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Objective: In this study, we investigated the ability of fluid-attenuated inversion recovery

(FLAIR) data coupled with machine-leaning algorithms to differentiate normal and

epileptic brains and identify the laterality of focus side in temporal lobe epilepsy (TLE)

patients with visually negative MRI.

Materials and Methods: The MRI data were acquired on a 3-T MR system

(Philips Medical Systems). After pre-proceeding stage, the FLAIR signal intensities

were extracted from specific regions of interest, such as the amygdala, cerebral white

matter, inferior temporal gyrus, middle temporal gyrus, parahippocampal gyrus, superior

temporal gyrus, and temporal pole, and fed into a classification framework followed

by a support vector machine as classifier. The proposed lateralization framework

was assessed in a group of MRI-negative unilateral TLE patients (N = 42; 23 left

TLE and 19 right TLE) and 34 healthy controls (HCs) based on a leave-one-out

cross-validation strategy.

Results: Using the FLAIR data, we obtained a 75% accuracy for discriminating the three

groups, as well as 87.71, 83.01, and 76.19% accuracies for HC/right TLE, HC/left TLE,

and left TLE/right TLE tasks, respectively.

Interpretation: The experimental results show that FLAIR data can potentially be

considered an informative biomarker for improving the pre-surgical diagnostic confidence

in patients with MRI-negative TLE.

Keywords: fluid-attenuated inversion recovery, temporal lobe epilepsy, machine-learning, feature extraction,

MRI-negative focal epilepsy
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HIGHLIGHTS

- We assessed the performance of FLAIR data for classifying
MRI-negative TLE.

- Our prediction model showed 75% accuracy for
discriminating the three groups.

- FLAIR data are a potential biomarker for MRI-negative TLE
classification tasks.

INTRODUCTION

Temporal lobe epilepsy (TLE), the most common focal epilepsy
in adults, has good surgical outcomes despite its association
with drug resistance (1). The main role for structural magnetic
resonance imaging (MRI) in clinical epileptology lies in detection
of etiology, location of the epileptogenic zone and focal
epileptogenic lesions (2). However, about 30% of people with TLE
show no abnormalities or epileptogenic lesions on conventional
MRI (3). This type of TLE patient has visually normal brain
MRI and is said to have “MRI-negative TLE.” Functional imaging
techniques such as positron emission tomography (PET) and
single-photon emission computed tomography (SPECT) are
powerful modalities for identifying and monitoring patients with
TLE when MRI is visually negative (3, 4). Indeed, interictal
18F-FDG PET achieves 85–90% sensitivity in TLE lateralization
(5). Additionally, when 18F-FDG PET provides positive findings
in MRI-negative TLE, surgical treatment is associated with
favorable prognosis in patients with hippocampal sclerosis (6–
8). Thus, MRI-negative PET-positive TLE is also considered an
important group with favorable surgical outcomes. However,
as a common drawback, the practical utility of functional
imaging techniques such as PET and SPECT is restricted
by infrastructure costs and poor access to PET or SPECT
scanners in many hospitals, particularly in developing countries
(9). Additionally, nuclear imaging always necessitates radiation
exposure. Therefore, advanced MRI analysis is expected to
become a widely available and less invasive tool. Indeed, some
neuroimaging studies have shown that the FLAIRmodalitymight
be useful for detecting lesions in patients with focal epilepsy
(10). Because FLAIR signal abnormality is sometimes found in
epileptogenic lesions and astrogliosis (2, 11), the optimal pattern
classification of FLAIR signals may provide significant clinical
lateralization in patients with visually MRI-negative TLE.

