG Focal seizures Band-pass filter Time-frequency domain

features - WT

10 participants’ hospital archived 127-h EEG recordings

with 310 ictal discharges

SEN 93% and precision 55%

(24) Ear EEG FIAS Band-pass filter

spatial filter

Time and frequency features In twelve with focal onset impaired aware, four additional

electrodes were glued on the skin behind the ears

With scalp EEG, detection had a median SEN of 100%

and a FDR of 1.14 per hour. With behind-the-ear EEG,

it had a median SEN of 94.5% and a FDR of 0.52 per

hour

(48) ECG Unspecified neonatal

seizures

A central moving

average filter

Time and frequency features The performance was evaluated on a large dataset of 208

h from 14 newborn infants

SEN 60% and SPE 60%

(49) ECG Focal myoclonic and

GTCS

Unspecified Unspecified Three epilepsy patients are admitted in their facilities for

14, 13, and 9 nights, respectively. The EMFIT bed sensor

is used to monitor the heart rate variability

SEN 75% and SPE 70.4%

(50) ECG Focal onset and

generalized onset

seizures

Unspecified Time-domain features Single-lead ECG signals were recorded from patients

suffering from focal and generalized seizures. Two

algorithms are proposed: one quantifies changes in the

QRS morphology using PCA, and one assesses

cardiorespiratory interactions using phase rectified signal

averaging

PPV of 86.6 and 77.5% and SEN of 100 and 90% were

achieved for focal and generalized seizures respectively

(51) ECG FTCS and GTCS Median filter Time-domain features 126 seizures from 43 patients were recognized. The

best-performing HRV algorithm combined a measure of

sympathetic activity with a measure of how quickly HR

changes occurred

SEN 93.1% for all seizures and 90.5% for

nonconvulsive seizures, FDR 1.0/24 h, and PPV 87%

(52) PPG and

ECG

Focal onset seizures Notch filter

Low-pass filter

Band-pass filter

Butterworth filter

Time-domain features The test was applied to recordings of 11 patients in a

hospital setting with 701 h capturing 47 TLE

The SEN of the hospital system, the wearable ECG

device and the wearable PPG device were respectively

57, 70, and 32%, with corresponding FDR per hour of

1.92, 2.11, and 1.80

(18) surface EMG

and ECG

Tonic seizures and

GTCS

High-pass filter

Anti-aliasing filter

Butterworth filter

Notch filter

Time and frequency features Six patients with tonic seizures were included The best performance in this study is SEN = 0.53 and

FDR = 1.49 or SEN = 0.63 and FDR = 4.03,

depending on the choice of parameters

(53) surface EMG GTCS Notch filter

Band-pass filter

Time and frequency features In 33 patients, 1,399 h of surface EMG data were

recorded, averaging 42 (SD± 17) h per patient. Eleven

patients had 21 GTCS recorded by video-EEG

20 of 21 GTCS were detected (95% SEN, 95%

confidence interval 76–100) all within 60 s (mean 15.2

s range -4 to 56 s)

(41) ACM Tonic seizures Low-pass filter Time-domain features Three experts divided the corresponding ACM-signals into

classes using video and accelerometric information

For off-line, 80% of the tonic seizures were detected

with a positive predictive value of 0.35, and 42% of the

false positives is also a seizure

(Continued)

F
ro
n
tie
rs

in
N
e
u
ro
lo
g
y
|
w
w
w
.fro

n
tie
rsin

.o
rg

5
Ju

ly
2
0
2
0
|V

o
lu
m
e
1
1
|
A
rtic

le
7
0
1

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


K
im

e
t
a
l.

E
p
ile
p
tic

S
e
izu

re
D
e
te
c
tio

n
a
n
d
Tre

a
tm

e
n
t

TABLE 1 | Continued

References Signal

acquisitiona

Seizure typeb (43) Noise filtering Feature extractionc Experiment Resultsd

(54) ACM Hypermotor seizures

(GTCS)

Unspecified Time-domain features 7 patients between 5 and 15 years old and 51 hypermotor

seizures

SEN 95.71% and PPV 57.84%

(55) ACM FTCS Unspecified Time-domain features Thirty-nine FTCS were recorded in 20 patients The wireless wrist accelerometer correctly detected 35

seizures. The mean SEN per patient was 91% (95%

confidence interval 80–100)

(56) Audio GTCS and long

generalized tonic

seizures

Unspecified Unspecified Ten patients with symptomatic generalized or multifocal

epilepsies take participate in the experiment

SEN 0.81 (range: 0.33–1.00) and PPV 0.40 (range:

0.06–1.00)

(57) Audio GTCS Unspecified Unspecified 166 audio clips of 30 s duration from 83 patients with one

clip during a seizure period and one clip during a

non-seizure control period for each patient

PPV 0.91

(58) Image

processing

Focal clonic seizures

of newborns

A differential

filtering

Unspecified They extracted the average motion signal from a video of a

newborn affected by a neonatal seizure

Single window processing has SEN 0.93 and SPE

0.67, while Three windows processing has SEN 0.60

and SPE 0.86

(59) EDA + ACM FTCS Unspecified Time and frequency features A total of 16 FTCS were recorded from seven patients The system detected 94% of the FTCS with 0.74 per

24 h FDR

(16) EDA + ACM GTCS Unspecified Time and frequency features The 9 patients’ recordings included 20 GTCS over a total

of 738 h

SEN 95% and FDR 0.48

(60) EDA + ACM Unspecified (including

seizures without

motor activity)

Low-pass filter Time-domain features EDA and ACM from 8 patients were analyzed. Different

types of seizures, including seizures without motor activity,

were taken into account

Overall SEN 89.1 and SPE 93.1%

For seizures without motor activity, SEN 97.1% and

SPE 92.9%

(17) EDA + ACM

+

temperature

+ HR +

SpO2

FIAS, FTCS, and

GTCS

A 3-s smoothing

filter

Time-domain features 339 h of data (26 seizures) collected from 10 patients in an

epilepsy monitoring unit

100% sensitivity and high accuracy in six out of 10

patients

(61) EEG-video-

audio

Focal onset seizures Low-pass filter Unspecified 12 patients with focal onset seizures had undergone 24 h

EEG-video-audio monitoring over 1–15 days (mean 10.5,

standard deviation 3.86)

SEN 81.42% and FDR 5.38/h

aACM, Accelerometry; HR, Heart rate. bFIAS, Focal onset impaired awareness seizures; FTCS, Focal to bilateral tonic-clonic seizures; GTCS, Generalized tonic-clonic seizures. cWT, Wavelet transform; dPPV, positive predictive values;

SEN, sensitivity; SPE, specificity; FDR, False Detection Rate.
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FIGURE 3 | The best match-up scalp EEG channel of each behind-the-ear EEG channel on 12 patients (24).

is detected using accelerometers measuring the accelerations of
objects in motion along reference axes (69). Both signals could be
useful to detect generalized onset motor seizures.

For Audio/video recording, Arends et al. (56) evaluated the
performance of audio-based detection of primary seizures (tonic-
clonic and long generalized tonic). They adapted the sound
threshold by training during the first week. Recognizable sounds
over the threshold occurred in 23 of the 45 significant seizures.
This result signifies the use of only audio recording has definite
limitations. Ntonfo et al. (58) proposed the image processing
approach to detect the focal clonic seizures of newborns, which
are related to the periodic movements of parts of the body. They
extracted an average luminance signal representative of the body
movements from a video of a newborn. Single window processing
has high sensitivity ( TP

TP+FN , where TP: True Positive, FN: False

Negative) and low specificity, ( TN
TN+FP , where TN: True Negative,

FP: False Positive), while multiple interlaced window processing
has low sensitivity and high specificity. It is necessary to apply the
advanced window protocol to improve performance.

