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Alzheimer’s Disease (AD) is the most common neurodegenerative disease, with 10%

prevalence in the elder population. Conventional Machine Learning (ML) was proven

effective in supporting the diagnosis of AD, while very few studies investigated the

performance of deep learning and transfer learning in this complex task. In this paper, we

evaluated the potential of ensemble transfer-learning techniques, pretrained on generic

images and then transferred to structural brain MRI, for the early diagnosis and prognosis

of AD, with respect to a fusion of conventional-ML approaches based on Support Vector

Machine directly applied to structural brainMRI. Specifically, more than 600 subjects were

obtained from the ADNI repository, including AD, Mild Cognitive Impaired converting to

AD (MCIc), Mild Cognitive Impaired not converting to AD (MCInc), and cognitively-normal

(CN) subjects. We used T1-weighted cerebral-MRI studies to train: (1) an ensemble of

five transfer-learning architectures pretrained on generic images; (2) a 3D Convolutional

Neutral Network (CNN) trained from scratch on MRI volumes; and (3) a fusion

of two conventional-ML classifiers derived from different feature extraction/selection

techniques coupled to SVM. The AD-vs-CN, MCIc-vs-CN, MCIc-vs-MCInc comparisons

were investigated. The ensemble transfer-learning approach was able to effectively

discriminate AD from CN with 90.2% AUC, MCIc from CN with 83.2% AUC, and MCIc

fromMCInc with 70.6%AUC, showing comparable or slightly lower results with the fusion

of conventional-ML systems (AD from CN with 93.1% AUC, MCIc from CN with 89.6%

AUC, and MCIc from MCInc with AUC in the range of 69.1–73.3%). The deep-learning

network trained from scratch obtained lower performance than either the fusion of

conventional-ML systems and the ensemble transfer-learning, due to the limited sample

of images used for training. These results open new prospective on the use of transfer

learning combined with neuroimages for the automatic early diagnosis and prognosis of

AD, even if pretrained on generic images.
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INTRODUCTION

With an estimate of 5.7 million people affected in 2018 in the only
United States and a prevalence of 10% in the elder population [>
65 years old, (1)], Alzheimer’s Disease (AD) is the most common
neurodegenerative disease, accounting for 50–75% of all cases of
dementia (2).

To date, AD can be definitely diagnosed only after death, with
post-mortem examinations aimed at measuring the presence
of amyloid plaques and neurofibrillary tangles. Distinguishing
between different neurodegenerative phenotypes of dementia is
of paramount importance to allow patients accessing appropriate
treatment and support (3).

A probable or possible clinical diagnosis of AD is often
mainly based on patient’s self-reported experiences and the
assessment of behavioral, functional, and cognitive status
through neuropsychological tests and questionnaires. However,
this approach results to be insufficient for the diagnosis of AD,
especially in the early pre-dementia stage of the disease known as
Mild Cognitive Impairment (MCI), whose rate of progression to
Alzheimer’s dementia is only 33% (4).

Due to these weaknesses and according to many scientific
evidences arising in the last years, the revised diagnostic
criteria for AD published in 2011 included neuroimaging
studies as techniques able to detect signs of the disease even
before dementia is apparent (5, 6). Neuroimaging techniques
include both functional imaging, such as Positron Emission
Tomography (PET) with Ab- or tau-specific radiotracers, and
structural/metabolic imaging, such as Magnetic Resonance
Imaging (MRI) or PET with Fluoro-deoxiglucose radiotracer.
These methods can provide measurements of AD-specific
proteins’ deposit and reduced metabolism/atrophic regions,
respectively, related to the presence and the progression of AD
(7, 8).

Scientific progress led to a more recent initiative by the
National Institute on Aging and Alzheimer’s Association to
update the 2011 guidelines, defining AD by its underlying
pathologic processes that can be documented by postmortem
examination or in vivo by biomarkers, irrespectively from
the clinical symptoms or signs. This new approach shifted
the definition of AD in living people from a syndromal to
a biological construct and focused the diagnosis of AD on
biomarkers in living persons by means of the measure of β

amyloid deposition, pathologic tau, and neurodegeneration from
biofluids and imaging (9).

However, it can be difficult for radiologists to detect the
presence of imaging biomarkers by visual inspection of brain
images at early disease stages.

Because of these limitations, the neuroimaging community
has recently been attracted by advanced machine-learning (ML)
and pattern-recognition techniques. These techniques are indeed
able to extract information from data and to use this information
to design models that can automatically classify new samples.
In the field of neuroimaging, they proved able to identify
unknown disease-related patterns in imaging data without a-
priori information about the pathophysiological mechanisms of
the underlying disease. The performance of these techniques

in automatically diagnosing new patients reached high values,
also when considering AD [e.g., (10–14)]. However, in the early
diagnosis of AD, i.e., the discrimination of MCI patients who
will convert to AD (MCIc) from those who will not (MCInc)
is a very complex and challenging issue (15) since the clinical
implementation of ML systems trained on subtle brain features
able to discriminateMCIc fromMCInc requires the development
of a large variety of parameters and image processingmethods for
the fine tuning of the training.

In the very last years, a new ML technique from the
computer-vision field came to the attention of the research
community because of the excellent results obtained in several
visual recognition tasks (16). This technique, known as deep
learning (17), allows learning representations of data with
multiple levels of abstraction (represented by multiple processing
layers) (18), which result in an astounding improvement
in terms of performance with respect to conventional
classification algorithms.

Deep learning has already shown its potential performance
in clinical applications, such as the automatic detection
of metastatic breast cancer (19), the automatic lung-cancer
diagnosis (20), or the automatic segmentation of liver tumor (21),
both by training a whole classification architecture from scratch
or by using transfer-learning techniques (22, 23). Specifically,
this last approach allows pre-training a network on a very large
dataset of generic images and -then- fine tuning the resulting
model using specific samples related to the target problem. This
turns out to be really useful when the number of available training
samples is small with respect to the number of samples required
to train from scratch a stable, unbiased and not-overfitted deep-
learning architecture.

The application of these emerging techniques to
neuroimaging studies is an active research field for their
expectations on improving classification performance. However,
some criticisms about this approach exists, such as; (1) the
nature of the features used as a representation of the input
samples, which still need further investigation, especially when
considering neurodegenerative diseases such as AD, which show
a distributed (not localized) pattern of atrophy; (2) the use of
transfer-learning architectures, which are often pre-trained on
generic images, given the relatively small amount of medical-
imaging data; however, this may affect the performance of the
classification model, since the relation between the information
used to pre-train an architecture and that used for fine tuning
may impact the performance of the network.