To overcome shortcomings, we analyzed the utility of FLAIR
imaging as an alternative modality for solving the classification
and lateralization problem in MRI-negative TLE patients. We
hypothesized that FLAIR data coupled with machine-learning
algorithms would allow us to distinguish TLE patients from
healthy controls (HCs) and determining the lateralization of
MRI-negative TLE individuals. To this end, we applied a
machine-learning algorithm to the FLAIR signal intensity data
extracted from specific regions of interest (ROIs) such as the
amygdala, cerebral white matter, inferior temporal gyrus, middle
temporal gyrus, parahippocampal gyrus, superior temporal
gyrus, and temporal pole. We assessed the efficiency of the
proposed methodology in 19 MRI-negative right TLE (RTLE)
patients, 23 MRI-negative left TLE (LTLE) patients, and 34 HCs

FIGURE 1 | Histogram displaying the age distribution among different groups.

by means of a leave-one-out cross-validation (LOOCV) strategy
and with a support vector machine (SVM) as classifier.

MATERIALS AND METHODS

Study Population
In this study, a total of 76 individuals−34 HCs (50% female, 38.4
± 12.1 years old, range 22–65 years) and 42 MRI-negative PET-
positive unilateral TLE patients [23 LTLE (34.7% female, 39.0 ±

14.3 years old, range 17–72 years) and 19 RTLE (57.8% female,
37.9 ± 11.4 years old, range 17–59 years)]—were recruited
at the National Center of Neurology and Psychiatry (NCNP)
Hospital, Tokyo, Japan, between January 2015 and November
2017. Regarding age at examination, there were no significant
differences among three groups (F = 0.04, p = 0.96; ANOVA).
Figure 1 displays the distribution of age at examination among
different groups. All participants provided written informed
consent, and this study was approved by the Institutional Review
Board at the National Center of Neurology and Psychiatry
Hospital, Tokyo, Japan.

Visual Assessment of MRI and FDG PET
Experienced neuroradiologists visually assessed the MRI and
FDG PET scans, with clinical information of patients. Regarding
MRI, hippocampal atrophy, signal changes, and loss of internal
structures were carefully excluded. To rule out visually-detectable
focal cortical dysplasia, we carefully checked increased cortical
thickness, blurring of the gray-white matter interface, and
abnormal hyperintensity in FLAIR and T2-weighted images. We
also excluded other possible epileptogenic lesions, e.g., tumors,
vascular malformation, and encephaloceles, carefully. For visual
analyses of FDG PET, the reviewer decided whether unilateral
hypometabolism was found or not by comparing left and right
temporal and extratemporal lobes.

Image Acquisition and Pre-processing
MRI for all patients was performed on a 3-TMR systemwith a 32-
channel coil (Philips Medical Systems, Best, The Netherlands).
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The sequences and their parameters were as follows: three-
dimensional (3D) sagittal T1-weighted magnetization prepared
rapid acquisition with gradient echo (MPRAGE) images
[repetition time (TR)/echo time (TE), 7.18 ms/3.46ms; flip
angle, 10◦; 0.6-mm effective slice thickness with no gap;
300 slices; matrix, 384 × 384; field of view (FOV), 26.1
× 26.1 cm]; sagittal 3D fluid-attenuated inversion recovery
(FLAIR) images (TR/TE, 4700/283ms; inversion time, 1,600ms;
thickness, 0.55mm with no gap; 340 slices; matrix, 512 ×

465; FOV, 26.0 × 23.4 cm). Additionally, for visual assessment
of potential epileptogenic lesions, both T1 and FLAIR images
were reconstructed into coronal and axial slices and high-
resolution coronal T2-weighted images were also obtained.
The FLAIR scans were analyzed by Statistical Parametric
Mapping toolbox version 12 (http://www.fil.ion.ucl.ac.uk/spm/
software/spm12/). First, for each individual, we registered the
FLAIR scan to the respective high-resolution MRI scan on
the basis of linear affine transformation (SPM12 toolbox;
coregister fuction, default setting, 4th degree B-spline tri-linear
interpolation method and normalized mutual information cost
function). Then, we applied a spatially adaptive non-local means
denoising filter to the FLAIR scans through the CAT12 toolbox
(http://www.neuro.uni-jena.de/cat/). Afterward, we applied a
special normalization to the bias-corrected FLAIR scans using
the Clinical toolbox (https://www.nitrc.org/projects/clinicaltbx/),
followed by a default FLAIR template generated from 181
individuals (56% female, 39.9± 9.3 years old, range 26–76 years,
available at https://brainder.org/download/flair/) (12). As for the
feature extraction stage, we extracted the average FLAIR signal
intensities from specific ROIs. We selected the ROIs of temporal
lobe gray matters and cerebral white matters, which may reflect
potential epileptogenic lesions, astrogliosis, and related changes.
Specifically, the following ROIs were selected using the SPM
template: the amygdala, cerebral white matter, inferior temporal
gyrus, middle temporal gyrus, parahippocampal gyrus, superior
temporal gyrus, and temporal pole. The mean FLAIR signal
intensities extracted from specific ROIs were considered a feature
for classification models.

