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Background and Purpose: Stroke-related functional risk scores are used to predict

patients’ functional outcomes following a stroke event. We evaluate the predictive

accuracy of machine-learning algorithms for predicting functional outcomes in acute

ischemic stroke patients after endovascular treatment.

Methods: Data were from the Precise and Rapid Assessment of Collaterals with

Multi-phase CT Angiography (PROVE-IT), an observational study of 614 ischemic

stroke patients. Regression and machine learning models, including random forest

(RF), classification and regression tree (CART), C5.0 decision tree (DT), support vector

machine (SVM), adaptive boost machine (ABM), least absolute shrinkage and selection

operator (LASSO) logistic regression, and logistic regression models were used to train

and predict the 90-day functional impairment risk, which is measured by the modified

Rankin scale (mRS) score > 2. The models were internally validated using split-sample

cross-validation and externally validated in the INTERRSeCT cohort study. The accuracy

of these models was evaluated using the area under the receiver operating characteristic

curve (AUC), Matthews Correlation Coefficient (MCC), and Brier score.

Results: Of the 614 patients included in the training data, 249 (40.5%) had 90-day

functional impairment (i.e., mRS > 2). The median and interquartile range (IQR) of age

and baseline NIHSS scores were 77 years (IQR = 69–83) and 17 (IQR = 11–22),

respectively. Both logistic regression and machine learning models had comparable

predictive accuracy when validated internally (AUC range = [0.65–0.72]; MCC range

= [0.29–0.42]) and externally (AUC range = [0.66–0.71]; MCC range = [0.34–0.42]).

Conclusions: Machine learning algorithms and logistic regression had comparable

predictive accuracy for predicting stroke-related functional impairment in stroke patients.

Keywords: machine learning, acute ischemic stroke, functional outcome, clinical risk prediction, discrimination

calibration
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INTRODUCTION

Prognostic risk scores that use patient characteristics to predict
functional outcomes in stroke patients are of increasing
importance for aiding clinical decisions in stroke management
(1). Examples of these prognostic tools include Ischemic
Stroke Predictive Risk Score (ISCORE) (2), the Acute Stroke
Registry, and Analysis of Lausanne (ASTRAL) (3) and Dense
Artery, mRS, Age, Glucose, Onset-to-Treatment, and NIHSS
(DRAGON) (4), among others. These models combine multiple
predictors to provide insight into the relative or absolute
risk of functional impairment for each patient and a simple
risk scoring system that allows for their use in busy clinical
settings (5–8). These scores are particularly of interest in
both routine clinical practice and policy administration for
discharge planning, quality improvement, management of
prognostic expectations in stroke patients, and resource
allocation (9).

One characteristic feature of these prognostic risk scores is
that they are mostly developed based on regression models
and have shown moderate to good discriminatory accuracy
(AUC range = [66 and 88%]) for predicting 90-day functional
outcomes in ischemic stroke patients (10). However, these
risk scores are inherently limited to a number of reasons.
First, existing scores are mostly developed on a highly
selective population obtained from randomized controlled trials,
which are not representative of the population of stroke
patients being seen in acute care settings. Second, the risk
scores are mostly developed using a small set of clinical
predictors, ignoring the available rich information on patients’
clinical, imaging, and behavioral characteristics that may be
predictive of the outcome of interest. Third, these risk scores
are rarely validated in other external cohorts; they tend to
demonstrate poor predictive accuracy even when validated in
external cohorts.

Machine learning (ML) algorithms constitute a promising
class of methods for developing prognostic models. In recent
times, there has been an increased focus on ML algorithms
and their potential to revolutionize clinical research, especially
in precision medicine. ML algorithms explore both linear and
non-linear interactions among predictors while maximizing the
information in them to improve the accuracy of outcome
predictions. Despite its attractive features and touted potentials,
there is still limited uptake of ML for developing prognostic risk
scores for stroke patients (10).

In this study, we examine the predictive performance of ML
algorithms for predicting a 90-day functional impairment risk
after acute ischemic stroke. We hypothesized that the predictive
performance of ML would be comparable to the regression-based
risk prediction models.

METHODS

The study is reported according to the Transparent Reporting
of a multivariable prediction model for Individual Prognosis
Or Diagnosis (TRIPOD) checklist for prediction model
development and validation (11).

Data Sources
This study used prospectively collectedmulticenter observational
studies of ischemic stroke patients to develop and validate
the ML algorithms for predicting the patient-specific risk of
functional impairment. These data sources are described as
follows, and the ethics approval were sought from the University
of Calgary Conjoint Health Research Ethics Board (REB14-2012
and REB14-2015).

Precise and Rapid Assessment of
Collaterals With Multi-Phase CT
Angiography (PROVE-IT) (12)
PROVE-IT is a prospective multi-center hospital-based cohort
study of 614 patients with acute ischemic stroke presenting
within 12 h of stroke symptom onset with evidence of intracranial
occlusion on routine computed tomography angiography
CTA and treated with intravenous alteplase and/or intra-
arterial therapy. Patients underwent baseline unenhanced
CT, multiphase CT angiography, and perfusion CT. Both
demographic, clinical, and imaging data were collected on study
participants across these centers. The primary outcome was
patients’ 90-day functional status measured by the mRS. The
study was conducted over a 3-year period. Details about this
study have been published elsewhere (12).