Given these open issues, and the lack of scientific papers
aimed at a direct comparison of the different methodological
approaches, in this paper we want to focus on the comparison
of deep /transfer-learning and conventional machine learning
when applied to the same neuroimaging studies for the early
diagnosis and prognosis of AD. Magnetic Resonance Imaging
(MRI) has several points of strength for this kind of study: it is
included as neuroimaging modality in all clinical trials focused
on AD, to exclude patients with brain diseases different from
AD; it is less expensive than PET and more widespread in both
western and non-western regions; it is a non-invasive technique,
and it can provide information about neuronal degeneration
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at a morphological level, thus serving as imaging modality for
measuring biomarkers of neurodegeneration.

With this aim, we implemented and trained different
classification approaches, based on deep-learning techniques and
on conventional ML using two different sets of multicenter
MRI brain images obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
The following binary comparisons were evaluated: AD vs. CN,
MCIc vs. CN, MCIc vs. MCInc. However, since individual
algorithms may perform better than the others for a given task,
an ensemble of different individual algorithms was implemented
in this work to reduce issues across the different AD phenotype
comparisons arising from the choice of a single architecture and
improving the classification performances.

The automatic-classification performance of the proposed
methods was used to compare the different classification
approaches and to evaluate the potential application of ensemble
transfer learning for the automatic early diagnosis and prognosis
of AD against well-established, validated ML techniques.

MATERIALS AND METHODS

Participants and Datasets
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
by the National Institute on Aging (NIA), the National Institute
of Biomedical Imaging and Bioengineering (NIBIB), and the
Food and Drug Administration (FDA), as a 5-year public
private partnership, led by the principal investigator, Michael W.
Weiner, MD. The primary goal of ADNI was to test whether
serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and
neuropsychological assessments subjected to participants could
be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD) -
see www.adni-info.org.

As per ADNI protocol (http://www.adni-info.org/Scientists/
ADNIStudyProcedures.html), each participant was willing, spoke
either English or Spanish, was able to perform all test procedures
described in the protocol and had a study partner able to provide
an independent evaluation of functioning. Inclusion criteria for
different diagnostic classes of patients are stated below:

CN Subjects
Mini Mental State Examination (MMSE) (24) scores between
24 and 30, Clinical Dementia Rating (CDR) of zero (25), and
absence of depression, MCI and dementia.

MCI Patients
MMSE scores between 24 and 30, CDR of 0.5, objective memory
loss measured by education-adjusted scores on the Logical
Memory II subtest of theWechslerMemory Scale (26), absence of
significant levels of impairment in other cognitive domains, and
absence of dementia.

AD Patients
MMSE scores between 20 and 26, CDR of 0.5 or 1.0, and
criteria for probable AD as defined by the National Institute
of Neurological and Communicative Disorders and Stroke
(NINCDS) e by the Alzheimer’s Disease and Related Disorders
Association (ADRDA) (27, 28).

In the present work, we used two different sets of data
obtained from the ADNI repository. These replicate the same
sets of data used in previously published studies (11, 29) and
were referred to as Salvatore-509 and Moradi-264, are described
in detail below.

Salvatore-509
This dataset is the same used in a previously-published study by
Salvatore et al. (12), and is composed of 509 subjects collected
from 41 different radiology centers and divided as follows: 137
AD, 162 CN, 76 MCIc, and 134 MCInc, depending on their
diagnosis (converted to AD or stable MCI and CN) after a follow-
up period of 18 months For each patient, T1-weighted structural
MR images (1.5 T, MP-RAGE sequence) acquired during the
screening or the baseline visit were considered [according to the
standard ADNI acquisition protocol detailed in (30)]. Data were
obtained from the ADNI public repository.

Moradi-264
This is the same dataset used in a previously-published study
by Moradi et al. (11), and is composed of 264 subjects
divided into 164 MCIc and 100 MCInc depending on their
diagnosis (converted to AD or stable MCI) after a follow-up
period of 36 months. For each patient, T1-weighted structural
MR images (1.5 T, MP-RAGE sequence) acquired during the
baseline visit were considered. In the original publication, the
binary classification of MCIc vs. MCInc was explored and
the classification system was validated through a 10-fold CV
approach. Also in this case the data were obtained from the ADNI
public repository.

MRI Preprocessing
For both Salvatore-509 and Moradi-264 datasets, MR images
were downloaded in 3D NIfTI format from the ADNI repository.
Image features (e.g., resolution) were not the same for each scan
in the datasets, because MRIs were obtained from a multicenter
study. Each image was then further subjected to a preprocessing
phase, individually, with the main aim to make different scans
comparable to each other. This phase was entirely performed
on the Matlab platform (Matlab R2017a, The MathWorks) using
the VMB8 software package. The preprocessing phase consisted
in image re-orientation, cropping, skull-stripping, co-registration
to the Montreal Neurological Institute (MNI) brain template,
and segmentation into gray matter tissue probability maps.
Specifically, the co-registration step was performed using the
MNI152 (T1 1mm brain) (31). Possible inhomogeneities and
artifacts were checked by visual inspection on MRI volumes
before and after the pre-processing step.

All entire volumes of MRI resulted to be of size 121 x 145 x
121 voxels.
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The MRI volumes were then cropped to the 100 central
slices, in order to focus the analysis to the inner brain structures
(including hippocampus), thus resulting in a 100 x 100 x 100-
voxels volume for each MRI scan.

In the subsequent analyses, both the entire MRI volumes and
the inner cerebral structures were used, separately.

Classification Algorithms
In this section, we describe the conventional-ML and
deep/transfer-learning approaches that were used to perform
automatic classification of AD diagnosis and prognosis.

We designed 1 Support-Vector-Machine classifier [SVM,
(32)] coupled to two different feature extraction/selection
techniques, five fine-tuned 2D Convolutional Neural Networks
[CNNs, (17)] pretrained on generic images (transfer learning),
and one 3D CNN trained from scratch on MRI volumes. An
exhaustive description of the different approaches used in this
study is presented below. It is worth noting here that the choice
of the conventional-ML approaches as well as of the feature-
extraction-and-selection techniques used in this study come from
a review of the literature (13) as well as from the results of
previous research studies (33, 34).

Conventional-ML Approach
The conventional-ML approach used in this paper is obtained by
coupling two feature extraction and/or selection technique with
an automatic-classification technique based on SVM.