Validation and Classification Performance
To validate the performance of FLAIR data for the diagnosis
and lateralization of MRI-negative 18F-FDG PET-positive TLE,
we built three binary classification models (i.e., HC/RTLE,
HC/LTLE, and RTLE/LTLE) as well as a multiclass classification
model (i.e., HC/RTLE/LTLE). The performance of each
classification model was computed using a LOOCV strategy
such that, each time, one sample was used for the test set and
the remainder for training. A SVM implemented in MATLAB
(i.e., “fitcsvm” function, linear kernel, default set of parameters)
was used a classifier. Using a linear SVM kernel, we are able
to visualize the contribution of individual feature (i.e., region)
to the overall classification models. As for binary classification
models, the prediction performance was assessed by means of
accuracy (ACC), sensitivity (SEN), specificity (SPE), and area
under the receiver operating characteristic curve (ROC-AUC)
metrics, whereas the classification performance for the multiclass
classification model was reported in terms of accuracy and
confusion matrix. In addition, to determine the contribution
of each feature (i.e., region) in our classification models, we
aggregated the SVM coefficients achieved from training sets over
the LOOCV strategy and then averaged them.

EXPERIMENTAL RESULTS

Clinical Assessments
As for HC group, participants had no history of neurological or
psychiatric diseases, no use of medication affecting the central
nervous system, and no structural abnormalities on MRI. TLE
was diagnosed based on the presence of focal seizures consistent
with TLE and focal epileptiform discharge predominantly in
temporal areas on a conventional scalp electroencephalogram
(EEG) using standard international 10–20 system. All patients
underwent 3-T MRI and interictal FDG PET, which were
visually evaluated by experienced neuroradiologists. All TLE
patients showed unilateral glucose hypometabolism including
the temporal lobe in interictal FDG PET consistent with the
clinical symptoms and EEG abnormalities, without any evidence

FIGURE 2 | Histogram displaying the clinical demographics among TLE subjects: (A) onset age, (B) duration of disease.
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of morphological abnormality on visual assessment ofMRI scans.
To investigate a distinct group of MRI-negative PET-positive
unilateral TLE, we recruited only patients with concordant
ipsilateral hypometabolism in FDG PET, and all TLE patients

were drug-resistant. In TLE patients’ group, there were no
significant differences between RTLE and LTLE in terms of onset
age (RTLE = 19.2 ± 15.2 years; LTLE = 23.3 ± 12.7 years; t-test
= 0.94, p = 0.34; student t-test) and duration of disease (RTLE

TABLE 1 | Clinical demographics and results of exams in patients with TLE.