Identifying New Approaches to Optimize
Thrombus Characterization for Predicting
Early Recanalization and Reperfusion With
IV tPA Using Serial CT Angiography
(INTERRSeCT) (13)
INTERRSeCT is a prospective multi-center hospital-based
cohort of patients treated with intravenous alteplase comparing
the rates of early recanalization in 684 patients. Patient
eligibility included the following: presentation to the emergency
department with symptoms consistent with ischemic stroke 12 h
from last known well, age at least 40 years, and a baseline
CTA (before alteplase bolus, if given) with evidence of a
symptomatic intracranial thrombus. This study compared rates
of early recanalization by location of primary intracranial or
extracranial artery occlusion. The primary radiological outcome
was recanalization, while the primary clinical outcome was
functional independence, as measured by the mRS (range, 0 [no
symptoms] to 6 [death]) at 90 days. Details about this study have
been published elsewhere (13). A subset of 507 patients were
included in this study, and the rest of the patients were excluded
for being a participant in the PROVE-IT study.

Data from both study cohorts are not publicly available
because of data protection laws imposed by University of Calgary
Conjoint Health Research Ethics. But datasets might be available
from the institutional CHRED for research who meet the criteria
for access to confidential data.

Statistical Analysis
Descriptive statistics were used to compare patients’
demographic and clinical characteristics in both training and
validation datasets. Similarly, descriptive analyses of patients’
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characteristics by 90-day functional status (i.e., mRS > 2 vs. mRS
≤ 2) were conducted for each training and validation cohorts.
Univariate associations between each categorical/continuous
predictor variable and 90-day function outcome were assessed
using the chi-square test and Wilcoxon rank-sum tests,
respectively. For each cohort, predictors on which missing data
were more than 50%, and/or predictors for which the ratio of the
levels of categorical features are more than 4:1 in either cohorts
were excluded from the analyses. Median imputation method
was used to impute missing data in both cohorts. In addition,
given the slight imbalance in the distribution of patients by
functional outcome, an under-sampling of majority subgroup
(mRS ≤ 2 subgroup) was adopted to mitigate the influence of
class imbalance on the accuracy of the investigated models in
both cohorts.

Functional impairment risk prediction models developed
based on support vector machine, random forest, C5.0 decision
tree, adaptive boost machine, classification and regression tree,
least absolute shrinkage, and selection operator (LASSO) logistic
regression, and conventional logistic regression models were
trained using under-sampled data from the PROVE-IT study and
validated in the INTERRSeCT study. For each cohort, model
predictors were scaled to ensure comparability of accuracy across
several models. Specifically, predictor scaling was performed
in each shuffle in the outer loop and that imputed and scales
values were based on the training set both for both cohorts.
Two variable selection strategies were adopted for deriving
the most accurate risk prediction model for all the ML and
regression algorithms, namely; (1) clinical expert knowledge,
and (2) automated variable selection. Model predictors were
selected based on the knowledge of the literature by two stroke
neurologists on our team (BKM, MDH) and their presence in
both PROVE-IT and INTERRSeCT cohorts. These predictors
included age, NIHSS, treatment received, blood glucose, systolic
blood pressure, diastolic blood pressure, hypertension, and
diabetes. On the other hand, an automated variable selection
method based on rank ordering of the full set of predictors was
used to predict 90-day functional outcome. In both approaches, a
grid search of the optimal hyper parameter (i.e., hyper parameter
tuning) was used to train and derive the most accurate models
common to both PROVE-IT and INTERRSeCT cohorts) for each
type of model. For LASSO regression, a L1 regularization that
shrinks the coefficients effect size of the less important variables
toward zero. For random forest, classification and regression
trees, and C5.0 decision tree, the optimal number of trees
was obtained by grid search while avoiding model overfitting
and optimal accuracy. The optimal accuracy of the support
vector machine and adaptive boost were obtained by tuning the
hyper-parameters using a grid search cross-validation. For the
conventional logistic regression, backward elimination was used
to determine the most parsimonious model.

Furthermore, predictors in the training data were ranked
according to their relative contribution to the prediction of 90-
day functional outcomes using a variety of variable importance
metrics. For random forest model, the mean decrease in Gini
coefficient, which measures how each variable contributes to
the homogeneity of the nodes and leaves, was used to rank

the variables. Variables with larger Gini index were considered
more important (14). For support vector machine and adaptive
boosting, the relative importance of each predictor was evaluated
based on their unique contribution, as measured by AUC, to the
prediction of 90-day functional outcome. On the other hand,
the mean decrease in impurity of each surrogate variables at
each node was used to evaluate the relative contribution of
the predictors in C5.0 and classification and regression trees.
For LASSO and the conventional logistic regression models, the
magnitude of the standardized logistic regression coefficients was
used rank order the predictors according to their importance
(15). The absolute values of the importance metrics for all
the predictors were scaled to unit norm, in order to ensure
comparable rank ordering across all the investigated models (16).

Furthermore, the predictive accuracy of both ML and logistic
regression models were assessed using both internal cross-
validation (PROVE-IT) and external validation (INTERRSeCT).
In the former, the prediction models were trained using data
obtained from the PROVE-IT study via a repeated 3-fold
cross-validation method. Specifically, the PROVE-IT dataset was
randomly split, with two-thirds of the data used for model
development and the remaining one-third for internal validation.
This process was repeated 500 times by sampling the original data
with replacement. In the latter, predictors in the INTERRSeCT
data were scaled using parameters from the PROVE-IT study
before validating the trained in this cohort.

The predictive performance of each model was examined
using sensitivity, specificity, the area under the receiver
operating characteristic curve (AUC), and Mathew’s correlation
coefficient (MCC). MCC measures the strength of association
between observed and predicted binary classification. MCC
values ranges between −1 and +1; the former represents
total disagreement between observed and predicted binary
classifications, while the latter represents perfect agreement (i.e.,
perfect prediction) (17, 18).