Given the high dimensionality of the feature vector obtained
from each MR image (> 106 voxels per MR volume), the feature-
extraction/selection step is indeed necessary to reduce the curse-
of-dimensionality issue, to remove irrelevant features, and to
reduce overfitting, thus potentially improving the performance of
SVM. The following feature extraction and selection approaches
were tested: Aggregate Selection and Kernel Partial Least Squares.
The choice of these techniques is based on the results obtained
in our two previous works (33, 34), in which we studied and
compared more than 30 different feature-reduction approaches
(considering both papers) in order to study their discrimination
power when applied to neuroimaging MRI data. As it can be
drawn from the results and discussions of these papers, Aggregate
Selection and kPLS show the most promising results in terms
of classification accuracy, sensitivity, specificity, and AUC, thus
showing higher discrimination power than the other tested
approaches (considered individually). Accordingly, we applied
these feature-reduction techniques for the classification of MRI
data in this work.

Aggregate Selection (AS) (35) is a feature-selection technique
that combines (1) the feature ranking based on the Fisher’s
score (32), (2) the two-sample T-test (32), and (3) the sparse
multinomial logistic regression via bayesian L1 regularization
(36). As these criteria quantify different characteristics of the
data, considering the ranking of all the above criteria would
produce a more informative set of features for classification,
that is, the resulting set of features should prove superior with
respect to each criterion considered individually. In practice,
it is difficult to combine the ranking of all these criteria
because the range of statistics is different: therefore, a criterion

that generates a higher range of statistics would dominate
those with a lower range. To avoid this problem, AS uses a
modified analytic hierarchy process that assembles an elite set
of features through a systematic hierarchy. This is accomplished
by comparing the ranking features of a set of criteria by first
constructing a comparison matrix whose elements are required
to be transitive and consistent. Consistency of the comparison
matrix is calculated using the Consistency Index (CI) and the
Consistency Ratio (CR) based on large samples of random
matrices. Let ǫ = [ǫ1, ǫ2, . . . , ǫn]T be an eigenvector and λ

be an eigenvalue of the square matrix X. We would then have
what follows:

Xǫ = λǫ (1)

CI =
λmax − n

n− 1
(2)

CR = CI/index (3)

If the set of judgments is consistent, CR will not exceed 0.1. If
CR = 0, then the judgments are perfectly consistent. After the
comparison matrices are constructed, the eigenvectors (one for
each criterion) that demonstrate the ranking scores are calculated
using a hierarchical analysis. This results in a performance
matrix. The feature ranking is then obtained by multiplying the
performance matrix with the vector representing the importance
weight of each criterion. The weight vector is typically obtained
by evaluating the level of importance of each criterion with
respect to a specific aspect. In this case, the weight vector was
set a priori to 1/(number of criteria) (1/3 in this case) in order to
avoid bias.

Kernel Partial Least Squares (kPLS), first described in (37),
is a feature-extraction technique that computes nonlinear
correlations among the features by approximating a given matrix
to a vector of labels. kPLS is a nonlinear extension of Partial Least
Square (PLS), which can be viewed as a more powerful version
of the Principal Component Analysis (38), as also in this case
a set of orthogonal vectors (called components) is computed by
maximizing the covariance between the D (observed variables or
data) and C (classes or diagnostic labels).

In this paper, we used the approach proposed in the paper
by Sun et al. (39), for which the entire kPLS algorithm can
be stated in terms of the dot products between pairs of inputs
and a substitute kernel function K (·, ·). If X ∈ RN×D is the
matrix of D-dimensional observed variables (D) and N number
of observations, and if Y ∈ RN×C is the corresponding matrix
of C-dimensional classes (C), then we can map a nonlinear
transformationΦ (·) of the data into a higher-dimensional kernel
space K, such that Φ : xIǫR

D → Φ (xI) ǫK.
The first component for kPLS can be determined as the

eigenvector of the following square kernel matrix for βΦ
:βΦλ =

KXKyβ
Φ , where KX is an element of the Gram Matrix KX in

the feature space, and λ is an eigenvalue. The size of the kernel
matrix KXKy is N × N regardless of the number of variables in
the original matrices X and Y .
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If T = {t1, t2, . . . , th} is a set of components, with h the desired
number of components, then the accumulation of variation
explanation of T to Y can be written as:

wi =

√

√

√

√D

∑h
l=1 Ψ (Y , tl) v

2
il

∑h
l=1 Ψ (Y , tl)

, i ∈ {1, 2, . . . ,D} , (4)

where vil is the weight of the i
th feature for the lth component,

Ψ (·, ·) is a correlation function, and Ψ
(

yj, tl
)

is the correlation
between tl and Y . Larger values of wi represent more explanatory
power of the ith feature to Y .

In kernel space, kPLS becomes an optimization problem:

argmax
α⊆RN

{αTSΦ
1

α

αT
SΦ
2 α} (5)

where α is an appropriate projection vector, and SΦ
1 and SΦ

2
are the inter-class scatter matrix and intra-class scatter matrix,
respectively. The calculation of the contribution of the lth
component γl can be calculated as:

γl =

∑C
i=1 Nim

Φ
il

∑C
i=1 Ni

(6)

where Ni is the number of samples in the ith class, andmΦ
il
is the

mean vector of the ith class with respect to the lth component
in the projection space. The larger γl, the more significant
the classification.

In this paper, we implemented the same version of kPLS
proposed in the work by Sun et al. (39) and available at https://
github.com/sqsun/kernelPLS. The number of components was
set to 10.

The features extracted and/or selected from the original MRI
volumes using these two different approaches were then used as
input to the SVM classifier of the LibSVM library in Matlab (40)
to perform the classification tasks.

The two SVM models obtained from the first phase of this
study were then used as a fusion of conventional-ML classifiers.

Transfer-Learning Approach
The transfer-learning approach used in this paper is based on
an ensemble of CNNs pretrained on generic images. CNNs are a
class of deep feed-forward artificial neural networks (ANNs) that
are shift and scale invariant. As with ANNs, CNNs are composed
of interconnected neurons that have learnable weights and biases.
Each of the neurons has inputs and performs a dot product,
optionally followed by a non-linearity.

CNN layers have neurons arranged in three dimensions:
width, height and depth. In other words, each layer in a CNN
transforms a 3D input volume into a 3D output volume of
neuron activations. CNNs are the repeated concatenation of
five different classes of layers: convolutional, activation, pooling,
fully-connected, and classification layers.

The convolutional layers make up the core building blocks
of a CNN and are the most computationally expensive. They
compute the outputs of neurons that are connected to local
regions by applying a convolution operation to the input. The
receptive field is a hyperparameter that determines the spatial
extent of connectivity. A parameter sharing scheme is used in
convolutional layers to control the number of parameters. The
parameters of convolutional layers are shared sets of weights
(commonly referred to as kernels or filters) that have a small
receptive field.

Pooling layers perform a non-linear down-sampling
operation. Different non-linear functions are used when
implementing pooling, with max pooling being one of the most
common methods. Max-pooling partitions the input into a
set of non-overlapping rectangles and outputs the maximum
for each group. Thus, pooling reduces the spatial size of the
representation, reducing the number of parameters and the
computational complexity of the network as a consequence.
The reduction of features involved results in a reduction of
overfitting issues. A pooling layer is commonly inserted between
convolutional layers.