No. Age (range) sex onset age Duration

of TLE

Focus side Seizure type IED location Anti-epileptic drugs LT-VEEG Hypometablic areas

in FDG-PET

1 55–59 F 13 42 L-TLE FAS, FIAS T3 CBZ, TPM, PRM Yes LT, OL, IFG

2 45–49 M 9 39 L-TLE FAS, FIAS T3 LEV, PRM, CBZ No MT, LT, OL

3 45–49 M 29 19 L-TLE FIAS T3 CBZ, LTG No MT, LT

4 40–44 M 9 31 L-TLE FIAS T3 CBZ, VPA, LCM, CZP No MT, LT

5 40–44 M 20 23 L-TLE FIAS T3 CBZ, LEV No MT, LT

6 25–29 F 19 8 L-TLE FIAS T3 CBZ, TPM Yes LT, OL, OFC

7 70–74 M 65 7 L-TLE FAS, FIAS T3 CBZ No MT

8 25–29 M 19 9 L-TLE FAS, FIAS T3, T4 CBZ, LEV, CLB Yes LT, MT

9 30–34 M 24 8 L-TLE FIAS T3 CBZ, LTG, CZP Yes MT

10 45–49 F 20 27 L-TLE FIAS T3 CBZ, CZP Yes MT

11 40–44 M 32 9 L-TLE FIAS F7 LEV, CZP, ZNS, CLB No LT, MT, IFG

12 15–19 F 14 3 L-TLE FIAS T3 CBZ, LEV Yes MT

13 35–39 M 37 1 L-TLE FAS, FIAS T3, T5 LEV No MT

14 25–29 F 25 2 L-TLE FIAS T3 CBZ Yes MT, LT

15 40–44 M 11 30 L-TLE FAS, FIAS, FBTCS F7 PHT, CBZ Yes LT, MT, OL

16 30–34 F 14 20 L-TLE FIAS, FBTCS T3 CBZ, ZNS Yes LT, OL

17 20–24 M 24 0 L-TLE FIAS T3 LEV, VPA No LT, MT, OL

18 65–69 M 37 30 L-TLE FIAS T3 VPA, CBZ No MT, LT

19 40–44 F 38 2 L-TLE FIAS, FBTCS T3, T4 CBZ Yes MT, LT

20 50–54 M 13 41 L-TLE FAS, FIAS T3 CBZ No MT, LT

21 30–34 F 30 2 L-TLE FAS, FIAS T3 LEV Yes LT

22 20–24 M 20 4 L-TLE FIAS, FBTCS F7, T3 VPZ, CBZ Yes LT, MT, OFC, OL

23 15–19 M 14 3 L-TLE FAS, FIAS T1 ZNS, LEV Yes MT, LT

24 45–49 M 26 21 R-TLE FIAS T4 CBZ, VPA No MT, LT

25 50–54 F 22 29 R-TLE FIAS T4, T3 CBZ Yes LT

26 30–34 M 15 16 R-TLE FAS, FIAS T4 LEV, CBZ, PHT No MT

27 45–49 F 7 42 R-TLE FIAS T4 CBZ, VPA, CLB No LT, IFG, operculum

28 25–29 M 6 22 R-TLE FAS, FIAS T4 CBZ, LTG, CZP Yes MT, LT, IFG, operculum

29 30–34 F 6 25 R-TLE FAS, FIAS F8 CBZ Yes LT

30 55–59 M 54 5 R-TLE FIAS F8 ZNS, LEV No MT

31 15–19 M 11 6 R-TLE FAS, FIAS T4, T6 PHT, LEV, CBZ Yes MT, LT, OL

32 25–29 M 9 19 R-TLE FAS, FIAS T3, T4 PHT, LEV, TPM Yes MT, LT

33 40–44 F 20 23 R-TLE FAS, FIAS T4 CBZ No LT, MT, OL

34 25–29 F 20 8 R-TLE FAS, FIAS, FBTCS F8, T4 VPA, CBZ Yes MT, LT

35 35–39 M 10 27 R-TLE FAS, FIAS F8, F7 CBZ, LEV Yes LT, OL

36 30–34 M 32 2 R-TLE FIAS, FBTCS F8 CBZ, LEV No LT

37 35–39 F 28 7 R-TLE FAS, FIAS, FBTCS T4 CBZ No LT

38 35–39 F 3 34 R-TLE FAS, FIAS T4 CBZ, VPA Yes LT

39 40–44 F 20 23 R-TLE FIAS T4 CBZ, VPA, CLB Yes MT, LT, OFC

40 40–44 F 17 25 R-TLE FIAS T4 PHT, LTG No LT, MT, OL, operculum

41 55–59 F 56 2 R-TLE FIAS T3 VPA No MT, LT

42 20–24 F 3 20 R-TLE FAS, FIAS T4 LEV, CBZ, PHT Yes MT, LT

CBZ, carbamazepine; CLB, clobazam; CZP, clonazepam; EEG, Electroencephalography; FAS, focal aware seizures; FBTCS, focal to bilateral tonic-clonic seizures; FIAS, focal impaired

awareness seizures; IED, interictal epileptiform discharge; IFG, inferior frontal gyrus; LCM, lacosamide; LEV, levetiracetam; LT, lateral temporal lobe; LT-VEEG, long-term video-EEG

monitoring; LTG, lamotrigine; PHT, phenytoin; PRM, primidone; MT, mesial temporal lobe; NZP, nitrazepam; OFC, orbitofrontal cortex; OL, occipital lobe; TPM, topiramate; VPA,

valproate; ZNS, zonisamide.