Moreover, both brier scores and calibration plots were used
to assess the calibration performance of all the models trained
and validated in the PROVE-IT and INTERSECT cohorts,
respectively (19). In contrast, calibration curves for all the
ML and regression-based algorithms based on automated and
clinical expert knowledge predictor selection methods were
plotted. A perfectly calibrated model should have all the points
line on a 450 diagonal line to the x- and y-axes; the greater
the deviation of the calibration curve from this diagonal
line, the poorer the model calibration. The development and
validation of models was checked against the recommendations
for reporting in the TRIPOD statement (see Appendix A in
Supplementary Material). Statistical significance was evaluated
at α = 0.05. All the analyses were conducted using several
packages (20–26) in R software v 3.6.1 (27).

RESULTS

Table 1 describes the demographic and clinical characteristics of
patients between PROVE-IT and INTERRSeCT study cohorts. Of
the 614 patients in the PROVE-IT study, all the study predictors
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TABLE 1 | Descriptive characteristics of PROVE-IT and INTERRSeCT study

participants.

Participants’ characteristics PROVE-IT INTERRSeCT P-value

(N1 = 614) (N2 = 507)

Age (median, IQR) 73 (63–80) 71 (63–79) 0.68

Sex (n, % Male) 322 (52.4%) 264 (52.1%) 0.48

Diastolic blood pressure

(median, IQR)

82 (74–93) 80 (71–90) 0.62

Systolic blood pressure (median,

IQR)

150 (135–170) 147 (131–169) 0.45

Blood glucose (median, IQR) 6.4 (5.6–7.8) 6.5 (5.8–7.9) 0.39

NIHSS (median, IQR) 13 (6–19) 14 (8–19) 0.46

Treatment (n, % Intervention) 291 (47.3%) 192 (37.9%) 0.56

History of atrial fibrillation (n, %

Yes)

184 (29.9%) 161 (31.8%) 0.27

Diabetes (n, % No) 511 (83.2%) 421 (83.0%) 0.34

Hypertension (n, % Yes) 422 (68.7%) 302 (59.6%) 0.35

International normalize ratio

(median, IQR)

1 (1–1.2) 1(1–1.1) 0.60

Creatinine (median, IQR) 81 (67.8–96) 78 (66–93.4) 0.97

Platelet count (median, IQR) 207 (171–253) 195 (57–137) 0.67

Hematocrit (median, IQR) 0.43 (0.39–0.47) 0.41 (0.38–0.44) 0.92

IQR, Interquartile range; NIHSS, National Institute of Stroke Severity Scale; mRS, modified

Rankin Scale.

TABLE 2 | Descriptive characteristics of patients in PROVE-IT study.

Participants’ characteristics mRS > 2 mRS ≤ 2 P-value

(N1 = 249) (N2 = 365)

Age(median, IQR) 77 (69–83) 70 (59–77) < 0.01

Sex (n, % Male) 127 (51%) 195 (53.4%) 0.56

Diastolic blood pressure (median,

IQR)

85 (77–95) 80 (72–92) 0.09

Systolic blood pressure (median,

IQR)

154 (140–172) 150 (130–170) 0.08

Blood glucose (median, IQR) 6.8 (5.8–8.1) 6.2 (5.6–7.5) < 0.01

NIHSS (median, IQR) 17 (11–22) 9 (5–15) < 0.01

Treatment (n, % Intervention) 128 (51.1%) 163(44.7%) 0.11

History of atrial fibrillation (n, % Yes) 92 (36.9%) 92 (25.2%) 0.002

Diabetes (n, % No) 202 (81.1%) 309 (84.7%) 0.25

Hypertension (n, % Yes) 190 (76.3%) 232 (63.5%) < 0.01

International normalized ratio

(median, IQR)

1.09 (1.0–1.20) 1.0 (1.0–1.1) < 0.01

Creatinine (median, IQR) 83 (65–101) 80 (69–91) 0.23

Platelet count (median, IQR) 210 (169–257) 206 (172–249) 0.83

Hematocrit (median, IQR) 0.42 (0.38–0.47) 0.43 (0.41–0.48) 0.03

IQR, Interquartile Range; NIHSS, National Institute of Health Stroke Severity Scale; mRS,

Modified Rankin scale.

had no more than 10% missing values, except for imaging.
Similarly, of the 507 patients in the INTERRSeCT study, all the
study predictors had less than 10% missing values, except for
imaging, hemoglobin, partial thromboplastin time, and history
of hemoglobin (See Appendix B in Supplementary Material).
In addition, history of congestive heart failure, history of heart

TABLE 3 | Descriptive characteristics of patients in the INTERRSeCT Study.

Participants’ characteristics mRS > 2 mRS ≤ 2 P-value

(N1 = 239) (N2 = 268)

Age (median, IQR) 77 (68–83) 68 (59–75) < 0.01

Sex (n, %Male) 112 (46.8%) 152 (56.7%) 0.03

Diastolic blood pressure (median,

IQR)

80 (70–90) 81 (72–90) 0.71

Systolic blood pressure (median,

IQR)

150 (134–171) 145 (130–162) 0.02

Blood glucose (median, IQR) 6.6 (5.9–8.1) 6.4 (5.80–7.55) 0.07

NIHSS (median, IQR) 17 (12–20) 10 (6–17) < 0.01

Treatment (n, % Intervention) 86 (35.9%) 106 (39.5) 0.40

History of atrial fibrillation (n, % Yes) 88 (36.8%) 73 (27.2%) 0.02

Diabetes (n, % No) 192 (80.3%) 229 (85.4%) 0.12

Hypertension (n, % Yes) 154 (64.4%) 148 (55%) 0.04

Creatinine (median, IQR) 78 (65–96) 78 (66–91.1) 0.72

International normalized ratio

(median, IQR)