Activation layers apply some activation function, such as the
non-saturating function f (x) = max (0, x) or the saturating
hyperbolic tangent f (x) = tanh (x) or the sigmoid function

f (x) =
(

1+ e−x
)−1

.
Fully-connected layers have full connections to all activations

in the previous layer and are applied after convolutional and
pooling layers. A fully-connected layer can easily convert to a
convolutional layer since both layers compute dot products, i.e.,
their functional form is the same.

The last layer is the classification layer, which performs
the classification step and returns the output of the deep-
learning network.

Given the relatively low number of data available in this study
(from a minimum of 76 to a maximum of 164 patients per
diagnostic class) with respect to the number of samples needed to
train a CNNmodel that is stable, unbiased and not-overfitted, we
could not train an entire deep-learning architecture from scratch
(with random initialization). Training a CNN from scratch
indeed requires more training samples than those necessary for
training conventional ML. The number of training samples can
decrease significantly if pre-trained models are used, such as in
transfer learning (22, 23), in which a CNN is pretrained on a
very large dataset of (usually) generic image, the weights of the
pretrained network are then fine-tuned using samples that are
specifically related to the target problem, and the classification
layer on top of the network is replaced accordingly.

In order to reduce issues arising from the choice of a
single network, we used different pretrained networks, thus
designing different CNN models. The classification outputs of
these architectures were thenmerged via sum rule in an ensemble
transfer-learning approach. The following pretrained networks
were used:

• AlexNet [winner of the ImageNet ILSVRS challenge in
2012; (17)] is composed of both stacked and connected
layers and includes five convolutional layers followed by
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three fully-connected layers, with max-pooling layers in
between. A rectified linear unit nonlinearity is applied to
each convolutional layer along with a fully-connected layer to
enable faster training.

• GoogleNet [winner of the ImageNet ILSVRS challenge in 2014;
(41)] is the deep-learning algorithm whose design introduced
the so-called Inception module, a subnetwork consisting of
parallel convolutional filters whose outputs are concatenated.
Inception greatly reduces the number of required parameters.
GoogleNet is composed by 22 layers that require training (for
a total of 27 layers when including the pooling layers).

• ResNet [winner of ILSVRC 2015; (42)], an architecture
that is approximately twenty times deeper than AlexNet;
its main novelty is the introduction of residual layers, a
kind of network-in-network architecture that forms building
blocks to construct the network. ResNet uses special skip
connections and batch normalization, and the fully-connected
layers at the end of the network are substituted by global
average pooling. Instead of learning unreferenced functions,
ResNet explicitly reformulates layers as learning residual
functions with reference to the input layer, which makes
the model smaller in size and thus easier to optimize than
other architectures.

• Inception-v3 (43), a deep architecture of 48 layers able to
classify images into 1,000 object categories; the net was trained
on more than a million images obtained from the ImageNet
database (resulting in a rich feature representation for a wide
range of images). Inception-v3 classified as the first runner up
for the ImageNet ILSVRC challenge in 2015.

CNNs are designed to work on RGB images (3-channels),
while MRIs store information in 3-dimensional single-channel
volumes. In order to exploit the potential of transfer learning
through pretrained 2D architectures, we introduced a technique
to decompose 3D MRIs to 2D RGB-like images that could be fed
into 2D pretrained architectures for transfer-learning purposes.

In this technique, MRI slices, once co-registered to the MNI
brain template, are used as 2DRGB bands. Specifically, 3 different
MRI slices are stacked together to form one RGB-like image.
We then introduced the variable “gap,” which corresponds to
the “distance” between the 3 MRI slices (i.e., the one used
for the “R” band and those used for the “G” and “B” bands).
The variable “gap” is measured as the difference among the
number of MRI slices (e.g., if “gap” is 1, the 3 MRI slices
are adjacent).

Four different approaches were used (A, B, C, D) to form a
RGB-like image, depending on the orientation of the considered
MRI slices, i.e., sagittal, coronal, or transaxial:

A. “R” band is the n-th sagittal slice of the original 3D MRI
volume, “G” band is the (n-th + gap) sagittal slice of the
original 3D MRI volume, and “B” band is the (n-th + 2×gap)
sagittal slice of the of the original 3D MRI volume;

B. “R” band is the n-th coronal slice of the original 3D MRI
volume, “G” band is the (n-th + gap) coronal slice of the
original 3D MRI volume, and “B” band is the (n-th + 2×gap)
coronal slice of the original 3D MRI volume;

C. “R” band is the n-th transaxial slice of the original 3D MRI
volume, “G” band is the (n-th + gap) transaxial slice of the
original 3D MRI volume, and “B” band is the (n-th + 2×gap)
transaxial slice of the original 3D MRI volume;

D. “R” is the n-th sagittal slice of the original 3D MRI volume,
“G” band is the (n-th + gap) coronal slice of the original 3D
MRI volume, and “B” band is the (n-th + 2×gap) transaxial
slice of the original 3D MRI volume.

(Approach D is the only one in which different MRI-slice
orientations are used together).

Different transfer-learning models were trained for different
configurations of RGB-like images of the subjects.

Training-and-classification tests were run with gap ∈ {0,1,2}
and n starting from the first slice of the original 3D MRI volume.
For example, considering the approach “A,” when gap = 1 and n
= 1, the corresponding RGB-like image is a 2D image in which
“R,” “G,” and “B” bands are the first three sagittal slices of the
original 3D MRI volume.

In this way, the intra-subject spatial structural information
is preserved, both in the x-y plane and in the z dimension. In
the example above, each 2D RGB-like image contains the entire
original MRI information on the sagittal plane. The same is true
along the sagittal direction, although limited to the depth of
three slices.

Moreover, different transfer-learning models were used for
each configuration of RGB-like images of the subjects.

For example, the RGB-like image of a patient centered on
slice #2 is used in the learning-and-classification process only
with RGB-like images of the other patients centered on the same
slice #2.

As MRI volumes are co-registered to the same MNI brain
template, all RGB-like images centered on the same slice also
result to be co-registered among them, and thus the data used
to train each transfer-learning model refer to the same MNI
coordinates and contain the same morphological and structural
information across subjects.

In this way, the inter-subjects spatial structural information
is preserved.

As each individual model (one for each value of “n”) returned
an individual classification output, the final classification was
obtained by merging (via sum rule) the classification output of
all the RGB-like images that compose a given MRI volume.

