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Hyperventilation is a commonly used therapy to treat intracranial hypertension (ICTH)

in traumatic brain injury patients (TBI). Hyperventilation promotes hypocapnia, which

causes vasoconstriction in the cerebral arterioles and thus reduces cerebral blood

flow and, to a lesser extent, cerebral blood volume effectively, decreasing temporarily

intracranial pressure. However, hyperventilation can have serious systemic and cerebral

deleterious effects, such as ventilator-induced lung injury or cerebral ischemia. The

routine use of this therapy is therefore not recommended. Conversely, in specific

conditions, such as refractory ICHT and imminent brain herniation, it can be an

effective life-saving rescue therapy. The aim of this review is to describe the impact of

hyperventilation on extra-cerebral organs and cerebral hemodynamics or metabolism,

as well as to discuss the side effects and how to implement it to manage TBI patients.

Keywords: traumatic brain injury, hyperventilation, hypocapnia, intracranial hypertension, cerebral ischemia

INTRODUCTION

Intracranial hypertension (ICHT) is the most critical and potentially devastating complication in
traumatic brain injury (TBI) patients (1). Since the skull is a rigid compartment, the total volume
of the intracranial contents, i.e., brain tissue, blood, and cerebral spinal fluid, will remain constant
over time. An increase in the volume of one of these components is initially compensated by
shifting parts of the others (i.e., compression of the cerebral venous system can decrease global
cerebral blood volume; increased CSF reabsorption and CSF displacement toward the basal cisterns
and spinal compartment can decrease the CSF volume); when these mechanisms can no longer
compensate for further volume changes intracranial pressure (ICP) will rapidly rise (2). Both the
duration of ICHT and the absolute maximum value of ICP have an impact on patients’ outcome (3);
therefore, therapies aimed at controlling ICP andminimizing the ICHT burden are the cornerstone
of TBI management (4).

Although different therapeutic interventions are available, none of them has shown a significant
impact on patients’ outcome and some potential side effects may limit their use. Modulation of
arterial carbon dioxide pressure (PaCO2) has been used since decades in neuro-anesthesia and in
neuro-intensive care, because lowering PaCO2 (i.e., hypocapnia) through increased minute volume
ventilation (i.e., hyperventilation) can rapidly contribute to reduce the volume of the swollen brain
and help control ICP (5); these effects are mediated by cerebral vasoconstriction and reduction in
cerebral blood flow (CBF) and cerebral blood volume (CBV) (1, 2).

Although commonly used, hyperventilation has not been extensively supported by robust
evidence, its effects might be transient and may not improve the probability of neurological
recovery (3). Moreover, by decreasing CBF, hyperventilationmay trigger or enhance brain ischemia
(4, 5). In addition, hyperventilation has some extra-cerebral effects that may negatively impact
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patients’ outcome (6). As such, if hyperventilation is frequently
employed in TBI patients (7), the potential risks associated with
this therapy require an optimal understanding on how to manage
PaCO2 in TBI patients.

The aim of this review is to describe the effects of
hyperventilation on brain physiology and to discuss its use in the
management of TBI patients. Only studies focusing on controlled
hyperventilation (i.e., modification of minute ventilation in
TBI patients treated with mechanical ventilation and controlled
modes) have been evaluated, while pre-hospital hyperventilation
or spontaneous hyperventilation will not be discussed.

HYPERVENTILATION, HYPOCAPNIA AND
SYSTEMIC EFFECTS

Hyperventilation is characterized by elevated minute alveolar
ventilation, which can be secondary to an increase of tidal
volume and/or respiratory rate, if the dead space remains
constant. This condition is typically observed as a physiological
response to hypoxemia, systemic inflammation, chest trauma, or
pain; however, in the setting of TBI management, “controlled
hyperventilation” is a modification of minute ventilation to
obtain hypocapnia (i.e., PaCO2 <38 mmHg) in order to
manipulate cerebral hemodynamics and compliance (8). In
this setting, acceptable ranges of PaCO2 in clinical practice
are considered between 35 and 45 mmHg at sea level
(8); when hyperventilation is applied, it can classified into
moderate (PaCO2 31–35 mmHg), forced (PaCO2 26–30 mmHg),
or intensified forced (PaCO2 <26 mmHg), according to
PaCO2 levels (9).