1.02 (1.0–1.10) 1.0 (1.0–1.10) 0.09

Platelet Count (median, IQR) 93 (57–142) 97 (55.8–130.3) 0.88

Hematocrit (median, IQR) 0.4 (0.37–0.43) 0.42 (0.39–0.44) < 0.01

IQR, Interquartile Range; NIHSS, National Institute of Health Stroke Severity Scale; mRS,

Modified Rankin scale.

disease, and smoking had skewed distributions across their
categorical levels. These seven variables were excluded from our
main analyses. There were no significant differences between
both cohorts with respect to patients’ demographical and clinical
characteristics.Tables 2, 3 describes the demographic and clinical
characteristics of patients according to their 90-day functional
outcome in PROVE-IT and INTERRSeCT cohorts, respectively.
In both cohorts, patients with mRS > 2 tend to be older patients
(p < 0.01) with more severe stroke (p < 0.01), and comorbid
hypertension (p < 0.01).

Figures 1, 2 describe the relative importance of the predictor
variables with respect to the prediction of 90-day functional
outcomes in ischemic stroke patients for ML and logistic
regression models in imputed PROVE-IT data. Age and NIHSS
were ranked as the two most important predictors of 90-day
functional outcomes for almost all the models, regardless of
the predictor selection strategy. But there are variations in
the rank ordering other less important variables across all the
investigated models.

Table 4 describes the predictive accuracy of investigated
models in the PROVE-IT data when the predictors were
selected based on automated variable selection and clinical expert
knowledge. There were negligible differences in the accuracy
of ML and regression-based models, regardless of the variable
selection method adopted. For example, for models trained
using predictors derived from clinical expert knowledge, the
average AUC and MCC for LASSO logistic regression were
0.71 (95%CI = [0.53, 0.71]) and 0.43(95%CI = [0.32, 0.55]);
whereas the average AUC and MCC for random forest were 0.67
(95%CI = [0.61, 0.73]) and 0.34 (95%CI = [0.22, 0.46]). Similar
patterns were observed for both sensitivity and specificity values
across the models. Moreover, when these models were validated
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FIGURE 1 | Rank ordering of machine learning and regression model predictors (selected based on clinical expert knowledge). NIHSS, National Institute of Health and

Stroke Scale; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; Trtmt, Treatment; Hxdiab, History of Diabetes; Hxhtn, History of Hypertension; LASSO,

Least Absolute Shrinkage Selection Operator.

FIGURE 2 | Rank ordering of machine learning and regression-based model predictors (automated variable selection). NIHSS, National Institute of Health and Stroke

Scale; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; Trtmt, Treatment; Hxdiab, History of Diabetes; Hxhtn, History of Hypertension; Hxafib, History of

Atrial Fibrillation; Plt, Partial Thromboplastin Time; Inr, International Normalize Ratio; Creat, Creatinine; Hemacrt, Hematocrit; LASSO, Least Absolute Shrinkage

Selection Operator.

externally in the INTERRSeCT cohort (Table 5), similar patterns
of negligible differences in the AUCs and MCCs of ML and
logistic regression algorithms were reported, regardless of the
variable selection strategies adopted.

Moreover, there were no significant differences in Brier scores
for ML and regression-based models across both training and

validation cohorts, regardless of the variable selection strategy
adopted (Tables 4, 5). But graphical examination of calibration
for LASSO logistic and conventional logistic regression models
showed that both models had fairly good calibration in high-risk
individuals but they slightly under-estimated or over-estimated
the risk of poor functional outcome (mRS > 3) in low risk in
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TABLE 4 | Predictive accuracy (95%CI) of regression and ML models in PROVE-IT data (internal validation).

Predictive accuracy metric RF SVM C5.0 ABM CART LR LASSO

Automated variable selection

Sensitivity 0.67 (0.57–0.77) 0.62 (0.51–0.72) 0.66 (0.56–0.76) 0.74 (0.64–0.83) 0.76 (0.66–0.84) 0.73 (0.63–0.83) 0.73 (0.63–0.82)

Specificity 0.58 (0.47–0.68) 0.63 (0.52–0.73) 0.71 (0.61–0.80) 0.60 (0.50–0.71) 0.54 (0.43–0.64) 0.70 (0.60–0.79) 0.70 (0.60–0.79)

AUC 0.63 (0.56–0.70) 0.62 (0.55–0.70) 0.69 (0.62–0.76) 0.67 (0.60–0.74) 0.65 (0.58–0.72) 0.72 (0.65–0.78) 0.72 (0.65–0.79)

MCC 0.26 (0.11–0.39) 0.25 (0.11–0.37) 0.38 (0.24–0.51) 0.35 (0.21–0.49) 0.31 (0.16–0.44) 0.43 (0.30–0.56) 0.43 (0.30–0.56)

Brier score 0.34 (0.30–0.45) 0.34 (0.30–0.45) 0.28 (0.25–0.38) 0.30 (0.21–0.48) 0.32 (0.28–0.42) 0.26 (0.21–0.35) 0.26 (0.21–0.35)

Clinical expert knowledge

Sensitivity 0.64 (0.55–0.72) 0.61 (0.51–0.71) 0.68 (0.59–0.76) 0.66 (0.57–0.75) 0.62 (0.53–0.71) 0.62 (0.53–0.71) 0.62 (0.53–0.71)

Specificity 0.70 (0.60–0.79) 0.77 (0.67–0.84) 0.69 (0.59–0.78) 0.74 (0.64–0.82) 0.71 (0.69–0.79) 0.80 (0.72–0.87) 0.80 (0.72–0.87)