Frontiers in Neurology | www.frontiersin.org 4 November 2020 | Volume 11 | Article 580713

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Beheshti et al. FLAIR-Wise Classification on TLE

FIGURE 3 | Representative samples of the pre-processing stage and feature extraction from FLAIR images. (A) Processed FLAIR images with a resolution of 1.5 ×

1.5 × 1.5mm. (B) Binary masks defined based on the selected ROIs.

= 18.7 ± 11.1 years; LTLE = 15.6 ± 14.2 years; t-test = −0.75, p
= 0.45; student t-test). Figure 2 displays the distribution of onset
age, and duration of disease related to TLE subjects used in this
study. The detailed clinical demographics related to TLE patients
is presented in Table 1. A few patients showed bilateral interictal
epileptiform discharges, but long-term video-EEG confirmed the
laterality of them. Of total 42 patients, five cases (No. 9, 22, 25, 31,
and 38) underwent resection surgery and focal cortical dysplasia
was confirmed in all patients except one case with gliosis (No.
22). Additionally, the details of extended hypometabolic areas
in visual assessment of FDG PET in each patient are shown
in Table 1.

Experimental Results
For the sake of illustration, Figure 3 shows representative FLAIR
images and the binary masks for extracting the FLAIR signal
intensities from specific regions. A summary of statistical analysis
(i.e., ANOVA test) of FLAIR data extracted from the specific
regions among the three groups is displayed in Figure 4. There
was significant difference in term of FLAIR data for right
amygdala, right inferior temporal gyrus, right middle temporal
gyrus, right superior temporal gyrus, and left temporal pole
regions among the three groups (p < 0.05, ANOVA).

Regarding the binary classification models, HCs were
distinguished from RTLE patients with 87.71% accuracy (SEN
86.95%, SPE 88.23%, and AUC 0.84) and from LTLE patients
with 83.01% accuracy (SEN 91.17%, SPE 68.42%, and AUC
0.81) while LTLE patients were differentiated from RTLE
patients with 76.19% accuracy (SEN 78.26%, SPE 73.26%, and
AUC 0.71). Figure 5 shows the ROC curves for the binary
classification models. Regarding the multiclass classification task
for our dataset, we obtained a prediction accuracy of 75% for
discriminating among the three groups (i.e., HC/RTLE/LTLE).
Figure 6 illustrates the confusion matrix of predicted labels

FIGURE 4 | F-test value of extracted FLAIR data from selected ROIs among

the three groups. Black stars denote regions that were significant (p < 0.05).

against actual labels for the multiclass classification model.
Figure 7 shows the ranking of features (i.e., regions), which
contributed to classification models on the basis of the linear
SVM coefficients.

Effect of Hippocampus on Prediction
Models
To assess the impact of hippocampus on the classification
performances, we recomputed the prediction accuracies after
adding the hippocampus data in our prediction models.
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FIGURE 5 | ROCs related to the binary classification models.