There are several non-cerebral effects related to this
therapeutic strategy (Table 1); as TBI patients often have

TABLE 1 | Potential side effects associated with hyperventilation in the

human setting.

Systemic Cerebral

Ventilation-induced lung injury Cerebral vasoconstriction

Right ventricular dysfunction Reduced CBF

Reduced cardiac output Reduced CBV

Myocardial ischemia Brain hypoxia

Cardiac arrhythmias Increased neuronal excitability

Tissue hypoxia Reduced epileptic threshold

Lung V/Q mismatch Increased release of excitatory

amino-acids

Increased intrabdominal pressure Increased dopamine levels

Reduced renal flow Altered membrane cell synthesis

Reduced skin flow

Reduced muscular flow

Increased platelet adhesion

Increased platelet aggregation

Hypokalemia, hypocalcemia, and

hypophosphatemia

V/Q, ventilation to perfusion ratio; CBF, cerebral blood flow; CBV, cerebral blood volume.

lung injury (7, 10, 11) due to micro-aspiration, pneumonia
or lung contusions (12), promoting hyperventilation by
increasing tidal volume can induce ventilator-induced lung
injury (VILI) (13) and potentially delay pulmonary healing
or worsen outcome (14–16). Moreover, hyperventilation
may increase intra-thoracic pressure, which would favor
right ventricular dysfunction or, in hypovolemic patients,
cause an impairment of the venous return and decrease
cardiac output (17). Moreover, hypocapnia compromises
coronary blood flow and is associated with an increased
risk of myocardial ischemia (18) and the development of
arrhythmias (19). Prolonged hyperventilation is associated with
respiratory alkalosis (20); alkalemia would shift the oxygen
dissociation curve of hemoglobin toward the left, increasing
the hemoglobin affinity for oxygen and compromising tissue
oxygen delivery (18). Hypocapnia and respiratory alkalosis also
lead to pulmonary vasodilation (19) and bronchoconstriction
(21), which result in ventilation to perfusion (V/Q) mismatch
and secondary hypoxemia in TBI patients with pre-existing
lung injury. In animal studies, hypocapnia also decreased
surfactant production (22) and increases the permeability
of the alveolo-capillary barrier (23), although this has not
well-demonstrated in humans. Hyperventilation may also
increase intra-abdominal pressure, which can secondarily
increase ICP (24); hypocapnia decreases blood flow to the
kidneys, skin and muscles tissues and increases platelet
adhesion and aggregation (12). Finally, hyperventilation is often
associated with electrolytes disturbances, such as hypokalemia,
hypocalcemia, and hypophosphatemia (12). Taken all together,
these findings suggest that controlled hyperventilation and
hypocapnia should be applied with extreme caution to all
critically ill patients, because of several negative effects on
targets organs.

EFFECTS OF HYPERVENTILATION AND
HYPOCAPNIA ON BRAIN PHYSIOLOGY
AND METABOLISM

The brain has a high energy requirement, being responsible for
20% of total body oxygen consumption (25). Since the brain
is incapable of storing energy, rapid adjustments of CBF are
essential to maintain an adequate supply of oxygen and nutrients
to brain tissue (26). Several mechanisms, collectively called
“cerebral autoregulation,” are effective to keep CBF within the
necessary values to meet the cerebral energetical demand (26). As
such, CBF is heterogenous and varies according to the metabolic
activity of each cerebral region (27); resistance arterioles contract
and dilate to regulate CBF in response to different stimuli, such
as blood pressure, blood viscosity, transmural pressure, metabolic
demand, tissue pH, and electrolytes or PaCO2 (28).