It must be noted that in this process the “depth” of CNN
layers corresponds to the 3 different MRI slices that are used as
RGB bands. The learning process by convolutional filters of CNN
layers uses the spatial structural information from these 3 RGB
bands. Moreover, regarding the pooling process, the maximum
dimension of the pooling-filter matrix is 3 by 3, thus poorly
impacting the spatial size of the image representation.

The optimal number of epochs was evaluated as the number
of epochs for which the network reached the minimum training
error (convergence). The learning rate was set to 0.0001, and a
mini batch with 30 observations at each iteration was used. No
data augmentation was performed.

The deep-learningmodels obtained from the first phase of this
study were then used in an ensemble of transfer-learning models.
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All transfer-learning analyses were performed on a computing
system with a dedicated Nvidia GeForce GTX Titan X GPU (12
GB memory size).

Deep-Learning Approach
A new 3D CNNwas trained from scratch using the MRI volumes
from the two considered datasets.

Our 3D CNN architecture was composed of the following 3D
layers: (1) convolutional layer, (2) Rectified Linear Unit (ReLU)
layer, (3) max-pooling layer, (4) fully-connected layer, (5) soft-
max layer, and (6) final classification layer.

The size of the 3D input layer was set equal to 28 by 28
by 121. The stride of convolutional layers and the stride of the
max-pooling layers were set equal to 4.

In order to perform the training and optimization of the
network, MRI scans were then split up into patches of size 28
by 28 by 121, without overlap, and the final classification was
obtained by merging (via sum rule) the classification output of
all the patches that compose a given MRI volume.

Training and optimization of the network were performed
using Stochastic Gradient Descent with Momentum (SGDM)
optimization, initial learning rate equal to 0.0001. Analyses were

FIGURE 1 | Cerebral MRI sections of an MCInc patient (A) and an MCIc patient (B) from the Moradi-264 dataset after preprocessing (including co-registration to MNI

template and segmentation into gray matter). Sections are shown in both axial (up) and sagittal (down) views. In the axial view, slices 20, 30, 40, 50, 65, and 80 are

reported; in the sagittal view, slices 61, 66, 71, 80, 90, and 100 are reported.
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performed on a computing system with a dedicated Nvidia
GeForce GTX Titan X GPU (12 GB memory size).

Performance Evaluation and Comparison
of Different Methods
The following classification methods were tested: AS + SVM,
kPLS+ SVM, a fusion between these two SVMs (Method #1), five
2D transfer-learning architectures considered individually, i.e.,
AlexNet, GoogleNet, ResNet50, ResNet101, InceptionV3, one 3D
CNN trained from scratch on theMRI volumes, and an ensemble
between these CNNs via sum rule (Method #2).

The performance-evaluation procedure was performed -for
both Salvatore-509 and Moradi-264 datasets—using (1) the same
validation strategy, (2) the same validation indices, and (3)
the same binary comparisons adopted in the original papers.
In both cases, all the classification steps (including feature
extraction/selection and the automatic classification itself) were
embedded into a nested cross-validation (CV) strategy. This
allowed us to perform an optimization of the input parameters,
i.e., to find the best configuration of parameters to be used for this
specific classification task. However, in order to reduce overfitting
issues, we kept the number of hyperparameters to be optimized
as low as possible.

The following binary comparisons were performed using the
Salvatore-509 dataset: AD vs. CN,MCIc vs. CN,MCIc vs. MCInc.
When using the Moradi-264 dataset, only the MCIc vs. MCInc
binary comparison was performed due to the lack of AD and
CN studies in this dataset. The performance of the proposed
classification methods for these comparisons was evaluated by
means of AUC (Area Under the ROC Curve) (44).

After evaluating the learning systems individually, Method
#1 and Method #2 were trained and tested using (1) the entire
MRI volume or (2) the inner cerebral structures (including the
hippocampal region) derived from the entire MRI volume.

RESULTS

Participants, Datasets, and MRI
Preprocessing
Demographic characteristics of the patients considered in this
paper are consistent with those reported by previous studies that
used the same sets of data from the ADNI public repository.
Specifically, regarding the Salvatore-509 dataset, the four groups
of participants (namely AD, MCIc, MCInc and CN) did not
show statistically-significant differences for age and gender, while
statistically-significant differences were found for MMSE scores
between CN and AD and between CN and MCIc. Regarding
the Moradi-264 dataset, the two groups of patients (MCIc and
MCInc) showed a matched age range (55-89 for MCIc, 57-89 for
MCInc), but a slight predominance of males in the MCInc group
(66%) with respect to the MCIc group (59%). More details can be
found in the original publications (11, 12), respectively.

The MRI pre-processing, including re-orientation, cropping,
skull-stripping, co-registration and segmentation, was performed
correctly for all the scans in the two considered datasets.
Images did not show any inhomogeneities or artifacts at visual

TABLE 1 | Classification performance in terms of AUC of AS+SVM and

kPLS+SVM.

Conventional ML AD vs. CN MCIc vs. CN MCIc vs. MCInc

AS + SVM 93.1 89.6 69.1 ± 6.4*

kPLS + SVM 93.3 90.8 65.7 ± 3.0*

Results refer to the models using the entire MRI volumes.

*Mean and standard deviation calculated over Salvatore-509 and Moradi-264 datasets.

inspection, both before and after the MRI pre-processing.
Figure 1 shows (as a representative example) the MRI scans of
an MCInc patient (A) and an MCIc patient (B) from theMoradi-
264 dataset after the pre-processing phase, in terms of gray
matter tissue probabilitymaps co-registered to theMNI template.
Sections are shown in both axial (up) and sagittal (down) views.
In the axial view, slices 20, 30, 40, 50, 65, and 80 are reported; in
the sagittal view, slices 61, 66, 71, 80, 90, and 100 are reported.

Classification, Performance Evaluation,
and Comparison of Different Methods
Table 1 shows the classification performance of the considered
conventional ML approaches for classifying AD vs. CN, MCIc
vs. CN and MCIc vs. MCInc, respectively. The results were
obtained for the two feature extraction/selection plus SVM on
the entire MRI volumes. The performance obtained by the two
conventional-ML classifiers in terms of AUC are comparable
and accurate for both tasks AD vs. CN (>0.93) and MCIc vs.
CN (>89.5), showing some limitations in the MCIc vs. MCInc
task (<70%). No statistical difference was found between the
performances obtained by the two methods reported in Table 1

(statistical comparison by one-way ANOVA). Accordingly, we
did not choose a single SVM-based classifier for the subsequent
analyses, but we performed a fusion of SVMs.