2.1.3. Multimodality Sensing Approach
The multimodality sensing approach may improve sensitivity
and lower false-positive alarms by combining the profits of each
sensor, like sensing EMG signals for tonic seizure detection (12).
We have chosen a number of multimodality sensing studies for
the purpose of dealing more with studies that use other signals
more actively than EEG, as shown in Table 1. Electrodermal
activity (EDA) refers to the variation of the electrical properties of
the skin in response to sweat secretion (70). EDA is mainly used
with other sensors to detect seizures, especially with ACM (59).

Cogan et al. (65) detected epileptic seizures using wrist-worn
bio-sensors, which detect heart rate (HR), arterial oxygenation
(SpO2), ACM, EDA, and temperature. They observed the seizure
pattern of HR ↑⇒ SpO2 ↓⇒ EDA ↑. Using EEG and
non-EEG signals together could be more appropriate to employ
the seizure detection system precisely and extensively. Pauri
et al. (61) applied EEG-video-audio monitoring to 12 patients

with refractory focal seizures using 15-channel EEGs (video-
cassettes). Greene et al. (71) combined EEG monitoring with
ECG monitoring simultaneously for the robust detection of
neonatal seizures.

2.2. Processing the Collected Signals
To collect signals, we can use wet electrodes or dry electrodes.
Although the use of dry electrodes is suitable for continuous
signal collection, we still need to rely on the conductive paste
and gripping force of the earpieces to address the gap between
the electrodes and the user’s skin (72). Therefore, wet electrodes
are used to maintain signal quality. And gold-plated copper
electrodes are proper material due to the resistance to skin oil and
sweat and rare skin allergy (73). Signal processing is necessary
to get the clear biosignal waveform in the most significant
frequency range (1–35 Hz) without signal distortion. Raw signal
is influenced by noises from power-line and other equipment,
and the signal is a mixture of several biological signals, including
EEG, EOG, and EMG signals. Thus, we need to use filters.

2.2.1. Basic Filters
Typical four types of the basic filter have been used to get the
clear biosignal: a low-pass, high-pass, band-pass, and notch (=
band-stop) filter. In the United States, the notch filter is set
at 60 Hz6 because the 60 Hz power-line frequency noise from
wires, light fluorescent, and other equipment can contaminate
biosignal records. The high-pass filter can remove the low-
frequency artifacts noise due to poor contact state of electrodes
or the sweat of the patient under the electrodes. Furthermore, the
median filter can reduce noise and high-frequency oscillations
in signal data (74). However, these filters do not preserve all
designated frequencies and cannot extract the specific biosignal
among the overlapped biosignals spectrum (75). For example,
EOG signals by eye movements or blinks propagate to the scalp
electrodes creating noises in the recorded EEG signals.

6https://www.iec.ch/worldplugs/list_bylocation.htm
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FIGURE 4 | Structure of an Linear Adaptive Filter.

2.2.2. Spatial Filters
The spatial filter technique, such as Independent Components
Analysis (ICA), is a promising solution to solve the challenge of
overlapped artifacts in EEG recording. Jung et al. (76) applied
the spatial filters derived by ICA, which can separate and remove
ocular artifacts from the recorded EEG signals. ICA technique,
however, requires the use of multiple EEG electrodes to provide
spatial information with the captured signals. In other words,
ICA can decompose the independent components only when the
number of data channels is more than that of signal sources (77).
Also, ICA does not work when the training data set is too
small (76).

The regression-based technique is a proposed solution to
overcome the limitation of ICA. We can apply the regression
approach to any number of EEG channels. Regression-based
noise filtering has two phases. First, the calibration phase
determines the transfer coefficients between other biosignal
channels and EEG channels. Second, the correction phase
estimates the noise component in the EEG recording (78). Due
to this procedure, it is challenging to apply this filter in real-time.
The coefficients should be controlled in the normal range. Once
the coefficient is out of the range, it is not trivial for the calibration
phase to turn them over to the normal range.

The wavelet-based technique is another denoising method
that has been proposed for EEG signals. The wavelet-based
technique compares each wavelet coefficient to a predetermined
threshold and sets it to zero if its magnitude is less than the
threshold (78). This technique can work in real-time and does
not require the prior data of the artifacts (79). However, choosing
the threshold level is a complicated process.

Lastly, if EEG recordings have multi-channel, they
give blurred images of brain activity due to the volume
conduction (80). In this situation, spatial filters can improve
the SNR using the common spatial pattern (CSP) algorithm.
The CSP extracts new time series whose variances are optimal
for the discrimination of two populations of EEG based on the
simultaneous diagonalization of two covariance matrices (81).
Several related works have demonstrated the performance of
spatial filters for multi-channel EEG (80, 81).

2.2.3. Adaptive Filters
Adaptive filter adapts the coefficients of the filter to generate a
signal similar to the noise (75). A linear adaptive filter is made up
of a primary signal (= corrupted signal) d(n), a secondary signal

(= reference signal) x(n), an adjustable filterH(z), an output from
the adjustable filter y(n), and an error e(n) in Figure 4 (82). The
adaptive filter usually adjusts the coefficients of filter to minimize
the squared error between d(n) and y(n) (83). Correa et al. (84)
arranged a cascade of three adaptive filters to remove multiple
artifacts and got the EEG signal from EEG + artifacts (EOG, ECG,
and power-line frequencies). However, the linear adaptive filter
cannot deal with non-linear signals.

Researchers have developed a neural network (NN) and fuzzy
network (FN) to control non-linear signals. NN is made up of
an input layer, hidden layer, and output layer, and users do not
know the hidden layers. Fuzzy logic analyzes analog data as
logical variables having continuous values between 0 and 1 (85).
Each method has the following limitation. The structure of NN
is challenging to decide, and the learning efficiency of FN is
lower than that of NN (86). Combining them as a fuzzy neural
network (FNN) is one solution to complement each drawback.
However, FNN requires the training data in advance for the
backpropagation, making the real-time application difficult (87).

3. CLASSIFYING AND DETECTING
EPILEPTIC SEIZURE

Seizure classification mainly categorizes the input data into
one of two groups: seizure and non-seizure. Under specific
requirements, the group of seizures can break down into
sub-categories depending on the location of the source and
symptoms. Those are considered as multiclass classification.
Feature-based approaches, including feature extraction and
conventional machine learning techniques, have been widely
adopted to identify epileptic seizures (7). For each specific data
set, the studies listed in Table 2 imposes different classifier
configurations and features. Although we tried to cover
recent studies in Table 2, we also introduced some previously
published papers to represent typical classification methods
or data that were used well in the past. After the recent
success of Deep Learning, many researchers start applying
Deep Learning for medical problems, especially epileptic seizure
detection/classification (33).

3.1. Feature-Based Design
In this protocol, the number and type of features have a
significant impact on seizure detection performance. There
are several feature extraction methods, including time-
domain features, frequency-domain features, time and
frequency features (discretely), and time-frequency domain
features (simultaneously).

3.1.1. Feature Extraction

3.1.1.1. Time-domain analysis
Time-domain analysis works for the stationary signals, but
biosignals are non-stationary. One method to quantify a non-
stationary time series is to consider it as a large number
of stationary segments (99). There are 12 key features
in three categories: (1) mean and standard deviation for
a time series with symmetric distribution; (2) median,
mode, range, first quartile, and third quartile to measure
the locations of a time series; (3) maximum, minimum,
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TABLE 2 | Classification for seizure detection [recommended comprehensive analysis: (88, 89)].