In particular, these resistance arterioles respond to variations
in PaCO2 between 20 and 60 mmHg by contracting (i.e.,
hypocapnia) or dilating (i.e., hypercapnia) (2), a phenomenon
called “cerebro-vascular CO2 reactivity.” This response to PaCO2

variations is probably pH-mediated (18) (i.e., low pH or high H+

concentrations will promote vasodilation, while high pH and low

Frontiers in Neurology | www.frontiersin.org 2 January 2021 | Volume 11 | Article 580859

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Gouvea Bogossian et al. Hyperventilation in TBI

H+ vasoconstriction), and is proportionally more relevant with
hypercapnia than with hypocapnia (29). Around 70% of the CBV
is located within the venous system and is not affected by changes
in PaCO2; therefore, changes in CBV following hyperventilation
are restricted to the arterial component and are associated with
a decrease in CBF (18). In particular, for each mmHg-decrease
in PaCO2, there is an approximate decrease of 3% in CBF (2),
although the impact of hypocapnia on ICP is less pronounced (5).

Hyperventilation can also result in brain hypoxia (Table 1).
The main mechanism suggested is the reduction of oxygen
supply due global and/or regional hypoperfusion caused by
the reduction in CBF (30, 31). Moreover, due to the above-
mentioned systemic effects, hypocapnia can lead to additional
VILI, with impaired gas exchanges and hypoxemia, and can alter
the oxygen hemoglobin dissociation curve, with reduced oxygen
delivery (18).

Finally, alkalemia and hypocapnia increase neuronal
excitability (32), reduce the epileptic threshold and/or prolong
convulsive activities (33). In animal studies, hypocapnia led to an
increased cerebral consumption and depletion of local glucose
(34, 35). Hypocapnia has also been associated with neurotoxicity
(12), by inducing the release of cytotoxic excitatory amino-acid
(36), increasing dopamine levels in the basal ganglia (37) and by
promoting the inappropriate incorporation of choline into the
phospholipids of cell membranes (38).

CONTROLLED HYPERVENTILATION IN TBI
PATIENTS

Hyperventilation has been reported to effectively control ICHT
in TBI patients (39, 40); in Table 2, a summary of most relevant
studies reporting data on hypocapnia, ICP and outcome in this
patients’ population has been provided.

Obrist et al. showed that hyperventilation could rapidly reduce
ICP in half of TBI patients, although this was associated to a
reduction in CBF in almost all of them (4). The relationship
between PaCO2 and ICP is not linear and the most important
effects are observed between PaCO2 values of 30 and 50
mmHg (52). Moreover, prolonged hyperventilation (53) will be
associated with a progressive reduction of its vasoconstrictive
effects, because of the perivascular normalization of pH
due to local buffering. As reduced CBF (i.e., oligemia)
is frequently observed in the early phase after TBI (54),
prolonged hyperventilation should not be initiated in these
patients without CBF monitoring. Cerebral blood flow can
be measured directly, using Xenon computed tomography
(CT) scan, CT perfusion (CTP) scan, or positron emission
tomography (PET) scan, but these techniques involve injection
of radioactive tracers or contrast media and require patients’
transportation, which is not always feasible in severe TBI
cases with ICHT (55). Indirect CBF velocities assessment using
transcranial Doppler (TCD) ultrasonography does not directly
correspond to absolute CBF values (56), although elevated
pulsatility index (PI >1.2), low diastolic velocities in the middle
cerebral artery (<20 cm/s) and estimated ICP using validated
formulas might be helpful to identify TBI patients at risk

of hypoperfusion. Different studies have shown a reduction
in CBF levels during hyperventilation (5, 57–59); also, the
most relevant reduction in CBF was observed in the peri-
contusional areas, which are more vulnerable to secondary
injuries (59).