Table 2 shows the classification performance of transfer-
learning architectures for classifying AD vs. CN, MCIc vs. CN
and MCIc vs. MCInc, respectively, on the entire MRI volumes.
The results were obtained for two pre-trained architectures (i.e.,
AlexNet and GoogleNet) on different configurations in terms of
Gap (0, 1, 2, or combination of them via sum rule) and MRI-
decomposition approach (A, B, C, D, or combination of them via
sum rule).

The classification performance (AUC) shows that the
combination of different Gaps and different MRI-decomposition
approaches improves the power of the architecture in the
discriminating tasks. We thus applied this final approach
(combination of three Gaps and four MRI-decomposition
approaches) to all transfer-learning architectures for
the following analyses. This result shows that different
decomposition approaches may be able to retain different
spatial information, and thus the combination of different
decomposition techniques may be a useful way to exploit as
much spatial information as possible without having to train
from scratch a new 3D network (which is much more expensive
in terms of computational costs).
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TABLE 2 | Classification performance in terms of AUC of AlexNet and GoogleNet after fine tuning using different Gap values and MRI-decomposition approaches.

Pretrained architecture Gap MRI-decomposition approach AD vs. CN MCIc vs. CN MCIc vs. MCInc

AlexNet 0 A 88.2 81.9 65.5 ± 5.2*

0 B 87.0 79.8 63.8 ± 1.8*

0 C 89.6 74.7 61.7 ± 3.0*

0 D 90.1 82.2 67.1 ± 2.3*

0 A, B, C, D (combination) 90.4 83.2 67.0 ± 1.7*

0, 1, 2 (combination) A, B, C, D (combination) 90.8 84.2 69.1 ± 1.3*

GoogleNet 0 A 86.4 80.2 65.9 ± 0.9*

0 B 87.2 75.0 68.9 ± 0*

0 C 86.3 78.0 68.6 ± 0.2*

0 D 87.5 79.6 67.1 ± 2.6*

0 A, B, C, D (combination) 88.6 80.2 70.1 ± 0.6*

0, 1, 2 (combination) A, B, C, D (combination) 89.6 81.6 70.0 ± 1.3*

Results refer to the models that were fine-tuned using the entire MRI volumes. The combination of different Gap values or MRI-decomposition approaches is simply referred to

as combination.

*Mean and standard deviation calculated over Salvatore-509 and Moradi-264 datasets.

Table 3 shows the classification performance of all the 5
considered pre-trained architectures (entries from 1 to 5) and of
the 3D CNN trained from scratch on the MRI volumes (entry
n. 6) for classifying AD vs. CN, MCIc vs. CN and MCIc vs.
MCInc, respectively. For pretrained 2D architectures, the results
were obtained after fine tuning on the entire MRI volumes.
Convergence to the minimum training error was reached for
all the 2D pretrained architectures within 20 epochs. The best-
performing network for both AD vs. CN and MCIc vs. CN
is AlexNet, with 90.8 and 84.2% AUC, respectively. The best-
performing for MCIc vs. MCInc is ResNet101, with mean AUC
of 71.2% (averaged between the results obtained on Salvatore-
509 and Moradi-264 datasets, see Supplementary Materials

for non-averaged results), showing the similar limitations as
conventional ML in the MCIc vs. MCInc task (AUC < 71.5%).
However, no statistical difference was found among the 5
pretrained 2D architectures (one-way ANOVA). According to
these results, we used an ensemble of such 5 architectures for the
subsequent analyses.

The 3D CNN reached convergence within 80 epochs with
an AUC of 84.1% in classifying AD vs. CN, 72.3 for MCIc vs.
CN and 61.1 for MCIc vs. MCInc, thus lower than the one
obtained by both conventional ML and 2D transfer learning, due
to the limited sample of images used for training. Based on these
results, only the pretrained 2D architectures were used for the
following analysis.

The comparison of the fusion of SVMs, built from AS+SVM
and kPLS+SVM (Method #1), and the transfer-learning model,
built as an ensemble of the individual pretrained architectures
obtained above (Method #2), is shown in Table 4, on the entire
MRI volumes or on the inner cerebral structures.

As shown in the table, the fusion of conventional-ML
classifiers (method #1) seems to perform better than the ensemble
transfer-learning method adopted in this work (method #2).

This is slightly true when the entire MRI volume is used and
it is better appreciated when only the inner cerebral structures

TABLE 3 | Classification performance in terms of AUC of the different

deep/transfer-learning pretrained architectures considered individually.

Architecture AD vs. CN MCIc vs. CN MCIc vs. MCInc

AlexNetP 90.8 84.2 69.1 ± 1.3*

GoogleNetP 89.6 81.6 70.0 ± 1.3*

ResNet50P 89.8 81.8 70.4 ± 1.0*

ResNet101P 89.9 82.2 71.2 ± 1.2*

InceptionV3P 88.8 79.9 69.8 ± 3.5*

3D CNN 84.1 72.3 61.1 ± 1.0*

For pretrained 2D architectures (entries from 1 to 5), results refer to the ensemble of

models trained using different Gap values (0, 1, 2) and MRI-decomposition approaches

(A, B, C, D) on the entire MRI volumes.

P, pretrained; *mean and standard deviation calculated over Salvatore-509 and Moradi-

264 datasets.

of the MRI volume are used. Indeed, when considering the
automatic discrimination of AD vs. CN and MCIc vs. CN based
on the entire MRI volume, conventional-ML classifiers obtained
an AUC > 93% and >90.5, respectively, while the performance
obtained by the ensemble transfer-learning classifier were 90.2
and 83.2%, respectively. However, when considering the MCIc-
vs-MCInc discrimination, the performance of fused conventional
MLs improve from 69.1% up to 73.3% using the inner cerebral
structures instead of the entireMRI volume, while those obtained
from the inner structures by the ensemble transfer-learning
remain stable at 70.6%.

DISCUSSION

Many studies in literature evaluated the potential of conventional
ML in automatically classifying AD vs. CN and MCIc vs. MCInc
using only structural brain-MRI data [e.g., (11, 12, 33, 45–
58)], obtaining a classification performance higher than 0.80
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TABLE 4 | Classification performance in terms of AUC of fusion of conventional ML (Method #1) and ensemble transfer learning (Method #2) using the entire MRI volumes

or the inner cerebral structures (including the hippocampal region).