AUC 0.67(0.61–0.73) 0.69 (0.63–0.75) 0.69 (0.63–0.75) 0.70 (0.64–0.76) 0.67 (0.61–0.73) 0.71(0.66–0.77) 0.71 (0.66–0.77)

MCC 0.34 (0.22–0.46) 0.38 (0.26–0.50) 0.37 (0.24–0.49) 0.40 (0.28–0.52) 0.33 (0.21–0.47) 0.43 (0.32–0.55) 0.43 (0.32–0.55)

Brier score 0.33 (0.27–0.39) 0.31 (0.26–0.38) 0.31 (0.25–0.37) 0.30 (0.24–0.36) 0.34 (0.28–0.39) 0.29 (0.24–0.35) 0.29 (0.24–0.35)

95%CI, 95% Confidence Interval; AUC, Area under the receiver operating characteristic curve; RF, Random Forest; SVM, Support Vector Machine; C5.0, C5.0 Decision Tree;

ABM, Adaptive Boost Machine; CART, Classification and Regression Tree; LR, Logistic Regression; LASSO, Least Absolute Shrinkage and Selection Operation; MCC, Matthews

Correlation Coefficient.

TABLE 5 | Predictive accuracy (95%CI) of regression and ML models in INTERRSeCT data (external validation).

Predictive accuracy metric RF SVM C5.0 ABM CART LR LASSO

Automated variable selection

Sensitivity 0.70 (0.64–0.76) 0.65 (0.59–0.71) 0.76 (0.70–0.81) 0.68 (0.61–0.74) 0.77 (0.71–0.82) 0.83 (0.78–0.88) 0.71 (0.60–0.79)

Specificity 0.71 (0.65–0.77) 0.77 (0.71–0.82) 0.58 (0.51–0.65) 0.70 (0.60–0.79) 0.60 (0.54–0.67) 0.56 (0.49–0.62) 0.67 (0.61–0.73)

AUC 0.70 (0.66–0.75) 0.71 (0.65–0.75) 0.66 (0.63–0.72) 0.67 (0.65–0.73) 0.69 (0.64–0.73) 0.69 (0.65–0.73) 0.67 (0.60–0.73)

MCC 0.41 (0.29–0.54) 0.42 (0.29–0.53) 0.34 (0.15–0.44) 0.38 (0.16–0.43) 0.38 (0.14–0.41) 0.40 (0.29–0.52) 0.39 (0.20–0.50)

Brier score 0.32 (0.28–0.41) 0.32 (0.29–0.42) 0.32 (0.28–0.41) 0.32 (0.29–0.42) 0.33 (0.30–0.43) 0.30 (0.27–0.39) 0.30 (0.27–0.39)

Clinical expert knowledge

Sensitivity 0.67 (0.61–0.73) 0.67 (0.61–0.73) 0.67 (0.60–0.73) 0.56 (0.49–0.62) 0.66 (0.60–0.72) 0.81 (0.75–0.85) 0.71 (0.65–0.77)

Specificity 0.71 (0.65–0.76) 0.72 (0.66–0.78) 0.75 (0.69–0.80) 0.78 (0.73–0.83) 0.69 (0.62–0.75) 0.60 (0.54–0.66) 0.69 (0.63–0.75)

AUC 0.66 (0.58–0.73) 0.67 (0.65–0.74) 0.63 (0.58–0.67) 0.68 (0.63–0.72) 0.67 (0.63–0.72) 0.68 (0.65–0.72) 0.69 (0.65–0.73)

MCC 0.38 (0.22–0.55) 0.39 (0.27–0.55) 0.42 (0.28–0.51) 0.35 (0.21–0.53) 0.35 (0.21–0.54) 0.41 (0.29–0.55) 0.40 (0.29–0.53)

Brier score 0.31 (0.25–0.37) 0.26 (0.22–0.38) 0.35 (0.27–0.36) 0.25 (0.21–0.32) 0.25 (0.21–0.38) 0.27(0.25–0.36) 0.27(0.24–0.35)

95%CI, 95% Confidence Interval; AUC, Area under the receiver operating characteristic curve; RF, Random Forest; SVM, Support Vector Machine; C5.0, C5.0 Decision Tree;

ABM, Adaptive Boost Machine; CART, Classification and Regression Tree; LR, Logistic Regression; LASSO, Least Absolute Shrinkage and Selection Operation; MCC, Matthews

Correlation Coefficient.

individuals. In contrast, the calibration slopes for classification
and regression tree exhibited moderate departures from the
diagonal line, suggesting moderately poor calibration. But the
random forest, C5.0 decision tree, support vector machine and
adaptive boosting significantly over-estimated and/or under-
estimated the probability of poor functional outcomes in low risk
and high risk individuals (See Figures 3, 4).

DISCUSSION

This study examined the predictive accuracy of regression-
based and ML models for predicting functional outcomes in

stroke patients. Our analyses revealed that ML algorithms
and logistic regression models had comparable predictive

accuracy when validated internally and externally. Our findings

buttress current evidence from other published studies (28–
33) that already showed that the logistic regression and ML
algorithms had comparable predictive accuracy in empirical
clinical studies. A recently published systematic review found
no evidence of the superior predictive performance of ML
models over logistic regression models in clinical studies
(32). Also, Van Os et al. (33) also explored the use of
ML algorithms for predicting 90-day functional outcomes in
MR CLEAN registry, a Dutch database of stroke patients
who received endovascular treatment, and concluded that
ML algorithms did not exhibit superior predictive accuracy
over logistic regression models. These studies, while similar
to ours in their use of feature selection predictor selection,
relied on a relatively larger sample size than ours (N >

1,000) but lacked validation of their prediction algorithms in
external cohorts.
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FIGURE 3 | Calibration plots for externally validated ML and regression-based models based on predictors derived via clinical expert knowledge. RF, Random Forest;

SVM, Support Vector Machine; C5.0, C5.0 Decision Tree; ADA, Adaptive Boost Machine; CART, Classification and Regression Tree; LR, Logistic Regression; LASSO,

Least Absolute Shrinkage and Selection Operation.