If the reduction in CBF is quite consistent, controlled
hyperventilation (i.e., mean PaCO2 from 37 to 30 mmHg)
could improve indices of cerebral autoregulation function in
TBI patients with disturbed pressure-reactivity at baseline,
whereas those with intact pressure-reactivity at baseline
would have no effect of such intervention (60). Another
large cohort study also showed that mild hyperventilation
was associated with lower pressure reactivity index (i.e.,
better autoregulatory function), in particular on day 2 after
injury (61). One hypothesis is that hypocapnia and related
vasoconstriction could reestablish endothelial reactivity in
cerebral vessels, which were previously dilated in order to
compensate for reduced cerebral oxygen delivery in the
presence of ICHT.

Nevertheless, if a reduction in CBF is observed during
hyperventilation, it remains unclear whether this phenomenon
is associated with signs of cellular hypoxic injury and anaerobic
metabolism. In severe TBI patients, Diringer et al. (62)
observed that short and moderate hyperventilation significantly
decreased CBF but did not impair global cerebral metabolism
and oxygen extraction. As such, the use of neuromonitoring,
in particular of cerebral oxygenation and/or metabolism,
could provide important findings about the brain tolerance
to controlled hyperventilation. Forced hyperventilation has
been associated with reduced cerebral oxygenation, which
was measured by the jugular bulb oximetry (SjO2, i.e., the
threshold for cerebral hypoxia being <55%), although these
results were not consistent in all studies (63–65). However,
SjO2 reflect hemispheric global oxygenation and tissue
hypoxia may occur even within normal SjO2 values (66).
Brain tissue oxygen tension (PbtO2) is a regional technique,
is well-correlated with local CBF and can directly monitor
the areas at higher-risk of secondary ischemia (67). The
effects of hyperventilation on PbtO2 are variable, with some
studies reported a significant reduction in brain oxygenation
(68–71) while others showing no major changes (72, 73)
and some reporting an increase in PbtO2, in particular
due to the large reduction in ICP with previous cerebral
vasodilation (i.e., hyperemia) (45, 74). Recent studies
reported unchanged PbtO2 values in adult severe TBI
patients undergoing moderate hyperventilation and with
a median PbtO2 value at baseline within normal values
(i.e., >30 mmHg) (39, 40).

Cerebral metabolic function can be assessed at bedside using
the microdialysis technique, or performing PET and magnetic
resonance imaging (MRI) spectroscopy studies. In one study,
early hyperventilation (i.e., 24–36 h after injury) was associated
with a significant increase in tissue lactate and lactate/pyruvate
ratio, suggesting anaerobic metabolism and tissue hypoxia (46);
these metabolic effects were less pronounced at a late phase (i.e.,
3–4 days after TBI). However, two recent studies showed no effect
of moderate hyperventilation on cerebral metabolites in adult
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TABLE 2 | List of most relevant clinical studies dealing with controlled hyperventilation in traumatic brain injury (TBI) patients.

References Aim of the study Study design

Study patients

Study population Main results Safety issues

Cold Association between

hyperventilation and decreases

of CBF below the ischemic

threshold

Retrospective

Single center

27

Comatose patients with TBI Hyperventilation increased the

number of areas with severe

oligoemia

Oligoemia was correlated to a

poor outcome

Unsafe

Muizelaar et al.

(41)

Effects of normo- and

hyperventilation on the outcome

Prospective randomized

interventional

Single study

113

Patients >3 years old

severe TBI

Hyperventilation was associated

with poor outcome in 3 and 6

months

Unsafe

Carmona -Suazo

et al. (42)

Effect of mild to moderate

hyperventilation on cerebral

oxygenation

Prospective observational

Single center

90

Severe non-penetrating TBI Increased hyperventilation

caused a significant reduction in

PbrO2

Probably unsafe

Coles et al. (2002)

(43)

Effect of hyperventilation on CBF Prospective interventional

Single center

47

Non-penetrating TBI Reduction of ICP and CBF

Increase in HypoBV

Normal global

oxygenation parameters

NR

Diringer et al. (44) Association between

hyperventilation and CBF

reduction and energy failure

Prospective interventional

Single center

13

Adults severe TBI Reduction on CBF

No energy failure

Safe

Imberti et al. (45) Effects of moderate

hyperventilation on ICP, jugular

venous oxygen saturation and

PbtO2

Prospective interventional

Single center

36

Patients>15 years severe

non-penetrating TBI

Reductions of cerebral

oxygenation (low PbtO2 )

