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The spectrum of tauopathy encompasses heterogenous group of neurodegenerative

disorders characterized by neural or glial deposition of pathological protein tau. Clinically

they can present as cognitive syndromes, movement disorders, motor neuron disease,

or mixed. The heterogeneity in clinical presentation, genetic background, and underlying

pathology make it difficult to classify and clinically approach tauopathy. In the literature,

tauopathies are thus mostly highlighted from pathological perspective. From clinical

standpoint, cognitive syndromes are often been focussed while reviewing tauopathies.

However, the spectrum of tauopathy has also evolved significantly in the domain of

movement disorders and has transgressed beyond the domain of primary tauopathies.

Secondary tauopathies from neuroinflammation or autoimmune insults and some other

“novel” tauopathies are increasingly being reported in the current literature, while some

of them are geographically isolated. Because of the overlapping clinical phenotypes,

it often becomes difficult for the clinician to diagnose them clinically and have to wait

for the pathological confirmation by autopsy. However, each of these tauopathies has

some clinical and radiological signatures those can help in clinical diagnosis and targeted

genetic testing. In this review, we have exposed the heterogeneity of tauopathy from a

movement disorder perspective and have provided a clinical approach to diagnose them

ante mortem before confirmatory autopsy. Additionally, phenotypic variability of these

disorders (chameleons) and the look-alikes (mimics) have been discussed with potential

clinical pointers for each of them. The review provides a framework within which new and

as yet undiscovered entities can be classified in the future.

Keywords: tauopathy, movement disorders, chameleons, mimics, MAPT

INTRODUCTION

Tauopathies are a heterogeneous group of neurodegenerative disorders, pathologically
characterized by neuronal and/or glial inclusions of the microtubule-binding protein, tau.
Heterogeneity spans many domains from the clinical presentation, anatomical localization, genetic
variations, and radiological and pathological signs. Neuroanatomical vulnerability may be a key
to the heterogeneity (the concept of “molecular nexopathies”) (1). Many factors can be implicated
including “strain” specificity of the tau protein, biochemical property of the abnormal protein
according to its post-translational modification, “prion-like” propagation capacity, interaction
with other co-existent proteins like alpha-synuclein or TDP43, seeding or “permissive templating”
property, intrinsic vulnerability of the affected structure, genetic, and epigenetic factors and
environmental influences (1, 2).
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The spectrum of tauopathy is still unfolding and transcending
beyond the domain of primary tauopathies. While secondary
tauopathy from autoimmune insult like in anti-IgLON5
disease brings up the topic of complex interaction between
autoimmunity and neurodegeneration (3), geographically
isolated tauopathies highlight the environmental impact. Apart
from this, some novel tauopathies are also increasingly being
described in the literature (4).

Clinically, tauopathies present as movement disorders,
dementia, and motor neuron disease, either in isolation
or in varied combinations (5), based on the vulnerable
anatomical structures being affected by the pathological protein
accumulation. In terms of genetics, MAPT gene containing N
terminal domain (N1, N2) and microtubule binding domain (R1,
R2, R3, R4), on chromosome 17q21 encodes the protein tau. Due
to alternative splicing of the MAPT gene, three repeat (2N3R,
1N3R, 0N3R) or four repeat (2N4R, 1N4R, 0N4R) tau isoforms
are formed (6). On the other hand, depending upon numerous
single nucleotide polymorphisms (SNPs) and a 900kb inversion,
H2 and H1 haplotypes of MAPT gene are formed and have
impact on the phenotypic presentation (7).

In the literature, tauopathy has been discussed mostly as
a pathological entity with its detailed pathological intricacies.
Pathological confirmation of the diagnosis of tauopathy mostly
depends on autopsy findings. However, pathological diagnosis is
often confounded by the presence of multiple other proteins and
thus it becomes difficult to determine whether the accumulated
tau is pathological or an innocent bystander. In vivo biomarkers
like CSF tau and tau-PET imaging are still research-based tools.
Additionally, each of these tauopathies has some clinical and
radiological signature that can predict the underlying genetics
and pathology.