FIGURE 4 | Calibration plots for externally validated ML and regression-based models based on automated predictor selection. RF, Random Forest; SVM, Support

Vector Machine; C5.0, C5.0 Decision Tree; ADA, Adaptive Boost Machine; CART, Classification and Regression Tree; LR, Logistic Regression; LASSO, Least Absolute

Shrinkage and Selection Operation.

Moreover, our calibration plots revealed that logistic
regression models had good calibration but ML algorithms had
poorer calibration despite having comparable Brier scores. In
fact, the majority of the ML algorithms had either overfitting
or under-fitting problems in correctly predicting patients’
functional outcomes despite having Brier scores and AUCs
that are comparable to those in logistic regression models.

This highlights the inherent limitation of interpreting Brier
score, which is a composite measure of both discrimination and
calibration, in terms of calibration alone (19). Therefore, our
conclusions about the calibration of ML algorithms are based on
the calibrations curves rather than Brier scores. This is consistent
with recommendations by Rufibach (19) who cautioned against
erroneous interpretation of the low Brier score as indicative
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of good calibration. On the other hand, our evaluation of the
relative importance of the predictor variables in risk prediction
models based on ML and logistic regression revealed that
age and stroke severity (measured by NIHSS) were the most
important predictors of 90-day functional outcome that are
common across all the models. This is consistent with findings
from existing prognostic risk scores for predicting functional
outcomes in ischemic stroke (3, 34–36), many of which have
identified stroke severity (measured by NIHSS) and age as most
important predictors of 90-day functional outcomes in ischemic
stroke patients.

A unique strength of this study is the examination of
both the discrimination and calibration of the investigated
ML and regression-based risk prediction models. Unlike most
clinical prediction studies that lack external validation of their
findings, the external validation of these ML and regression-
based functional impairment risk prediction models developed
in another observational stroke registry is also a unique feature
of this study. Despite these strengths, this study is not without its
limitations, which might have influenced our study conclusions.
First, this study focused primarily on regression and ML models
for predicting binary outcomes to derive more accurate estimates
of functional impairment risk. Our conclusions are based on
empirical analysis of observational cohorts of acute stroke
patients. This might limit the generalizability of findings to other
populations. For example, both PROVE-IT and INTERRSeCT
are small-sampled hospital cohorts and study predictors are
those collected in acute care settings. Other important post-
acute care risk factors, such as social support, imaging, and
stroke rehabilitation, which are known to be predictive of 90-
day functional impairment risk, were either not at our disposal
or had significant missing data (37, 38). Future research will
examine the robustness of our conclusions in large observational
cohorts and through the use of computer simulations to study
the performance of these models under a variety of different
data analytic conditions. Second, our choice of PROVE-IT study
cohort as the training cohort was driven by our initial access to
this multicenter prospective observational study led by members
of our team (BKM, MDH) and the relatively smaller rate of
missing observations in PROVE-IT. It is possible that our
conclusions might be different if INTERRSeCT study was used to
train and develop the models while PROVE-IT study is used for
external validation. Third, we have adopted mRS02 as the binary
cut off point for good outcomes. It is possible that our study
conclusions might be sensitive to others definitions of the good
outcome functional outcomes (e.g., mRS01, or mRS03). Finally,
median imputation method to impute missing observations
in both cohorts was used. Future research will use sensitivity
analyses will examine the robustness of our study conclusions
to different types of imputation methods such as the multiple
imputation chain equation methods.

In conclusion, ML and regression-based models
have comparable predictive accuracy in predicting
functional outcomes in stroke patients. We recommend
that the choice between among these classes of models
should be guided by important considerations as study
design characteristics, data quality, and its utility in
clinical settings.

DATA AVAILABILITY STATEMENT

The data analyzed in this study is subject to the following
licenses/restrictions: Data from both study cohorts are not
publicly available because of data protection laws imposed by
University of Calgary Conjoint Health Research Ethics (UCalgary
CHREB). But datasets might be available from the UCalgary
CHREB for researchers who meet the criteria for access to
confidential data. Requests to access these datasets should be
directed to docbijoymenon@gmail.com.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by University of Calgary Conjoint Health
Research Ethics Board (REB14-2012 and REB14-2015). The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This research was supported by the National Science and
Engineering Research Council Discovery grant to TS and The
Canadian Institutes for Health Research Operating grant to BM,
MH, TS, AD, and MG for the PROVE-IT study.

ACKNOWLEDGMENTS

We thank the reviewers who provided helpful comments on
earlier drafts of the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fneur.
2020.00889/full#supplementary-material

REFERENCES

1. Abu-Hanna A, Lucas PJ. Prognostic models in medicine. Methods Inform

Med. (2001) 40:1–5. doi: 10.1055/s-0038-1634456

2. Kim YD, Choi HY, Jung YH, Yoo J, Nam HS, Song D, et

al. The ischemic stroke predictive risk score predicts early

neurological deterioration. J Stroke Cerebrovasc Dis. (2016)

25:819–24. doi: 10.1016/j.jstrokecerebrovasdis.2015.12.003

Frontiers in Neurology | www.frontiersin.org 8 August 2020 | Volume 11 | Article 889

mailto:docbijoymenon@gmail.com
https://www.frontiersin.org/articles/10.3389/fneur.2020.00889/full#supplementary-material
https://doi.org/10.1055/s-0038-1634456
https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.12.003
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Alaka et al. Functional Outcome Prediction in Ischemic Stroke