References Classificationa Signal Input data Experiment Resultsb

(26) RBF SVM Scalp EEG Constructing a feature vector that

unifies in a single feature space the

time-evolution of spectral and spatial

properties of the brain’s electrical

activity

They trained on 2 or more seizures per patient and

tested on 916 h of continuous EEG from 24 patients

The algorithm detected 96% of 173 test seizures with a

median detection delay of 3 s and a median false detection

rate of 2 false detections per 24 h period

(90) Multiclass

SVM

Scalp EEG Fuzzy-rules-based sub-band specific

features

Equal to (26) SEN 98% and FDR 3%

(30) Multiclass

SVM

Scalp EEG Feature extraction by computing the

wavelet coefficients and the Lyapunov

exponents

They used the data described in (91) (Five data sets:

each set has 5 subjects and 2360 s duration, only one

set shows seizure activity) and tried to discriminate the

EEG signals

The total-classification accuracies of the SVM, PNN, and

MLPNN were 99.28, 98.05, and 93.63%, respectively

(92) MLPNN Scalp EEG Analysis with discrete wavelet

transform and line length (93) feature

extraction

Equal to (30) For the classification problem between seizure and

non-seizure, SEN 98.61% and SPE 94.60%

(94) MLPNN Scalp EEG Maximum, entropy, average, standard

deviation, and mobility from each

sub-band

Equal to (30) The classification of the EEG signals achieved with

approximately 97.5% accuracy and the variance of 0.095%

(95) ANFIS Scalp EEG Maximum, minimum, mean, standard

deviation from each sub-band

Equal to (30) Average SEN 98.68% and SPE 99.67% from five EEG

datasets

(96) RBFNN Scalp EEG Unspecified EEG signals of 418 patients with epilepsy are recorded

using Nihon-Kohden EEG machine (204 partial epilepsy

samples, 47 primary generalized epilepsy samples)

MLPNN: 8.8% and 19.1% error rate for focal and generalized

seizure, RBFNN: 3.4% and 10.6% error rate for focal and

generalized seizure

(20) RNN Scalp EEG Dominant frequency, average power

in the main energy zone, normalized

spectral entropy, spike rhythmicity,

and relative spike amplitude

They used the data described in (91) (Two data sets:

each set has 5 subjects and 2,360 s duration, only one

set shows seizure activity) and tried to discriminate the

EEG signals

Epileptic detection accuracy 99.6% with a single input feature

(97) RNN + RBFNN Scalp EEG Wavelet entropies, sample, and

spectral entropies

Equal to (30) 99.75% accuracy for detecting normal vs. epileptic seizures

94.5% accuracy for detecting normal vs. interictal focal seizures

(33) CNN Scalp EEG Long-term EEG signals The total recording time of EEG was of 1124.3 h during

which 97 seizures from 24 patients. EEG signals were

converted into EEG plot images, each of which was

classified by CNN as seizure or non-seizure

The median true positive rate of CNN is 74%

(98) CNN Scalp EEG Spectral and temporal features from

EEG epilepsy data

Seizure detection using cross-patient EEG dataset of 23

patients. The dataset has 969 h with 173 seizures

Overall SEN of 90.00%, SPE of 91.65%, and accuracy of

98.05%

aRBF, Radial basis function; SVM, Support vector machine; ANN, Artificial Neural Network; MLPNN, Multilayer perceptron neural network; ANFIS, Adaptive neuro-fuzzy inference system; RBFNN, Radial basis function neural network;

RNN, Recurrent neural network; CNN, Convolutional neural network. bSEN, Sensitivity; SPE, Specificity.
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variation, skewness, kurtosis to pull out the shape characteristics
of a time series (99). Besides, existing works have used
slope sign change, Willison amplitude (100), Lyapunov
exponents (13), and Hjorth parameters (19) to extract features
from EEG signals.

3.1.1.2. Frequency-domain analysis
There are three basic techniques for frequency-domain
analysis: Fast Fourier transform (FFT), Eigenvector, and
Autoregressive (101). FFT decomposes a function (signal) of
time into a frequency component fast by rearranging the input
elements in a bit-reversed order and building the decimation
in time (102). Fourier transform is only suitable when we
are interested in what frequency components exist, not times
occurring the frequency components (23). However, the time
that a specific frequency component happens is essential to
analyze biosignals. To solve this problem, a short-time Fourier
transform (STFT) uses the idea that some part of a non-stationary
signal at any given interval of time is a stationary signal. Johnson
et al. (103) extracted relative power spectral density (PSD)
value for each 1 Hz bin from EEG 1–40 Hz to check the state
of drowsiness.

Eigenvectors are employed to calculate the signal’s frequency
and power from artifact dominated measurements (101). These
methods are based on an eigen decomposition of the correlation
matrix of the noise-corrupted signal and produce high-resolution
frequency spectra even when the SNR is low (14). There are
three eigenvector methods with higher resolution (Pisarenko,
MUSIC, and Minimum-Norm) (104). The Pisarenko algorithm
is particularly useful for estimating a spectrum containing sharp
peaks at the expected frequencies (105). The MUSIC method
eliminates the effects of spurious zeros by using the averaged
spectra of all of the eigenvectors corresponding to the noise
subspace (106). The Minimum-Norm method puts false zeros
inside the unit circle and calculates the desired noise subspace
vector from the eigenvectors (107).

Autoregressive methods estimate the PSD of the EEG signal
using a parametric approach. These methods solve the spectral
leakage problem and yield better frequency resolution (101).
Yule-Walker method may lead to incorrect parameter estimates
in the case of nearly periodic signals (108). As an alternative,
Burg’s method first estimates the reflection coefficients, and then
the parameter estimates are determined using the Levinson-
Durbin algorithm (108).

3.1.1.3. Time and frequency features
Using both time- and frequency-domain features can improve
seizure classification performance. Srinivasan et al. (20) used
three frequency-domain features (dominant frequency, average
power in the primary energy zone, and normalized spectral
entropy) and two time-domain features (spike rhythmicity and
relative spike amplitude). Iscan et al. (109) combined time and
frequency features to distinguish between seizure and healthy
EEG segments. They got time-domain features using the cross-
correlation method and frequency-domain features calculating
the PSD.

3.1.1.4. Time-frequency domain analysis
Time-frequency domain analysis studies a signal in both the
time and frequency-domains simultaneously. Time-frequency
distribution (TFD) and wavelet transform analysis (WT) are the
principal techniques of time-frequency domain analysis.

The basic idea of TFD is to devise a joint distribution of
time and frequency that describes the energy density or intensity
of a signal simultaneously in time and frequency (110). In this
distribution, we can calculate the fraction of energy in a specific
frequency and time range, and the distribution of frequency at a
particular time. It is done by constructing a joint time-frequency
function with the desired attributes and then obtaining the
signal that produces the distribution (110). Boashash et al. (111)
performed TFD feature extraction on multi-channel recordings
for seizure detection in newborn EEG signals. They selected the
optimal subset of TFD features using the wrapper method with
sequential forward feature selection.