In order to clarify this complexity of heterogeneity of
tauopathies, in this review, we have approached tauopathy
from a clinical standpoint highlighting mainly the movement
disorder perspective, focused on the clinical presentations
(chameleons) and their phenotypic look-alikes (mimics). A
critical review of the current status of the classification of
tauopathies will be followed by the clinical spectrum of primary,
secondary, and geographically isolated tauopathies to understand
the heterogeneity. Potential clinical and radiological clues will
be discussed for each of them. Finally, a practical approach
is presented to guide the clinician in day to day practice.
Specifically, the phenotype of familial frontotemporal dementia
with parkinsonism has been clinically dissected further at the
end, because it is one of the commonest overlapping phenotypes
of tauopathies.

CLASSIFICATION OF
TAUOPATHIES—CURRENT STATUS AND
PITFALLS

Tauopathies have been conventionally classified from a
pathological perspective into two groups—(A) Primary
tauopathies where tau is the predominant pathology including
three repeat (3R-) and four repeat (4R-) tauopathies, (B)

Secondary tauopathies where additional etiologies (e.g.,
amyloid, trauma, and autoimmune) are involved for tau
deposition (Figure 1) (8). However, some tauopathies are
geographically isolated like Guadeloupean parkinsonism (9),
Western pacific amyotrophic lateral sclerosis and parkinsonism-
dementia complex (ALS/PDC) (10), and Nodding syndrome
of northern Uganda (11). While exact etiopathogenesis of
these geographically isolated tauopathies are still unknown,
environmental impact (discussed later) has been highlighted in
many studies. Thus, whether to include them in the group of
secondary tauopathies or not, is still a matter of debate.

Recently, Hõglinger et al. (12) have highlighted syndromic
classification of tauopathy based on the predominant domain
affected (cognitive or motor):

1. Cognitive syndromes: Behavioral variant of frontotemporal
dementia (bvFTD), non-fluent agrammatic variant of primary
progressive aphasia (nfavPPA), semantic variant of primary-
progressive aphasia (svPPA), and amnestic syndrome of
hippocampal type (AS).

2. Motor syndromes: Richardson syndrome (RS), Parkinson
syndrome (P), corticobasal syndrome (CBS), primary gait
freezing (PGF), cerebellar syndrome (C), and primary lateral
sclerosis (PLS).

However, a primary tauopathy like progressive supranuclear
palsy (PSP) or corticobasal degeneration (CBD) can present
with different cognitive and motor syndromes (chameleons) and
many a times there is phenotypic overlap of cognitive and motor
syndrome like in familial FTD with parkinsonism linked to
MAPT (FTDP-17).

Apart from these, tauopathies can be classified based on
the etiology like genetic (e.g., MAPT related), autoimmune
(e.g., anti IgLON5 related), traumatic (e.g., chronic traumatic
encephalopathy), etc. It can also be classified based on the
area of brain predominantly involved like frontal cortex (e.g.,
behavioral variant frontotemporal dementia/bvFTD, progressive
supranuclear palsy-frontal variant/PSP-F), parietal cortex (e.g.,
corticobasal syndrome/CBS), peri-sylvian (e.g., progressive
nonfluent aphasia/PNFA), limbic (e.g., argyrophilic grain
disease/AGD), brainstem (e.g., progressive supranuclear palsy-
Richardson’s type/PSP-RS, anti IgLON5 related), or cerebellum
(e.g., PSP-C).

Primary 4R- and 3R-Tauopathies
In this large group of primary tauopathies, CBD, GGT, AGD, and
PiD are primarily pathological diagnosis where as corticobasal
syndrome (CBS) is a clinical term. PSP can be described as both, a
pathological or a clinical entity. In this review, PSP and CBS have
been discussed with their phenotypic presentations (chameleons)
and look-alikes (mimics). PNFA/PPA-G has also been discussed
because it is primarily a clinical diagnosis and its pathology is
mostly FTLD-tau. In the literature, GGT, AGD, and PiD have
been traditionally discussed from a pathological standpoint. We
have highlighted the clinical and radiological clues for suspecting
GGT, AGD, and PiD clinically before confirmatory autopsy.
We have sub-classified primary tauopathies according to the
predominant clinical presentation like, movement disorder (PSP,
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FIGURE 1 | Classification of tauopathies.