3. Ntaios G, Faouzi M, Ferrari J, Lang W, Vemmos K, Michel P. An

integer-based score to predict functional outcome in acute ischemic

stroke. Neurology. (2012) 78:1916LP−22. doi: 10.1212/WNL.0b013e31825

9e221

4. Wang A, Pednekar N, Lehrer R, Todo A, Sahni R, Marks S, et al.

DRAGON score predicts functional outcomes in acute ischemic stroke

patients receiving both intravenous tissue plasminogen activator and

endovascular therapy. Surg Neurol Int. (2017) 8:149. doi: 10.4103/2152-7806.2

10993

5. Kissela B, Lindsell CJ, Kleindorfer D, Alwell K, Moomaw CJ, Woo D, et al.

Clinical prediction of functional outcome after ischemic stroke the surprising

importance of periventricular white matter disease and race. Stroke. (2009)

40:530–6. doi: 10.1161/STROKEAHA.108.521906

6. Reid JM, Gubitz GJ, Dai D, Kydd D, Eskes G, Reidy Y, et al. Predicting

functional outcome after stroke by modelling baseline clinical and CT

variables. Age Ageing. (2010) 39:360–6. doi: 10.1093/ageing/afq027

7. Flint AC, Cullen SP, Faigeles BS, Rao VA. Predicting long-term outcome after

endovascular stroke treatment: the totaled health risks in vascular events

score. Am J Neuroradiol. (2010) 31:1192–6. doi: 10.3174/ajnr.A2050

8. Grech R, Galvin PL, Power S, O’Hare A, Looby S, Brennan P,

et al. Outcome prediction in acute stroke patients considered for

endovascular treatment: a novel tool. Interv Neuroradiol. (2014)

20:312–24. doi: 10.15274/INR-2014-10029

9. Moons KG, Royston P, Vergouwe Y, Grobbee DE, Altman DG.

Prognosis and prognostic research: what, why, and how? BMJ. (2009)

338:b375. doi: 10.1136/bmj.b375

10. Fahey M, Crayton E, Wolfe C, Douiri A. Clinical prediction

models for mortality and functional outcome following ischemic

stroke: a systematic review and meta-analysis. PLoS ONE. (2018)

13:1–13. doi: 10.1371/journal.pone.0185402

11. Localio AR, Stack CB. TRIPOD: a new reporting baseline for developing

and interpreting prediction models. Ann Intern Med. (2015) 162:73–

4. doi: 10.7326/M14-2423

12. Al-Ajlan FS, Qazi E, Kim CK, Venkatesan EP, Wilson L, Menon BK.

Multimodality CT based imaging to determine clot characteristics and

recanalization with intravenous TPA in patients with acute ischemic stroke.

Neurovasc Imaging. (2017) 3:2. doi: 10.1186/s40809-017-0026-9

13. Menon BK, Najm M, Al-Ajlan F, Puig Alcantara J, Dowlatshashi D, Calleja A,

et al. IV tPA recanalization rates by site of occlusion and time after tPA bolus-

main results of the interrsect multinational multicenter prospective cohort

study. Stroke. (2017) 48:186. doi: 10.1161/STROKEAHA.118.021579

14. Sandri M, Zuccolotto P. A bias correction algorithm for the Gini variable

importance measure in classification trees. J Comput Graph Stat. (2008)

17:611–28. doi: 10.1198/106186008X344522

15. KuhnM,Wing J, Weston S,Williams A, Keefer C, Engelhardt A, et al. Package

‘caret’. R J. (2020).

16. Zihni E, Madai VI, Livne M, Galinovic I, Khalil AA, Fiebach JB,

et al. Opening the black box of artificial intelligence for clinical

decision support: a study predicting stroke outcome. PLos ONE. (2020)

15:e0231166. doi: 10.1371/journal.pone.0231166

17. Chicco D, Jurman G. The advantages of the Matthews correlation coefficient

(MCC) over F1 score and accuracy in binary classification evaluation. BMC

Genomics. (2020) 21:6. doi: 10.1186/s12864-019-6413-7

18. Matthews BW. Comparison of the predicted and observed secondary

structure of T4 phage lysozyme. Biochim Biophys Acta Protein Struct. (1975)

405:442–51. doi: 10.1016/0005-2795(75)90109-9

19. Rufibach K. Use of brier score to assess binary predictions. J Clin Epidemiol.

(2010) 63:938–9.

20. Karatzoglou A,Meyer D, Hornik K. Support vectormachines in R. J Stat Softw.

(2006) 15:1–29.

21. RColorBrewer S, Liaw MA. Package ‘randomForest’. Berkeley, CA: University

of California. (2018).

22. Kuhn M, Weston S, Coulter N, Culp M, Quinlan R. C50: C5.0 Decision Trees

and Rule-Based Models. (2012). R package version 0.1.0. Available online at:

https://CRAN.R-project.org/package=C50

23. Alfaro E, Gamez M, Garcia N. adabag: An R package for classification with

boosting and bagging. J Stat Softw. (2013) 54, 1–35.

24. Therneau TM, Atkinson B, Ripley MB. rpart: Recursive Partitioning and

Regression Trees. (2019). R package version 4.1. 5. Available online at: https://

CRAN.R-project.org/package=rpart

25. Friedman J, Hastie T, Tibshiranii R. Regularization paths for generalized linear

models via coordinate descent. J Stat Softw. (2010) 33:1–22.