AD vs. CN MCIc vs. CN MCIc vs. MCInc

Method #1:

Fusion of 2 SVMs

Entire MRI volume 93.2 90.6 69.1 ± 6.9*

Inner cerebral structures (including

the hippocampal region)

93.0 90.4 73.3 ± 0.7*

Method #2:

Ensemble of 5

Transfer-learning models

Entire MRI volume 90.2 83.2 70.6 ± 0.1*

Inner cerebral structures (including

the hippocampal region)

90.4 83.0 70.6 ± 0.4*

*Mean and standard deviation calculated over Salvatore-509 and Moradi-264 datasets.

for the AD vs. CN task and ranging from 0.50 to 0.70 for
the MCIc vs. MCInc task. Overall, conventional ML algorithms
applied to neuroimaging data show a mean percentage AUC
in discriminating AD vs. CN of 0.94), (as resulting from a
review by 10). However, when considering the most clinically
relevant comparison, MCIc vs. MCInc, the mean percentage
AUC decreases until to 0.70 ± 5 (mean accuracy = 0.66 ±

0.13) (13).
With the purpose to compare deep/transfer learning and

conventional ML methods on the same dataset of brain-MRI
data, in the present study, we implemented and assessed different
deep/transfer-learning methods for the automatic early diagnosis
and prognosis of AD, including very popular pre-trained systems
and training from scratch a new deep learning method. We then
compared their performances with different conventional ML
methods implemented and assessed for the same diagnostic and
prognostic task.

Focusing on conventional ML implemented in this work, the
performance obtained by the fusion of 2 conventional-SVMs
classifiers (obtained from two different strategies of features
extraction/selection) are comparable and accurate for both tasks
of AD vs. CN (AUC > 93%) and MCIc vs. CN (AUC > 89%),
showing some limitations in the more complex and challenging
tasks of MCIc vs. MCInc task (AUC∼69%).

Previous studies using conventional-ML techniques on the
same dataset adopted in this work, obtained comparable
performance with our implemented ML methods. Specifically, in
the paper by Nanni et al. (33), the authors used the Salvatore-509
dataset obtaining 93% AUC in discriminating AD from CN, 89%
for MCIc vs. CN, and 69% for MCIc vs. MCInc.

However, when a fusion strategy was applied for SVMs trained
on the entire MRI scans (method #1) no effective improvement
was observed in the three discriminating tasks, obtaining 93%
AUC in AD vs. CN, 91% AUC in MCIc vs. CN and 69% AUC
in MCIc vs. MCInc.

Regarding transfer-learning, we implemented 5 popular
architectures: AlexNet, GoogleNet, ResNet50, ResNet101, and
InceptionV3. The best-performing individual architecture in
discriminating AD from CN and MCIc from CN is AlexNet,
which scores 91% and 84% AUC for these two tasks,
respectively. However, in discriminating MCIc from MCInc,
the best individual model is ResNet101, with an AUC of
71%, presenting the same limitations of the ML systems in
this task.

In such transfer-learning implementation, our main technical
contribution was to propose an effective method to decompose
3D MRIs to RGB bands preserving the intra- and inter-
subject spatial structural information of the original 3D MRI
images, and to use these decompositions for transfer learning
through efficient 2D pretrained CNN architectures. Specifically,
in order to reduce the loss of information, different MRI-to-
RGB decomposition approaches were implemented and then the
combination of these different decomposition approaches was
applied (see Table 2). The results obtained in this work on the
2D pre-trained architectures clearly show that the combination
of different ways to decompose the MRI volumes into bi-
dimensional images feeding pretrained architectures leads to
higher performance in all diagnostic tasks. This may mean that
different ways for decomposing MRI bring different effective
information improving the discrimination power of systems
trained on generic images for different AD phenotypes.

Spatial structural information is essential for 3D MRI images.
Pre-trained 3D CNNs are emerging in the medical applications,
however, 2D CNNs are still more common and have been
more extensively used and validated in the literature. The
advantage of using 2D pretrained architectures comes from the
large availability of natural images used to pretrain such neural
networks. If 2D pretrained architectures were applicable to 3D
MRI volumes through our proposed decomposition followed
by transfer learning, this would open new perspectives in the
development of MRI-based transfer-learning models, not only
for the diagnosis of AD, but also for other diseases (e.g. cancer,
cardiovascular diseases) and other 3D medical images (e.g.,
CT, PET).

Regarding the architectures of the networks used for the
proposed transfer-learning approach, pooling usually reduces
the spatial size of the representation. However, this is quite
mandatory in the learning process of deep architectures as
it reduces the amount of information to be handled, which
turns in a reduction of the computational costs. In our work,
in order to preserve the as much as possible the spatial
information, the maximum dimension of the adopted pooling
filters was 3 by 3, thus warranting non-invasive reduction of
spatial downsampling.

Our final transfer-learning strategy resulted in an ensemble of
the different pre-trained architectures and in the combination of
the different approaches for decomposing the MRI volumes and
building RGB-like images that can be read by these architectures.
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This strategy was able to effectively discriminate AD-related
phenotypes with the best accuracy of their independent
transfer-learning architectures, resulting the following: 90%
for AD vs. CN, 83% for MCIc vs. CN, and 71% for
MCIc vs. MCInc.

The performance of our proposed transfer-learning methods
(e.g., AUC in AD vs. CN 90% Method 2). is in line with
the published papers on deep-learning techniques applied on
many hundreds of MRI images for the diagnosis of AD and
appeared since 2017. The majority of papers in this field of study
focused on the discrimination of AD from CN. For example,
Aderghal et al. (59) used a 2D-CNN approach by extracting
information from the hippocampal ROI and further by applying
data augmentation; their approach resulted in an accuracy of
91%. Cheng et al. (60) and Korolev et al. (61) adopted a 3D-
CNN approach for the same task, the former reaching 92%
AUC, the latter 88% AUC by implementing a ResNet-inspired
architecture (42) It is worth noting that different strategies can be
implemented extending beyond MRI images. For instance, Ortiz
et al. (62) coupled MRI and PET imaging using an ensemble
of deep-learning architectures on pre-defined brain regions,
reaching 95% AUC for classifying AD vs. CN.

In a pioneering paper by Suk et al. (63), the authors trained
on many hundreds of MRI images a 3D deep network with a
restricted Boltzmann machine to classify MCIc vs. MCInc with
73% AUC (this paper 73% Method 1, 71% Method 2). Liu et al.
(64) used a different strategy based on cascaded CNN pre-trained
on 3D image patches to obtain 82.7%AUC forMCIc vs. CNwhen
using several hundreds of MRI data (90.6% AUC for AD vs. CN),
while Cui et al. (65) proposed an approach based on recurrent
neural networks reaching 71.7% for MCIc vs. MCInc based on a
set of hundreds longitudinal MRI images (91% accuracy for AD
vs. CN).

From a computational point of view, our results show that
an ensemble of 2D pre-trained CNNs is a promising approach,
as it is able to reach performance that are comparable, although
not significantly different, to that obtained by training from
scratch 3D deep learning networks using many hundreds of
medical images but with much less computational costs or
limited number of available medical images. The fact that the
performance of the proposed transfer-learning architectures, pre-
trained on non-medical images, is similar to those of networks
trained from scratch on medical images and using 3D spatial
information, suggests that the features learned in pre-trained
networks are effectively transferred to medical images with an
important reduction in the number of images and, consequently,
in the amount of computational time required for pre-training or
training new deep networks from scratch.