Unsafe

Marion et al. (46) Potential adverse effects of brief

periods of hyperventilation

Prospective interventional

Single center

20

Severe TBI patients with

surgical intracranial mass

lesions

Increase in of cerebral glutamate,

lactate, and lactate/pyruvate

ratio in areas next to injured brain

Reduction of CBF in

some patients

Probably unsafe

Soustiel et al. (31) Effects of moderate

hyperventilation and mannitol on

CBF and cerebral metabolic

rates of oxygen, glucose and

lactate

Prospective

Single center

36

Adult severe TBI and ICP

monitoring

Reduction of CBF and CMRO2

after hyperventilation

Increase in anaerobic

hyperglycolysis and

lactate production

Unsafe

Mauritz et al. (47) ICU management of TBI in

Austria Retrospective multicentric

145

Severe TBI Aggressive hyperventilation were

associated with poor ICU and

90-day outcomes

Moderate hyperventilation was

associated with better outcomes

Probably safe

Dumont et al. (48) Inadequate ventilation and

mortality in TBI

Retrospective

Single center

77

Severe adult TBI patients Hyper and hypoventilation were

associated with increased

in-hospital mortality

Unsafe

Rangel-Castilla

et al. (49)

Effects of hyperventilation on

cerebral hemodynamic

Prospective interventional

Single center

186

Severe TBI patients Reduction ICP, mean arterial

pressure, jugular venous oxygen

saturation, brain tissue

oxygenation, and flow velocity

NR

Brandi et al. Cerebral effects of moderate

short-term hyperventilation

Prospective interventional

Single center

11

Non-penetrating severe TBI

adult patients

Monitoring with ICP, PbtO2,

and cMD

Decreased ICP

Reduced PbtO2 but within

normal ranges

Cerebral glucose, lactate, and

pyruvate unchanged

Safe

Tanaka et al. (50) Association of ICP control

management with neurological

outcome

Retrospective

Observational multicentric

195

Adult mild TBI patients Hyperventilation was associated

with poor outcome in 3 months

Unsafe

Svedung Wettervik

et al. (51)

Cerebral effects of moderate

short-term hyperventilation

Outcome effects of moderate

short-term hyperventilation

Retrospective observational

Single center

120

Adult severe TBI patients

Monitored with ICP

and cMD

No effects on cerebral

metabolism

Hyperventilation was associated

with better cerebral

autoregulation indices

Safe

Zeiler et al. Association between TIL for

ICHT and cerebrovascular

reactivity

Prospective

Multicentric

249

Monitoring with ICP Hyperventilation was associated

with a modest improvement in

cerebral autoregulation indices

NR

CBF, cerebral blood flow; TBI, traumatic brain injury; PbrO2, regional brain oxygen pressure; ICP, intracranial pressure; HypoBV, hypoperfusion brain volume; PbtO2, brain tissue

oxygenation; CMRO, cerebral metabolic rates of oxygen; cMD, continuous microdialysis; TIL, therapeutic intensity level; ICHT, intracranial hypertension; NR, not reported.
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TBI patients (39, 40). Using PET scan, one study (n = 9) showed
that moderate and intense hyperventilation resulted in reduced
CBF and increased oxygen extraction, but a constant oxygen
metabolism (i.e., no energy failure) (44). In two larger studies
(43, 75), hyperventilation (i.e., PaCO2 <30 mmHg) increased the
volume of hypoperfused cerebral areas within the injured brain,
which, in the absence of increased oxygen extraction, would
result in tissue hypoxia.