26. Kuhn M. Building predictive models in R using the caret package. J Stat Soft.

(2008) 28:1–28. doi: 10.18637/jss.v028.i05

27. Fox J, Leanage A. R and the journal of statistical software. J Stat Softw. (2016)

73:1–13. doi: 10.18637/jss.v073.i02

28. Heo J, Yoon JG, Park H, Kim YD, Nam HS, Heo JH. Machine learning–based

model for prediction of outcomes in acute stroke. Stroke. (2019) 50:1263–

5. doi: 10.1161/STROKEAHA.118.024293

29. Sung SM, Kang YJ, Cho HJ, Kim NR, Lee SM, Choi BK, et al.

Prediction of early neurological deterioration in acute minor ischemic

stroke by machine learning algorithms. Clin Neurol Neurosurg. (2020)

195:105892. doi: 10.1016/j.clineuro.2020.105892

30. Nusinovici S, Tham YC, Yan MY, Ting DS, Li J, Sabanayagam

C, et al. Logistic regression was as good as machine learning for

predicting major chronic diseases. J Clin Epidemiol. (2020) 122:56–69.

doi: 10.1016/j.jclinepi.2020.03.002

31. Kuhle S, Maguire B, Zhang H, Hamilton D, Allen AC, Joseph KS, et al.

Comparison of logistic regression with machine learning methods for the

prediction of fetal growth abnormalities: a retrospective cohort study. BMC

Pregnancy Childbirth. (2018) 18:1–9. doi: 10.1186/s12884-018-1971-2

32. Jie MA, Collins GS, Steyerberg EW, Verbakel JY, van Calster B. A systematic

review shows no performance benefit of machine learning over logistic

regression for clinical prediction models. J Clin Epidemiol. (2019) 110:12–

22. doi: 10.1016/j.jclinepi.2019.02.004

33. Van Os HJ, Ramos LA, Hilbert A, van Leeuwen M, Van Walderveen MA,

Kruyt ND, et al. Predicting outcome of endovascular treatment for acute

ischemic stroke: potential value of machine learning algorithms. Front Neurol.

(2018) 9:784. doi: 10.3389/fneur.2018.00784

34. Liu X, Lv Y, Wang B, Zhao G, Yan Y, Xu D. Prediction of functional outcome

of ischemic stroke patients in northwest China. Clin Neurol Neurosurg. (2007)

109:571–7. doi: 10.1016/j.clineuro.2007.05.008

35. König IR, Ziegler A, Bluhmki E, Hacke W, Bath PM, Sacco RL, et al.

Predicting long-term outcome after acute ischemic stroke: a simple index

works in patients from controlled clinical trials. Stroke. (2008) 39:1821–

6. doi: 10.1161/STROKEAHA.107.505867

36. Sajobi TT, Menon BK, Wang M, Lawal O, Shuaib A, Williams D, et al.

Early trajectory of stroke severity predicts long-term functional outcomes

in ischemic stroke subjects: results from the ESCAPE Trial (endovascular

treatment for small core and anterior circulation proximal occlusion with

emphasis on minimizing ct to recanalization times). Stroke. (2016) 48:105–

10. doi: 10.1161/STR.0000000000000127

37. Saxena SK, Ng TP, Yong D, Fong NP, Koh G. Functional outcomes in inpatient

rehabilitative care of stroke patients: predictive factors and the effect of

therapy intensity. Qual Primary Care. (2006) 14: 145–53.

38. Stier N, Vincent N, Liebeskind D, Scalzo F. Deep learning of tissue fate

features in acute ischemic stroke. In: 2015 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM). IEEE (2015). p. 1316–21.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Alaka, Menon, Brobbey, Williamson, Goyal, Demchuk, Hill and

Sajobi. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neurology | www.frontiersin.org 9 August 2020 | Volume 11 | Article 889

https://doi.org/10.1212/WNL.0b013e318259e221
https://doi.org/10.4103/2152-7806.210993
https://doi.org/10.1161/STROKEAHA.108.521906
https://doi.org/10.1093/ageing/afq027
https://doi.org/10.3174/ajnr.A2050
https://doi.org/10.15274/INR-2014-10029
https://doi.org/10.1136/bmj.b375
https://doi.org/10.1371/journal.pone.0185402
https://doi.org/10.7326/M14-2423
https://doi.org/10.1186/s40809-017-0026-9
https://doi.org/10.1161/STROKEAHA.118.021579
https://doi.org/10.1198/106186008X344522
https://doi.org/10.1371/journal.pone.0231166
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1016/0005-2795(75)90109-9
https://CRAN.R-project.org/package=C50
https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=rpart
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.18637/jss.v073.i02
https://doi.org/10.1161/STROKEAHA.118.024293
https://doi.org/10.1016/j.clineuro.2020.105892
https://doi.org/10.1016/j.jclinepi.2020.03.002
https://doi.org/10.1186/s12884-018-1971-2
https://doi.org/10.1016/j.jclinepi.2019.02.004
https://doi.org/10.3389/fneur.2018.00784
https://doi.org/10.1016/j.clineuro.2007.05.008
https://doi.org/10.1161/STROKEAHA.107.505867
https://doi.org/10.1161/STR.0000000000000127
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

	Functional Outcome Prediction in Ischemic Stroke: A Comparison of Machine Learning Algorithms and Regression Models
	Introduction
	Methods
	Data Sources
	Precise and Rapid Assessment of Collaterals With Multi-Phase CT Angiography (PROVE-IT) bib12
	Identifying New Approaches to Optimize Thrombus Characterization for Predicting Early Recanalization and Reperfusion With IV tPA Using Serial CT Angiography (INTERRSeCT) bib13
	Statistical Analysis

	Results
	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