To the best of our knowledge, this is one of the first studies
performing a comparison of conventional ML, deep/transfer
learning for the diagnosis and prognosis of AD on the same set
of MRI volumes, thus obtaining comparable results. According
to these results, the ensemble of 2D pre-trained CNNs showed
comparable or slightly lower potential with respect to the
fusion of conventional-ML systems. The 3D CNN trained from
scratch on the original 3D MRI volumes from Salvatore-509
an Moradi-264 obtained lower performance than either the

fusion of conventional-ML systems and the ensemble of 2D
pre-trained CNNs, due to the limited sample of images used
for training.

Focusing on the main comparison of the two approaches
considered in this work –conventional ML vs. transfer learning-,
the ensemble transfer-learning shows comparable results with
the fusion of conventional-ML approach, even if the fusion
of conventional ML is still higher than the ensemble transfer
learning for the less complex tasks of AD vs. CN (93.2 vs. 90.2
% AUC) and MCIc vs. CN (90.6 vs. 83.2 % AUC). This better
result obtained by the fusion of SVMs may be due to training
from scratch.

Actually, there are advanced deep networks proposed recently
for 3D MRI-based AD diagnosis and MCI-to-AD prediction
of conversion, by using anatomical landmarks or dementia
attention discovery schemes to locate those information in MRI
brain regions, thus alleviating the small-sample-size problem
(66–69). In our work we trained from scratch a new 3D CNN
achieving lower performance with respect to the other considered
2D transfer learning methods (84% vs. [89-91]% for AD vs.
CN, 72% vs. [80-84]% for MCIc vs. CN, 61% vs. [69-71]%
for MCIc vs. MCInc). However, we would like to underline
that training a 3D CNN from scratch requires a huge amount
of training data. Although the estimation of the number of
samples necessary to train a deep-learning classifier from scratch
with good performance is still an open research problem, some
studies tried to investigate this issue. According to Juba et al.
(70) the amount of data needed for learning depends on the
complexity of the model. A rule of thumb descending from
their paper is that we need 10 cases per predictor to train
a simple model like a regressor, while we need 1,000 images
per class to train from scratch a deep-learning classifier like a
CNN. These numbers are far from those available in our AD
datasets, where the largest class in Salvatore-509 dataset was
CN with 162 subjects, while the smaller was MCIc with 76
patients. This can also explain the lower performance of our
3D CNN with respect the published papers on deep-learning
techniques applied on many hundreds of MRI images for the
diagnosis of AD.

From a clinical point of view, this paper mainly focused on
the whole-brain MRI volumes. This choice was made in order
to preserve as much information associated to the early-AD
disease as possible, which could come from different regions
of the brain (e.g., parietal and posterior cingulate regions,
precuneus, medial temporal regions, hippocampus, amygdala,
and entorhinal cortex). The use of region-based biomarkers of
given anatomical structures (e.g., hippocampus) would indeed
risk excluding potentially-discriminant information for the early
diagnosis of AD.

However, one of the analyses performed in this work focused
on the inner cerebral structures (including hippocampus) instead
of the entire MRI volume. From this point of view, this analysis
returned an important feedback on the behavior of the trained
models. As expected, models trained using the inner cerebral
structures obtained higher performance than models based
on whole-brain MRIs. Specifically, results show an effective
improvement of classification performance for the most complex
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discrimination task of MCIc-vs-MCInc. The mean percentage
AUC increases from 69.1 to 73.3. This uptrend is not replicated
when considering the other comparisons (AD vs. CN, MCIc vs.
CN) that remain stable. This behavior is not unexpected, because
the inner cerebral structures (specifically, the medial temporal
lobe including the parahippocampal gyrus) are known to be
the first areas affected by the pathophysiological mechanisms
of AD, even at prodromal or MCI stages (71). Because of this,
selecting for the training data the inner cerebral-MRI structures
can help the automatic classification of AD at early stages (MCIc
vs. MCInc), at no costs on classification of diagnosis at later
stages, when the pattern of atrophy is more widespread (e.g.,
49). Even if not unexpected, these results show us the goodness
of the learning process, including the preprocessing and the
decomposition approach proposed in this work.

Limitations
It must be noted that the results obtained by the proposed
method may be influenced by two specific issues related to the
application of transfer learning to MRI volumes. First and most
important, deep-learning techniques -and CNNs in particular-
are designed to best solve computer-vision tasks, such as visual
object recognition or object detection (18). This makes them
suitable for medical applications such as the automatic detection
and segmentation of oncological lesions [e.g., (19, 72)], which
typically involve locally-bounded regions. On the other side, the
diagnosis of AD through the inspection of MRI scans involves
the recognition of a pattern of cerebral atrophy that is distributed
(not localized). Second, the use of transfer-learning techniques
instead of training a new network from scratch may affect the
learning stage of the network itself in the fine-tuning phase.
As we mentioned above, the choice of using a transfer-learning
approach was almost mandatory in this case, given the relatively
low number of data available with respect to the number of
samples needed to train a CNN model from scratch. However,
the images used to pre-train the network (generic images) were
particularly different from the images used to perform fine tuning
and classification of new samples (MRI scans). This may reduce
the potential of the network in learning feature representations
that are specific of themedical-imaging context, thus affecting the
final classification performance of the model. Notwithstanding
these two criticisms, the results obtained in this paper are
comparable with the state of the art and, thus, encourage the
application of transfer learning to structural MRI data, even if
further optimizations are required when considering networks
pre-trained on generic images of different nature.

CONCLUSIONS

In conclusion, in this paper we investigated the potential
application of deep/transfer learning to the automatic early
diagnosis and prognosis of AD compared to conventional ML.

The transfer-learning approach was able to effectively
discriminate AD from CNwith 90.2% AUC, MCIc from CNwith
83.2% AUC, and MCIc from MCInc with 70.6% AUC, showing
comparable or slightly lower results with respect to the fusion of
conventional-ML systems (AD from CN with 93.1% AUC, MCIc
from CN with 89.6% AUC, and MCIc from MCInc with AUC

in the range of 69.1–73.3%). These results open new prospective
on the use of transfer learning combined with neuroimages
for the automatic early diagnosis and prognosis of AD, even if
pretrained on generic images. A deep-learning network trained
from scratch on few hundreds of MRI volumes obtained lower
performance than either the fusion of conventional-ML systems
and the ensemble of 2D pre-trained CNNs, due to the limited
sample of images used for training.
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