WT is an alternative to STFT. STFT gives information about
the spectral components at any given interval of time, but not
at a specific time instant (23). It causes a problem of resolution.
WT gives a variable resolution using the characteristics that
high frequencies are better resolved in time-domain, and low
frequencies are in frequency-domain (23). WT can capture very
minute details, sudden changes, and similarities in the EEG
signals (22). It is more effective than other methods because
biosignals are non-stationary (112). WT transforms a small
wave (a mother wavelet) as a pattern and expresses an arbitrary
waveform on the scale of magnification and reduction. WT
classified into continuous wavelet transform (CWT) and discrete
wavelet transform (DWT). The CWT Y(j, k) is defined by the
following equation for any fixed-function 9j,k(t) in Equation (1).
The mother wavelet (9j,k(t)) is shifted by a small interval of
j in the x-axis, and correlation coefficients are computed. This
procedure is repeated for various scaling factors k (dilations) in
the y-axis (22).

Y(j, k) =
∫

f (t)9j,k(t)dt (1)

CWT is computed by changing the scale of the analysis
window, shifting the window in time, multiplying by the
signal, and integrating overall times (23). However, the CWT
has disadvantages such as severe redundancy of coefficients,
difficulty in managing infinite wavelets, and lack of analytical
methods that can easily calculate for most functions. The DWT
solves these disadvantages by scaling and moving discretely, not
continuously. The DWT employs two sets of functions called
scaling functions and wavelet functions. These functions are
related to the low-pass filter [g(n), the mirror vision] and high-
pass filter [h(n), the discrete mother wavelet], respectively (113).
In the sub-band decomposition of DWT, each stage consists
of two digital filters and two downsamplers by 2. The first
stage receives a signal x(n) and provides the detail D1 and
the approximation A1 (114). The first approximation is further
decomposed continuously. Many related works have used WT to
extract features (115).
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3.1.1.5. Integrating sensing signals from multiple channels
Shoeb et al. (116) extracted four features (m = 4) representing
waveformmorphology on each of 21 channels (n = 21). Then they
assembled these features into a feature vector by concatenating
them orderly called the early integration (EI) architecture.
They also studied the performance of a patient-specific detector
with an alternative architecture called the late integration (LI)
architecture. In this structure, the m features of each channel
assembled into a distinct feature vector and are assigned to
the individual class (seizure or non-seizure). LI allows for the
independent classification of activity on each channel, whereas
EI summarizes interrelations between channels.

3.1.1.6. Lesson learned
Recording EEG signals is crucial because almost all seizures start
from the brain. However, EEG measurement requires attaching
many electrodes on the scalp with mobility impairment and
making continuous measurement difficult. Therefore, we look
forward to developing the devices which measure EEG signals
without causing discomfort. Recording EEG signals around the
ear is an emerging method to record EEG signals on the scalp.
We confirmed some possibilities by comparing the similarity
between EEG signal measurements around the ear and those on
the scalp from many related works. Furthermore, we can get
various biosignals as well as EEG around the ear (117).

The future seizure detection system is necessary to improve
the signal processing procedure using spatial and adaptive filters.
Basic filters do not entirely remove noise and not preserve all
designated frequencies and cannot extract the specific biosignal
among the overlapped biosignals spectrum (75). As we saw in
Figure 3, EEG recordings have multi-channels even around the
ear. Spatial filters can improve the SNR among several channels
and surrounding noises using the CSP algorithm. Adaptive
filters reflect the previous signal error through the self-developed
adaptive algorithm. Linear or non-linear signals are controlled
depending on the adaptive algorithm.

Recent papers have applied WT to the seizure detection
system to analyze the processed signals. Time-domain analysis
and frequency-domain analysis are easy to use and give clearly
defined features. However, they may not catch the minute
features for seizure because biosignals are non-stationary. Even
though there are alternatives like making a large number of
stationary segments from any given interval of time, they still

have a problem of resolution. Meanwhile, WT can capture very
minute details, sudden changes, and similarities in the EEG
signals (22). WT classified into CWT and DWT. CWT has
disadvantages about the redundancy of coefficients, difficulty in
managing infinite wavelets, and lack of analytical methods. DWT
is usually used to solve these problems. Daubechies wavelet is
the most commonly used wavelet for DWT, and the interested
reader for the wavelet-based EEG processing can refer to (22) for
more details.

3.1.2. Feature Classification Algorithms

3.1.2.1. Support vector machine (SVM)
SVM is a linear classifier that uses a hyperplane (25) to separate
the data space. The mathematical expression of a hyperplane is
the general form of a linear equation in multi-dimensional space.

a1x1 + a2x2 + a3x3 + ...+ anxn = b, (2)

which must have at least one ai other than zero. Given a
dataset, there could be many hyperplanes that separate the data.
SVM maximizes the distance between the nearest points from
each group toward the hyperplane, as described in Figure 5A.
This distance is called a margin. Conventional linear SVM has
a limitation due to the non-linear changes of biosignals. A
non-linear SVM classifier using an RBF kernel is potentially
a proper approach because the seizure and non-seizure classes
are not linearly separable. This approach detected 96% of 173
test seizures in a median detection delay of 3 s (26). When the
categories of seizure are divided into more than two groups
(e.g., focal seizure, generalized seizure, healthy), the binary
classification is not sufficient to distinguish data. In this case,
the SVM method for dealing with multiclass is applied to handle
the problem.

The development of multiclass SVM follows two approaches.
One vs. rest approach is a method of binarizing the i-th class
and the remaining M − 1 classes. This process is repeated in the
same operation for the other classes. A total of M hyperplanes
are created. On the other hand, one vs. one approach is to select
two of the M classes to create a hyperplane, then select the other
two class combinations and repeat the same operation. A total of
M(M − 1)/2 hyperplanes are created. The one vs. rest approach
has an imbalance in the size of the two sets, unlike the one vs.
one approach. However, the one vs. rest approach is mainly used

FIGURE 5 | (A) SVM (O: positive cases, X: negative cases) (25) and (B) MLPNN (113) architectures.
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FIGURE 6 | (A) ANFIS (118) and (B) RBFNN (119) architectures.

because the total number of hyperplanes increases linearly with
the number of classes. Many related works have used multiclass
SVM to classify seizure states (29, 30).

3.1.2.2. Multilayer perceptron neural network (MLPNN)
In MLPNNs, each neuron in the hidden layer sums its input
signals after multiplying them by each link weights and computes
its output as an activation function of the sum, as shown in
Figure 5B (113). The activation function can be the rectified
linear unit (ReLU), hyperbolic tangent, and so on. Guo et al.
(92) used Bayesian regularization back-propagation to train
MLPNN, which updates the weights and biases depending on
Levenberg-Marquardt optimization. It minimizes a combination
of squared errors and weights and then determines the correct
combination to produce a network that generalizes well. Their
network structure has one input layer with five neurons, one
hidden layer with 10 neurons, and one output layer with one
neuron (0—the normal/non-seizure EEG, 1—the seizure EEG).
Naghsh and Aghashahi imported the feature vectors into an
MLPNN system to classify the signal into three states of normal
(healthy), a seizure-free interval (interictal), and a full seizure
interval (ictal) (94).