FIGURE 6 | Normalized confusion matrix related to the multiclass

classification model.

The classification results were as follow: HC/RTLE =

87.71%, HC/LTLE = 79.24%, RTLE/LTLE = 71.42%, and
HC/RTLE/LTLE = 69.73%. By comparing these results with
prediction results presented in section “Experimental Results”, it
can be seen that including the hippocampus data in prediction
models could not improve the prediction accuracies for
distinguishing TLE patients from HCs and detecting the
lateralization of MRI-negative TLE individuals.

Results of Whole Brain FLAIR Data and
Data Reduction
In this study, we selected the specific ROIs in accordance with
the pathology-based knowledge which may reflect potential
epileptogenic lesions, astrogliosis, and related changes (i.e.,
pre-defined regions-based strategy). To show whether the

selected regions were appropriate for FLAIR-wise classification
and lateralization models, we validated the classification models
using the whole-brain FLAIR signal intensities (in total, 136
regions). In this case (i.e., using whole-brain FLAIR data),
the performance of our classification models in terms of
accuracy were as follows: HC/RTLE = 82.45%, HC/LTLE =

75.47%, RTLE/LTLE = 54.76%, and HC/RTLE/LTLE = 56.57%.
Furthermore, we applied principal component analysis (PCA)
data reduction technique on whole-brain FLAIR data. As
for PCA data reduction followed by 95% amount of total
variance, we achieved the following prediction results: HC/RTLE
= 75.43%, HC/LTLE = 73.58%, RTLE/LTLE = 42.58%, and
HC/RTLE/LTLE = 50%. When we compared the prediction
results using whole-brain FLAIR signal intensities, PCA data
reduction method, and FLAIR signal intensities extracted
from specific regions (see section “Experimental Results”),
it was evident that our pre-defined regions-based strategy
might provide more informative data for the classification
and lateralization of MRI-negative TLE individuals rather than
whole-brain FLAIR data and PCA data reduction.

DISCUSSION

A series of neuroimaging studies have designed and developed
new techniques for the classification and lateralization of TLEs
based on different brain imaging modalities. For instance, the
researchers in (13) suggested a lateralization model based on
a multimodality dataset (i.e., T1 images, T2 images, fractional
anisotropy, and mean diffusivity) to classify left-sided seizure
patients from right-sided patients. They assessed the reliability
of their model in 17 TLE patients (9 in the left-sided seizure
onset group and 8 in the right-sided seizure onset group) and
reported an accuracy of 100% for left-sided seizure and 88.9%
for right-sided seizure. Another study was conducted on a
lateralizationmodel based on structuralMRI and diffusion tensor
data (14) followed by a sparse linear regression feature-selection
method. They achieved a lateralization accuracy from 72.7 to
86.4% by integrating the structural MRI data with diffusion
tensor data. It should be noted that most of these studies
were conducted using TLE patients who showed morphological
abnormalities onMRI scans. Although PET or SPECT images can
be considered powerful modalities for tracing and monitoring
epilepsy in MRI-negative patients, these functional imaging
techniques require high infrastructure costs for implementation
and are not accessible in all hospitals, particularly those in
developing countries.

Lateralizing the focus side of TLE is a highly relevant in drug-
resistant patients. According to the previous studies (6, 8), MRI-
negative PET-positive TLE showed good postsurgical seizure
freedom mostly after standard anterior temporal lobectomy.
Thus, although this study lacked the detailed epileptogenic zone
or surgical outcome, we consider that lateralization plays a
key role in clinical practice, given the favorable outcome by
the established surgical method. In this regard, interictal FDG
PET is an established tool with 85–90% sensitivity for TLE
lateralization (5).