With all these potential side effects, which is the effect of
controlled hyperventilation on the outcome of TBI patients?
In one large retrospective study (n = 251), Gordon et al.
(76) reported a lower mortality in TBI patients undergoing
hyperventilation (i.e., PaCO2 between 25 and 30 mmHg for 6
to 41 days); however, more severe neurological sequelae were
observed among survivors in the hyperventilation group when
compared to the other. Only one prospective randomized
clinical trial has investigated the effects of hyperventilation
in this setting; Muizelaar et al. (41) compared the 3- and
6-month neurological outcome of patients who were kept at a
median PaCO2 of 25mm Hg to those kept at a median of 35
mmHg for 5 days: forced hyperventilation was associated with a
higher proportion of patients with poor outcome. Interestingly,
among patients being treated with controlled hyperventilation
and tromethamine (THAM, i.e., a buffer that prevents pH

changes within the extracellular cerebral fluid and excessive
vasoconstriction), there was a higher proportion of patients with
long-term favorable neurological outcome when compared to
the others.

DISCUSSION: A PRACTICAL APPROACH

The initial PaCO2 targets in TBI patients with normal ICP
values undergoing mechanical ventilation should be within
normal values (i.e., 38–42 mmHg—Figure 1); although Brain
Trauma Foundation guidelines could not identify an optimal
threshold for PaCO2 values in the initial phase of TBI
management [(66), international consensus recommended for
these “physiological” values as oligemia is frequent in the first
24–48 h after injury and could be aggravated by hypocapnia
(49, 50). Prophylactic (i.e., in the absence of ICHT) and
prolonged hyperventilation is not recommended and should
not be used, (61) as it would provide no benefits and could
result in tissue hypoxia and cerebral metabolic disturbances.
In order to detect cerebral oligemia in these patients, an
initial CTP scan could be helpful to identify very low CBF
values, which would result in secondary ischemia in case
PaCO2 would decrease below physiological values. In the

FIGURE 1 | A practical approach on how to manage controlled hyperventilation and hypocapnia in traumatic brain injury (TBI) patients. Acute intracranial hypertension

(ICHT) = life-threatening elevation in ICP, in particular when signs of herniation (i.e., anisocoria, apnea, hypertension, bradycardia) are present. ICHT, intracranial

pressure close to the critical threshold for therapy without signs of herniation; HV, controlled hyperventilation and hypocapnia. Green and red circles refers to the

potential use (green) or contraindication (red) to the use of HV. NM, neuromonitoring. *In case of diffuse brain injury but with high potential risk of tissue hypoxia.

**Adjusted on neuromonitoring.
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absence of CTP, cerebral ultrasound, using a combination of
PI, estimated ICP and diastolic CBF velocity, could identify
patients at risk of cerebral hypoperfusion. A close attention on
gas analyses monitoring, requiring repeated sampling and end-
tidal CO2 (etCO2) monitoring, is necessary in this phase, as
hyperventilation in the absence of elevated ICP is frequently
observed in adult TBI patients (61). Importantly, etCO2 might
have some limitations in case of concomitant severe chest trauma
and hemodynamic instability (i.e., low cardiac output) (77).
Whether targeting normal PaCO2 or pH values would be the
most appropriate approach remains unknown in these patients.
However, as cerebral perivascular pH could be influenced
by other factors than PaCO2 and systemic pH (i.e., local
metabolism, K+, isolated cerebral hypoxia) and therefore be
less accurately predicted, using PaCO2 levels and quantifying
changes in cerebral hemodynamics and physiology to PaCO2

changes at bedside is more feasible for physicians. If ICP
remains within acceptable values after 48 h from the injury (i.e.,
<15 mmHg), lower PaCO2 values (i.e., 33–36 mmHg) could
result in improved cerebral autoregulation (66), however it is
hard to recommend this approach routinely in all severe TBI
patients. TBI patients at the highest risk of impaired cerebral
autoregulation are those with diffuse brain injury (51); as such, if
TCD assessment shows normal CBF velocities in these patients,
lower PaCO2 values (i.e., 33–36 mmHg) could be tolerated,
although a more comprehensive neuromonitoring would be the
only effective solution to detect the potential occurrence of
tissue hypoxia.