3.1.2.3. Adaptive neuro-fuzzy inference system (ANFIS)
Neuro-fuzzy systems utilize the mathematical properties of
ANNs in tuning rule-based fuzzy systems to approximate the
way humans process information (95). Especially, ANFIS (118)
has shown significant results in modeling non-linear functions.
A type-3 ANFIS has five layers like Figure 6A. A circle and
square indicate a fixed and adaptive node, respectively. In layer
1, the input values pass through the selected fuzzy membership
function (µAi and µBi, i = 1, 2). This function could be a
bell-shaped with a maximum equal to 1. Premise parameters
{ai, bi, ci} in the function change during the training process.
In layer 2, each simple multiplier multiplies the output values
of layer 1 [wi = µAi(x)µBi(y), i = 1, 2]. In layer 3, each
normalization function produces wi =

wi
w1+w2

, i = 1, 2. In layer
4, the output values of layer 3 go into the Takagi and Sugeno’s
first-order function (120).Consequent parameters {pi, qi, ri} in the
function are determined during the training process. Lastly, one

single node computes the overall output as the summation of all

incoming signals (
∑

i wifi =
∑

i wifi∑
i wi

). Güler and Übeyli executed

a detailed classification between set A (healthy volunteer, eyes
open), set B (healthy volunteer, eyes closed), set C (seizure-
free intervals of five parents from hippocampal formation
of opposite hemisphere), set D (seizure-free intervals of five
patients from epileptogenic zone), and set E (epileptic seizure
segments) using ANFIS and got the classification accuracy
98.68% (95).

3.1.2.4. Radial basis function neural network (RBFNN)
RBFNN is feed-forward like MLPNN but has only one hidden
layer with a non-linear radial basis function (RBF) in Figure 6B

(119). RBF is a real-valued function whose value depends only
on the distance from the origin. RBFNN has the advantages of
a simple topological structure, its locally tuned neurons, and
fast learning compared to MLPNN. Aslan et al. (96) compared
MLPNN with RBFNN. In the case of MLPNN, 18 out of 204
focal seizure samples were classified as a generalized seizure
(8.8% error rate for focal seizure), and 9 out of 47 generalized
seizure samples were classified as a focal seizure (19.1% error
rate for generalized seizure). RBFNN, on the other hand, showed
3.4% and 10.6% error rate for focal and generalized seizures,
respectively. However, RBFNN requires to set correct initial
states. Therefore, many seizure classification papers have focused
on MLPNN.

3.2. Non-feature Based Design
According to the symptoms of seizures, various types of signal
patterns appear, and it is difficult to understand all of them
with specific features. Thus, no existing hand-crafted features
appear universally applicable so far (33). Deep learning methods
can analyze the EEG signal and learn related characteristics
automatically in a supervised learning framework (121).
Although there are existing works that use the classification
methods described as feature-based (20, 98), we summarize these
techniques in terms of non-feature based design.

Frontiers in Neurology | www.frontiersin.org 12 July 2020 | Volume 11 | Article 701

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Kim et al. Epileptic Seizure Detection and Treatment

FIGURE 7 | Recurrent neural network (124). (A) Unfolded basic. (B) Elman network.

3.2.1. Convolutional Neural Network (CNN)
CNN takes the raw image data and calculates the convolution by
iterating over the input data according to the filter size specified
to extract the feature of the data. The shape of output data
changes depending on filter size, stride, padding, max-pooling
size, and so on. The classifier can perform supervised learning
by matching the output data and answer classes. CNN, with its
high recognition performance in medical images (122), can be
as good as an epileptologist in classifying seizures by analyzing
EEG plot images as being observed by Emami et al. (33). In
their work, they applied CNN to long-term EEG that included
epileptic seizure states. In particular, EEG data were divided into
short segments based on a given time window (ranging from 0.5–
10 s) and converted into EEG plot images (224 × 224 pixels),
each of which was classified by CNN as seizure or non-seizure.
They used VGG-16 (123) because small size convolution filters
(3 × 3) are capable of detecting small EEG waves. VGG-16
is also computationally efficient and can handle non-stationary
objectives. This work is meaningful because the study is the first
comprehensive attempt to evaluate EEG as plot images. However,
the median true positive rate of CNN 74% is still low, so we
cannot use this classifier for real patients.

3.2.2. Recurrent Neural Network (RNN)
In RNN, in which a network’s output state depends on an
arbitrary number of previous inputs like Figure 7A. However,
RNN has not been widely used in applications due to the lack of
an efficient and universal training method (124). Other attempts
have been made to overcome these limitations. Srinivasan
et al. (20) used a special type of RNN as Elman network (EN)
to detect epileptic seizures. An EN has the additional set called
“context layer” as shown in Figure 7B. The hidden layer is
connected to these context units. Kumar et al. (97) incorporated
recurrent EN and RBFNN to detect epileptic seizures with the
wavelet entropy features. They showed 99.75 and 94.5% accuracy
for detecting normal vs. epileptic seizures and interictal focal
seizures, respectively.

3.3. Seizure Quantification
Biosignal quantification is necessary to make the correlations
between biosignals and actual seizures more accurate (125).

Adeli et al. (126) utilized the correlation dimension (CD,
representing system complexity) and the largest Lyapunov
exponent (LLE, representing system chaoticity) to quantify the
nonlinear dynamics of the original EEGs. They analyzed three
groups: group H (healthy subjects), group E (epileptic subjects
during a seizure-free interval), and group S (epileptic subjects
during the seizure). For the CD values from the band-limited
EEGs (0–60 Hz), group S (5.3) differs from the other two groups
H (6.9) and E (6.7). For the LLE values, group H (0.089), group
E (0.041), and group S (0.070) differ from each other. CD and
LLE have shown the possibility of being used for classification.
However, to the best of our knowledge, there is no concrete
explanation between the biosignal and the severity of symptoms.

4. EXPERIMENTAL NON-INVASIVE
ANTI-SEIZURE TREATMENTS

We have discussed the physiological signals related to seizure
as well as how to use these signals to monitor and detect
seizures. The next logical step is to build a system to reduce
the impact of seizure. In this section, we discuss different
non-invasive brain stimulation methods that can potentially
be used for seizure therapy. While we try to describe the
detailed specifications, working principles, advantages, and
disadvantages of different brain stimulation techniques, we leave
the discussions on how to design a proper seizure therapy for
future works. In particular, we discuss in detail recent non-
invasive brain stimulation efforts on Transcranial Magnetic
Stimulation (TMS), Transcranial Direct Current Stimulation
(tDCS) (10), and Transcranial Focused Ultrasound Stimulation
(tFUS) (40, 127). Since Vagus Nerve Stimulation (VNS) overlaps
tDCS in terms of electrical stimulation methods and was
previously introduced primarily as invasive stimulation, it
was not included in the larger category. However, recently,
invasive VNS therapy for drug-resistant epilepsy patients
received FDA approval7. VNS is also a promising seizure
therapy method.

7https://www.mobihealthnews.com/content/fda-approves-sentiva-nerve-
stimulation-device-epilepsy-therapy
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FIGURE 8 | Brain stimulation methods to reduce the seizure symptoms. (A) Transcranial magnetic stimulation (128) (B) Transcranial direct current stimulation (129)

(C) Transcranial focused ultrasound stimulation (130).

FIGURE 9 | TMS methods (131). (A) spTMS (B) ppTMS (C) low frequency rTMS (D) high frequency rTMS.