Accordingly, we were motivated to assess the utility of
FLAIR data, as a low-cost and widely available modality,
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FIGURE 7 | Violin plot of feature (i.e., region) contributions for each classification model. (A) RTLE/LTLE, (B) HC/LTLE, (C) HC/RLTE, and (D) HC/RTLE/LTLE. For

each prediction model, the linear SVM coefficients were computed through all LOOCV iterations. Regarding the binary classification models, features (i.e., regions)

with positive and negative coefficients stand for positive and negative correlations with probability of classification, respectively. As for the multiclass classification

model, the linear SVM coefficients was achieved by linear combination of three binary learners through “fitcsvm” function.

coupled with machine-learning algorithms for addressing
the classification and lateralization problem in MRI-negative
TLE patients. To this end, we extracted the FLAIR signals
from specific parts of brain (i.e., the amygdala, cerebral
white matter, inferior temporal gyrus, middle temporal gyrus,
parahippocampal gyrus, superior temporal gyrus, and temporal
pole) and then fed the data into the classification models.
Using this strategy, our experimental results determined
that FLAIR data can distinguish the three groups (i.e.,
HC/RTLE/LTLE) with 75% accuracy, suggesting that FLAIR
data has the potential to be considered a lower-cost alternative
for the classification and lateralization of MRI-negative
TLE patients.

Based on the information obtained in the machine-learning
stage, we specified the contribution of each region for the
classification models (see Figure 7). This visualization may be
useful for the clinical application of quantitative FLAIR signal
analysis to the lateralization of the focal epileptogenic lesions in
TLE, although further external validation is needed. Based on
linear SVM coefficients achieved from machine learning stage,
most of the relevant gray matter regions within the temporal lobe
exhibited remarkable contributions in the prediction models,
including the temporal pole, which is the most frequent location
of epileptogenicity in MRI-negative PET-positive TLE (8).
Moreover, it should be noted that the cerebral white matter was
also important, given that FLAIR hyperintensity in the ipsilateral
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white matter has been repeatedly reported, particularly in the
anterior temporal lobe, in TLE (11, 15). Although the causes
and clinical effects of this T2/FLAIR hyperintensity had been
controversial, a strong evidence suggested an association with
degeneration of fiber bundles and axonal damages (11, 15, 16).

In the field of epilepsy neuroimaging, some studies have
documented an important link between the hippocampus and
epilepsy, particularly in TLE patients with hippocampal sclerosis
(17). However, a recent study has reported that features in
the hippocampus appear to be less important than those in
the temporal lobe in MRI-negative TLE populations (18). To
elucidate on the underlying mechanism hippocampus on the
classification performances, we added hippocampus data along
with other selected ROIs in our prediction models. However,
when we considered the hippocampus in the list of selection
regions, our experimental results showed no improvement in the
prediction accuracies in our classification models (section “Effect
of Hippocampus on Prediction Models”). We therefore did not
retain the hippocampus region in our classification models. One
explanation might be that the hippocampal FLAIR signal is not
informative in MRI-negative TLE because the focus is more
likely to be located in cortical regions. As for the hippocampus
region, our machine-learning based results are in agreement with
findings from (18).

To our knowledge, this is the first study to use pattern analysis
of FLAIR data for the classification and lateralization of MRI-
negative TLE patients. Future research into the use of FLAIR
markers for the diagnosis and lateralization of MRI-negative
PET-positive TLE individuals is nonetheless required. Finally,
the lack of detailed location of definite epileptogenic zone and
surgical outcome is an important limitation of this study. On
the other hand, given the evidence on the good seizure outcome
after anterior temporal lobectomy in MRI-negative PET-positive
TLE (6, 8), it is expected that FDG PET could potentially be an
alternative indicator of focus side, and therefore we focused on
lateralization by FDG PET.

CONCLUSION

The aim of this study was to examine the utility of FLAIR
data for the classification and lateralization of TLE patients with

visually normal brain MRIs. Our experimental results indicated
that the FLAIR modality has remarkable functionality and could
be considered an accessible, safe, low-cost, and informative
predictor for the classification and lateralization of MRI-negative
TLE individuals in the clinical setting.
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