As hyperventilation combined with hypocapnia is the
most rapidly available method to reduce ICP, moderate and
brief hyperventilation should be used to treat life-threatening
elevation in ICP, in particular when signs of herniation (i.e.,
anisocoria, apnea, hypertension, bradycardia) are present (61)
and could be used as a bridge toward additional interventions
(i.e., repeated CT-scan; osmotic therapy; surgery). In this
setting, hyperventilation should be of short duration and, if
possible, should never decrease below PaCO2 values of 30
mmHg because: (a) the most important effects of PaCO2 on
ICP are observed between 30 and 50 mmHg and (b) most
of the relevant cerebral side effects were reported for forced
hyperventilation. If possible, the use of hyperventilation should
be minimized for these patients during the first 24 h after
injury, when CBF often is the most reduced (61), unless CBF
could be measured.

In patients with ICP values remaining close to the critical
threshold for therapy (i.e., 20–22 mmHg), international
guidelines recommended the use of controlled hyperventilation
only as “tiers 2” therapy, after the failure of increased
sedation and osmotics infusion (78); indeed, controlled
hyperventilation produced similar effects on ICP but more
metabolic disturbances of cerebral metabolism than mannitol
in TBI patients (61). In these patients, it is recommended
to set PaCO2 around 33–36 mmHg and avoid values <30
mmHg (49). In the absence of other neuromonitoring than
ICP and cerebral perfusion pressure (CPP), CTP scan and

TCD are helpful to suggest normal or high (i.e., hyperemia)
CBF values, which would logically respond to hyperventilation.
However, in case of oligemia, physicians could decide to
avoid hypocapnia and move to “tiers 3” therapy, such as
barbiturates, hypothermia, or decompressive craniectomy,
to treat ICHT as hypocapnia would result in additional
cerebral hypoperfusion.

In our opinion, invasive neuromonitoring should be also
considered in severe TBI patients and ICHT to optimize overall
management and, in particular, to assess the effects of low
PaCO2 values on cerebral oxygenation and metabolism. As such,
PaCO2 values and hyperventilation could be adjusted to the
brain tolerance and therapeutic targets individualized on the
patients’ need. In case of the need for low PaCO2 values and
concomitant lung injury, other interventions aiming at reducing
CO2 production, such as increasing sedation or hypothermia,
could be considered to induce hypocapnia and avoid lung stress
and VILI. However, this strategy should be further evaluated in
clinical studies.

If controlled PaCO2 values are mandatory in severe TBI
patients because of the significant effects on brain hemodynamics
and compliance, high doses of sedatives, often in association
with neuromuscular blocking agents (NMBAs), are required
to adjust ventilatory parameters to obtain desired PaCO2

targets. As such, in the absence of aggressive therapies
for ICHT, it remains unknown when it would be safe
to discontinue sedatives and eventually tolerate spontaneous
hyperventilation in these patients. If this occurs after several
(i.e., >7–10) days from injury, the risk of oligemia would
be probably limited. Also, spontaneous hyperventilation after
acute brain injury is often triggered by local acidosis (i.e.,
low pH surrounding the respiratory center located in the
brainstem), which result in vascular dilation and would probably
compensate from vasoconstriction induced by hyperventilation.
In these cases, non-invasive (i.e., TCD) and invasive (i.e.,
PbtO2) monitoring would again be helpful to individualize
therapeutic decisions.

In conclusions, controlled hyperventilation is effective in
reducing ICP but it also reduces CBF and might have both
cerebral and systemic serious side effects. As such, normal
PaCO2 values should be maintained in the early phase after
TBI if ICP remains within acceptable values. Controlled
hyperventilation (i.e., never below PaCO2 of 30 mmHg)
should be used as a temporary life-saving intervention in
case of severe intracranial hypertension; PaCO2 levels should
be also adjusted and individualized in each patient using
CTP and cerebral ultrasound of, whenever possible, advanced
multimodal neuromonitoring.
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