4.1. Transcranial Magnetic Stimulation
Transcranial Magnetic Stimulation (TMS) uses the principle
of electromagnetic induction to focus induced current in the
brain, as shown in Figure 8A (37). Strong electric currents,
circulating within a coil resting on the scalp, generate short
and intense magnetic fields. These magnetic fields penetrate

human tissue painlessly and induce electric currents that can
depolarize neurons or their axons in the brain (38). TMS
techniques include single-pulse TMS (spTMS), paired-pulse
TMS (ppTMS), and repetitive TMS (rTMS), as shown in
Figure 9 (131). In general, single- and paired-pulse TMS are
used to verify brain functions, and rTMS induces changes
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in brain activity that can last beyond the stimulation period
(132). While spTMS and ppTMS were reported to induce
unexpected seizures during multiple experiments (133),
rTMS is currently a better and safer approach for
seizure therapy.

rTMS stimulates a single scalp site repeatedly and modulates
cortical excitability. Figures 9C,D show examples tested before
and after an rTMS regime. It consists of a long pattern of low
(1 Hz) or high (20 Hz) frequency rTMS delivered to the left
hemisphere’s primary motor cortex during 28 min (131, 134).
rTMS has greater effects than single-pulse TMS but also has
the potential to cause seizures (38). The FDA cleared an rTMS
device as a treatment to alleviate symptoms of mildly treatment-
resistant depression8. It shows the possibility of rTMS as a
treatment for relieving various symptoms.

The effect of rTMS depends on the stimulation frequency,
intensity, number of trains, inter-train interval, and number
of sessions (135). We exclude the stimulus location element
because it is a factor that varies depending on the symptom.
The number of pulses per second of rTMS trains typically ranges
between 1 and 50 Hz. One hertz paradigms are commonly
applied continuously for several minutes, while higher frequency
paradigms are applied in a patterned fashion like Figure 10 (136).
Low-frequency rTMS produces a transient reduction in cortical
excitability. High-frequency rTMS produces a local increase in
cortical excitability and increases in MEP size (137). Specifically,
this transient reduction effect of Low-frequency rTMS occurs
in the motor cortex (138) and in the occipital cortex (139).
High-frequency rTMS can improve cognitive processing to the
dorsolateral prefrontal cortex (140). To compare low and high-
frequency rTMS, Speer et al. (141) showed that 1-Hz rTMS was
associated only with decreases in absolute regional cerebral blood
flow (rCBF), while twenty-Hertz rTMS over the left prefrontal
cortex was associated only with increases in rCBF.

The stimulation intensity is usually expressed as a percentage
of MT. The MT is usually determined before each session by
applying the TMS coil over the primary motor cortex (135). Pulse
trains are the typical form to use rTMS. If TMS stimulates the
brain continuously, it can increase the possibility of generating a
seizure (142) and cause heating of the electrodes. Flitman et al.
(143) reported the occurrence of focal to bilateral tonic-clonic
seizure in one subject after three consecutive stimulated trials
with 20% aboveMT and pulse train lasted 750ms at 15Hz. Dobek
et al. (144) also found 25 reports of rTMS-induced seizures in
their review. Therefore, we should follow the safety guidelines for
rTMS (145). Based on the international workshop on the safety of
rTMS in 1996, Wassermann et al. (146) introduced the guideline
for the use of rTMS: at least 5 s intervals between 20 Hz trains
with intensities of up to 1.1x theMEP threshold. A longer interval
is necessary for the case of higher frequencies and intensities. Bae
et al. investigated the risk of seizures associated with rTMS in
patients with epilepsy and reported that only 4 of 280 patients
experienced seizures during or after rTMS (147).

In animal studies, low-frequency rTMS (1,000 pulses at
0.5 Hz) decreased susceptibility to pentylenetetrazol-induced
seizures in rats (148). Rotenberg et al. (149) suppressed seizures

8https://www.fisherwallace.com/

in rats injected with the kainic acid using EEG-guided 0.5
and 0.75 Hz rTMS, but 0.25 Hz rTMS was not effective. In
human studies, 0.3 Hz low-frequency rTMS decreased interictal
EEG epileptiform abnormalities in one-third of drug-resistant
epilepsy patients but was not better than a placebo for seizure
reduction (150). Instead, Cincotta et al. (151) suggested that
0.3 Hz rTMS produces a relatively long-lasting enhancement
of the inhibitory mechanisms responsible for the cortical silent
period. Low-frequency rTMS decreased the number of seizures
in patients with focal neocortical epilepsy (35) and refractory
epilepsy (152).

4.2. Transcranial Direct Current Stimulation
tDCS is one of transcranial electrical stimulation (tES) methods
and applies low-amplitude direct currents via scalp electrodes
and penetrate the skull to enter the brain, as shown in
Figure 8B (37). The principal difference between tDCS and
other tES techniques is the waveform to the brain, like
Figure 11. tDCS is the only class of neuromodulation technique
that delivers a sustained direct current (DC) like Figure 11A

(39). Transcranial alternating current stimulation (tACS) has a
variety of stimulation with different frequencies (1–45 Hz), like
Figure 11B (153). tACS enables the study of causal links between
brain rhythms and specific aspects of behavior. Transcranial
random noise stimulation (tRNS) follows a white-noise band-
limited waveform (0.1–640 Hz) like Figure 11C (154). tRNS
focuses on the link between behavior and frequency-specific
noise inherent in neural processing (127). tACS and tRNS
are usually used to identify or compare frequency-specific
characteristics. They are not actively used as therapeutic methods
to obtain actual effects compared to tDCS. Besides, tDCS is
easier to use, cheaper, and more tolerable than TMS. However,
tDCS is still an experimental form of brain stimulation and
is not an FDA-approved treatment9. tDCS does not induce
neuronal action potentials because static fields do not yield the
rapid depolarization required to produce action potentials in
neural membranes (155). Thus, it is a pure neuromodulatory
intervention. tDCS could modulate cortical excitation and
cortical inhibition by anodal polarity and cathodal polarity,
respectively. By varying the current intensity and duration, the
strength and duration of the after-effects could be controlled.

4.2.1. Factors
The effect of tDCS depends on current density, stimulation
duration, the orientation of the electric field (the electrodes’
positions and polarity), electrode configuration (material and
size), the patient, deep of the target, and intensity of the
current (156, 157). Long-lasting stimulation largely influenced
the durability of after-effects to humans (158). tDCS protocols
should specify electrode position and current direction because
these elements cause different stimulation results. The electrodes
for tDCS are usually a pair of electrodes covered by sponges
filled with a contact medium such as NaCl solution or conductive
cream (155). For the electrode size, although large electrodes
expand the area of the excitability modification, small electrodes
are better to increase tDCS focality (155).

9https://www.hopkinsmedicine.org
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FIGURE 10 | rTMS protocol example.

FIGURE 11 | Waveforms of different tES techniques. (A) tDCS waveform (B) tACS waveform (C) tRNS waveform.

4.2.2. Case Studies
Cathodal tDCS leads to a reduction of cortical excitability by
decreasing the neuronal firing rate and inducing long-term
depression (LTD) of neuronal excitability (159). In animal
studies, cathodal tDCS at 100 µA for 60 min resulted in a
duration of more than 2 h with an increasing threshold of focal
onset seizure activity, while anodal tDCS had no significant effect
on TLS in the rat (160). In human studies, cathodal tDCS may be
effective to reduce seizures’ frequency as shown in Table 3. Most
tDCS related works applied 1–2 mA cathodal tDCS for 20–60
min. Yook et al. (174) placed a tDCS cathode at the midpoint of
P4 and T4, where the 11-year-old female seizure patient showed
the abnormal EEG wave. After 2 mA cathodal tDCS for 20
min, the number of seizure occurrence and the duration of each
seizure episode were reduced.

4.2.3. Safety
Several metrics, including current density, duration, and the
charge, should be controlled carefully to prevent serious adverse
effects. Bikson et al. (175) investigated the related papers for the
safety of tDCS and offered the criterion of tDCS protocol: current
density (6.3 − 13 A/m2) from the animal models, and others
(≤ 40 min,≤ 4 mA,≤ 7.2 Coulombs) from the human trials.
Under this condition, there were no reports of severe side effects
across over 33, 200 sessions and 1,000 subjects (175).

4.2.4. Deep Brain Stimulation of tDCS
tDCS can only directly stimulate in cortical regions. To overcome
this limitation, Grossman et al. (176) suggested a new protocol
called temporal interference non-invasive brain stimulation
(TI-NIBS). TI delivers multiple electric fields to the brain at

frequencies which are too high to recruit neural firing. These
multiple electric fields differ by a frequency within the dynamic
range of neural firing. They applied TI-NIBS to a living mouse
brain and demonstrated the effects of TI-NIBS by stimulating
neurons in subcortical structures (176). While the current
experiment has not yet been applied to humans, we believe this
is one of the most potential approaches for seizure therapy in the
future due to its capability of providing high spatial and temporal
resolution. In addition, since the stimulation is only effective at
the locations where all the beams are constructive, the beamsmay
not harm the brain cells that are not located in the targeted areas.

4.3. Transcranial Focused Ultrasound
Stimulation
tFUS is emerging as a method to improve the relatively low
degree of spatial locality offered by TMS and tDCS (127). It
is important because a low degree of spatial locality leads to
modulating neuronal activity not only in the target but also in
surrounding circuits. tFUS uses acoustic energy to stimulate the
brain like Figure 8C. tFUS can both excite and suppress brain
neuronal activity and has millimeter spatial resolutions (177).
In 1988, Colemann and Lizzi developed the Sonocare CST-100,
which is the first high intensity focused ultrasound and received
the FDA pre-market approval10. The device was designed for the
treatment of glaucoma.

4.3.1. Factors
There are some factors to control the effect of tFUS: acoustic
frequencies, intensities, and modes of transmission (178). First,

10https://www.fusfoundation.org/the-technology/timeline-of-focused-ultrasound
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TABLE 3 | Experimental non-invasive neuromodulation treatments for epilepsy [Reviews for readers who want to know more about neuromodulation treatments: (161–163)].

References Brain stimulationa Subjects Seizure typeb (43) Experimentc Result

(164) Low frequency rTMS Human FIAS rTMS was done on consecutive days to nine patients by

means of a round coil (9 cm diameter). Four weeks before

and after the treatment, patients were requested to record

every definite seizure or any seizure-like event

Although in two patients a partial seizure occurred directly

after rTMS, in none of the patients did seizures per week

increase under rTMS

(165) Low frequency rTMS Human Focal motor seizures (Focal

myoclonic seizures and FIAS)

EMG records of a drug-resistant epilepsy patient were

recorded for 15 min before and after 1 Hz rTMS

Before rTMS, 60 muscle jerks > 100µV were detected. After

intervention with rTMS, only 20 muscle jerks accomplished

the chosen criterion of > 100µV

(150) Low frequency rTMS Human Focal aware (7), FIAS (14), FTCS

(18), Others (4)

The stimulus frequency was 0.3 Hz. One thousand stimuli

per day were given for 5 consecutive days with a round coil

at the vertex

0.3 Hz low-frequency rTMS decreased interictal EEG

epileptiform abnormalities in one-third of drug-resistant

epilepsy patients, but was not better than placebo for seizure

reduction

(35) Low frequency rTMS Human Focal neocortical epilepsy rTMS with 900 pulse, intensity of 120% motor resting

threshold and 0.5 Hz frequency was used to 12 patients

The mean seizure frequency was 2.25, 0.66, and 1.14

seizures per week before, during, and after rTMS, respectively

(152) Low frequency rTMS Human Focal onset seizures Twenty-one patients with malformations of cortical

development and refractory epilepsy underwent five

consecutive sessions of low-frequency rTMS

rTMS significantly decreased the number of seizures in the

active compared with sham rTMS group (p < 0.0001), and

this effect lasted for at least 2 months

(166) Low frequency rTMS Human Focal aware (4), FIAS (2), FTCS (54),

Others (20)

Sixty patients were randomly divided into two groups by

stimulation intensity: 90% (Group 1) or 20% (Group 2) of rMT

In Group 1, the effects of rTMS on IED of 60 min were 75.1,

23.1, and 33.6 before, during, and after rTMS, respectively.

However, Group 2 doesn’t show any difference by rTMS

(167) Cathodal tDCS Human Focal onset seizures A single treatment with 1 mA cathodal tDCS for 20 min over

the seizure focus and anode on the contralateral shoulder

(36 children, 27 in active and 9 in sham group)

Active tDCS treatment was associated with significant

reductions in epileptic discharge frequency in both 24 (50.3%)

and 48 (57.6%) hours after the treatment

(36) Cathodal tDCS Human FIAS Two patients with drug-resistant FIAS received the sham or

the real tDCS treatment on the 8th and 22th days

Both patients underwent a consistent reduction of the

frequency of the seizures, 70 and 50%, respectively

(168) Cathodal tDCS Human Focal onset seizures Twelve patients received the modulated cathodal tDCS (30

min/2 mA × 3 days) and the sham stimulation

The mean seizure frequency was 10.58± 9.91 at the baseline

and decreased to 1.67± 2.50 after cathodal tDCS

(169) Cathodal tDCS Human FIAS Ten patients with drug-resistant TLE received the sham or

the real tDCS treatment on day 8 and day 38

tDCS reduced the percent weekly seizure frequency more

than sham stimulation (−71± 33% and 25+−125%)

(170) Cathodal tDCS Human Focal or generalized onset seizures Group 1: 30 min/2 mA × 3 days, n = 12

Group 2: 30 min/2 mA × 5 days, n = 8

Group 3: placebo, n = 8

The mean reduction of seizure frequency in both active

groups was significantly higher than placebo (Group 1:

−43.4%, Group 2: −54.6%, Group 3: −6.25%)

(171) Cathodal HD-tDCS Human Focal or generalized onset seizures 20-min sessions of 2 mA HD-tDCS were applied for 10

consecutive days to ten adult patients

Changes of epileptiform discharges and mean seizure

frequency caused by HD-tDCS were not statistically

significant (p > 0.05)

(172) tFUS Cat Focal onset seizures Experimental focal epilepsy was induced in thirty-six cats by

subcortical injection of 0.1 ml of alumina cream. Then 15 ->

surgical removal, 12 -> tFUS, and 9 -> medication

Surgery: 6 died, 8 seizure-free 12 weeks, 1 recurred

tFUS: 1 died, 9 seizure-free for 12 weeks, 2 recurred

Medication: 9 died

(173) tFUS Rat Pentyleneterazol-induced seizures An ultrasound transducer operating at a fundamental

frequency of 690 KHz was applied twice for 3 min each.

Group 1: tFUS sonication after PTZ administration, n = 9

Group 2: without sonication after PTZ administration, n = 9

Group 1: After the second sonication, the number of EEG

bursts in the FUS-treated rat was reduced clearly compared

to that of the first sonication.

Group 2: The number of EEG bursts was kept during the

entire monitoring period.

aTMS, Transcanial magnetic stimulation; rTMS, Repetitive TMS; tDCS, Transcranial direct current stimulation; HD-tDCS, High definition tDCS; tFUS, Transcranial focused ultrasound stimulation. bFIAS, Focal onset impaired awareness

seizures; GTCS, Generalized tonic-clonic seizures; FTCS, Focal to bilateral tonic-clonic seizures. crMT, resting motor threshold.
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Ultrasound (US) has a frequency above 20 kHz. Most medical
US frequency range is between 1 and 15 MHz, and therapeutic
US application operates around 1 MHz or less (179). Second,
therapeutic US can be divided into low power (< 0.5Wcm−2) or
high power (> 100Wcm−2) depending on the acoustic intensity
(178). Low power intensity US is used in physiotherapy, non-
thermal actions, and so on, whereas high power intensity US is
used in lithotripsy and the thermal ablation of tissue (180). The
therapeutic US usually has low power intensity. Lower energy US
increased the action potential, while higher energy US reduced
the action potential due to the ultrasonic thermal effects. Third,
the US has two modes of transmission: continuous wave (CW)
and pulsed wave (PW) (178). CW stimuli are more effective than
PW stimuli in eliciting responses (181). Therapeutic US is usually
delivered as CW or long pulse exposures (180).

4.3.2. Current Progress
In animal studies, Manlapaz et al. (172) reported ultrasonic
irradiation relieved the seizures of cats. They compared fifteen
cats treated by surgical removal of the epileptogenic focus with
twelve cats treated by ultrasonic irradiation. The ultrasonic
approach showed less postoperative complications than those
of surgery. Min et al. (173) injected pentylenetetrazol to rats to
induce acute epilepsy and applied tFUS to the rat’s brain twice
for 3 min. Epileptic EEG signals of the rats decreased visibly
after tFUS compared to the other group that did not receive
any tFUS. In human studies, to the best of our knowledge,
there are no existing works to handle the relationship between
seizure and tFUS. Instead, we look at studies that relate the
human brain to tFUS. Legon et al. (40) evaluated if tFUS is
capable of modulating brain activity in the human primary
somatosensory cortex. From the experiment, tFUS remarkably
reduced the amplitude of somatosensory evoked potential. Lee
et al. (182) reported tFUS of the primary visual cortex. The
tFUS induced activation both from the sonicated brain area
and from the visual or cognitive network regions. However,
tFUS beam might potentially harm brain cells when it passes
through them.

4.3.3. Safety
It is difficult to establish tFUS protocol for safety now because
there is no enough medical data about tFUS. Although Legon
et al. (183) applied low power tFUS to 120 participants who
did not report any neurological impairment and reported that
none of the participants experienced serious adverse effects, it
does not prove the safety of tFUS. This is because ultrasound
at high intensities can cause irreversible tissue damage (40).
The safety protocol could be established from a variety of tFUS
related experiments. US studies are necessary to be conducted
on primate brains such as monkeys having a skull with similar
thickness and size to that of humans (184).

5. POTENTIAL RESEARCH DIRECTIONS

We have discussed state-of-the-arts sensing and stimulation
technologies that are suitable for seizure monitoring and therapy.
In this section, we present potential research directions that

require more attention to building a robust, wearable, safe,
sensing, and stimulation systems.

5.1. Robust and Wearable Seizure
Detection System
5.1.1. Monitoring Seizures From the Brain With High

Resolution
Current technologies only allow us to monitor the whole brain.
However, we envision a more robust sensing technology that
could sense precisely where the seizure signal occurs on the
human brain. The future sensor can be implemented as an array
of electrodes to form a beam-forming receiver to capture only
the brain area of interest. It will improve the performance of the
sensing system by efficiently removing the interference signals
from many non-related brain areas. TI-NIBS (176) design can be
considered as the closest reference.

5.1.2. Improving Seizure Quantification
Most existing seizure detection systems have only focused on
differentiating between seizure and non-seizure. Therefore, we
could not find a concrete explanation between the biosignal and
the severity of symptoms from the related works. The biggest
problem is that there are no clear criteria for quantifying seizures,
and it is difficult to obtain the ground truth data. Once reasonable
standards are established, and researchers’ consent is received,
the seizure quantification will be applied to the seizure detection
system quickly.

5.1.3. Making Seizure Monitoring System Become

Wearable
We predict the core location of recording EEG signals will be
around the ear. The reason is that the device around the ear
can still acquire clear EEG signals and does not restrict the
user’s mobility. Dry electrodes could be applied to the ear-cover
part (185) of the device to improve usability. Different biosignals,
including EOG, EMG, and EDA, also could be detected with
EEG signals around the ear. A headband with EEG electrodes
is also used to detect seizures from the frontal lobe or other
locations which could not be detected by seizure detection
devices around the ear. The wearable devices can deliver
biosignals to a smartphone through communication technology.
The application for seizure detection on the smartphone will
extract features and classify seizure types.

5.2. Safe, Accurate, and Reliable Seizure
Stimulation
5.2.1. High Spacial Resolution Stimulation
The stimulation device needs to localize the target area of the
brain and stimulate it accurately. Existing TMS and tDCS have a
low degree of spatial locality. We introduced several approaches
to solve this problem. Hesed coil design of TMS attaches several
strips on the specific part of the head intensively with wires that
induce stimulation in the desired direction (186). TI-NIBS, as an
alternative of tDCS, delivers multiple electric fields to the brain
at frequencies that are too high to recruit neural firing (176).
In addition, new tDCS algorithms allow a better focal treatment
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using multi-target electrodes and smaller electrodes in High-
Definition tDCS (HD-tDCS) (187). These approaches are likely
to advance to deep brain stimulation and require additional
studies because they are in the proposal stage.

5.2.2. Safe and Reliable Stimulation Device
Safety is the most crucial aspect of designing the stimulation
system. A practical system should prioritize the safety aspect,
for example, long term and short term side effects. Unlike TMS
achieving some degree of safety, tDCS and tFUS are necessary to
establish the safety protocol. Antal et al. (188) introduce detail
information about the safety of tDCS, including long stimulation
duration, montages with (multiple) small electrodes, and limiting
the maximum current. Although there are a lot of works for
tDCS, tDCS still only happens in the lab environment and is
not an FDA-approved treatment solutions9. Rather, as another
electrical stimulation approach, non-invasive VNS therapy for
drug-resistant epilepsy patients received FDA approval7. In the
near future, we believe the establishment of a tDCS safety
protocol for humans by integrating its new experiment with
existing work. Meanwhile, there are a few related works about
tFUS. Many tests for tFUS are necessary before establishing a
safety protocol.

5.2.3. Making Seizure Therapy System Become

Wearable
We believe tDCS could be integrated with the seizure detection
system, especially around the ear. tDCS applies low-amplitude
direct currents via two scalp electrodes like Figure 8B. Each scalp
electrode could be connected to the surrounding area of the
left ear and right ear, respectively. When designing a circuit, we
need to consider the difference between the battery used for the
existing seizure detection device and that used for tDCS. Unless

a new design is available, it seems difficult to create a wearable
device that incorporates TMS or tFUS and a seizure detection
device. The fact that both brain stimulation methods are applied
with a small gap between the brain and the device makes it
difficult to make a wearable device.

5.3. An Integrated Sensing and Stimulation
System
Even when the seizure monitoring and stimulation systems are
reliable, there are many challenges remaining in integrating these
two components to produce a reliable integrated system in a
wearable form.

6. CONCLUSION

. In this paper, we systematically categorized recent efforts on
building seizure monitoring, detection, and therapy systems.
We explained the overall systems and components that can be
used to monitor the reliable physiological signals of seizures.
We presented different techniques for extracting physiological
seizure signals from the noises. Then, we discussed in detail
recent effort on classifying/detecting seizure events using
machine learning and deep learning. Next, we presented different
seizure therapy techniques, including TMS, tDCS, and tFUS. Last
but not least, we discussed potential future research directions on
building a wearable seizure detection and therapy system based
on our experience in building comprehensive health solutions.
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