CBS), language dysfunction (PNFA) and cognitive dysfunction
or mixed (GGT, AGD, and PiD). However, movement disorders
can be associated with the second and the third subtype in
varied proportions.

Predominant Movement Disorder
Presentation
Progressive Supranuclear Palsy (PSP)
Axial rigidity, facial dystonia, retrocollis, vertical supranuclear
gaze palsy (VSGP), early postural instability, and pseudobulbar
palsy are clinical pointers for classic PSP or Richardson’s
phenotype (PSP-RS). Apart from this, PSP can have varied
phenotypic presentations (chameleons) like parkinsonian type
(PSP-P), progressive gait freezing (PSP-PGF), etc. (Table 1) (13–
15). According to the latest MDS criteria, four core clinical
features should be assessed for varying levels of certainty for PSP
pathology: (i) oculomotor dysfunction (e.g., VSGP, slow vertical
saccades, square wave jerks, and eyelid apraxia), (ii) postural
instability within 3 years (e.g., spontaneous loss of balance,
unprovoked falls, tendency to fall on pull-test), (iii) akinesia
(e.g., progressive gait freezing, akinetic rigid, predominantly
axial parkinsonism), and (iv) cognitive dysfunction (e.g., non-
fluent aphasia, apraxia of speech, frontal cognitive/behavioral
presentation) (16). Levodopa resistance (<30% improvement
of the MDS UPDRS III score on a levodopa challenge),
dysphagia, hypokinetic spastic dysarthria and photophobia
are useful suggestive features of PSP (16). Dorsal midbrain
atrophy is the characteristic radiological finding leading to
“Morning glory,” “Mickey Mouse” signs on axial MR images

and “Hummingbird,” “Penguin silhouette” signs on sagittal MR
images (17). Midbrain/Pons (M/P) ratio < 0.52, midbrain AP
diameter measurement < 9.35mm (18), MR Parkinsonism
Index (MRPI) > 13.55 (19), and MRPI 2.0 > 2.18 for PSP-
P, > 2.50 for PSP-RS (20) are other helpful radiological
signs. MAPT H1 haplotype, specially H1c sub-haplotype and
recently described H1d, H1g, and H1o sub-haplotypes of
MAPT are associated with increased risk of PSP. Classic PSP
pathology is characterized by “tufted astrocytes” and “globose”
neurofibrillary tangles. Predominantly PSP pathology is seen
in the progressive gait freezing phenotype (PSP-PGF) and in
Richardson’s phenotype (PSP-RS), whereas in the other variants
of PSP, the pathology is often mixed or of non-PSP pathology
(21). Alzheimer’s disease (AD) pathology and argyrophilic grains
(AG) are commonly associated co-pathologies (22). Overall, the
phenotypic presentation of PSP depends on the brain area that
is more vulnerable to the pathological protein accumulation like
frontal lobe in PSP-F, parietal lobe in PSP-CBS, temporal lobe in
PSP-SL, midbrain in PSP-RS, basal ganglia (post-synaptic striatal)
in PSP-P, pons in PSP-PGF and cerebellum in PSP-C (Table 1)
(23, 24).

Corticobasal Syndrome (CBS)
Asymmetric parkinsonism, limb dystonia, myoclonus, saccadic
apraxia, ideomotor apraxia, cortical sensory deficits, and alien
limb phenomena are classic clinical clues for CBS. Like PSP,
CBS also has varied phenotypic presentations apart from
this classic phenotype. Though in the latest criteria for
CBD by Armstrong et al. (30) four phenotypic presentations
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TABLE 1 | Chameleons of PSP and CBS.

Disease entity Phenotypic presentations (Chameleons) Clinical clues

Progressive

supranuclear palsy

(PSP) (13, 16, 25)

PSP-Richardson’s syndrome (PSP-RS) Vertical supranuclear gaze palsy (VSGP), slowing of vertical saccades,

early postural instability within 3 years, axial rigidity, retrocollis,

hyperactivity of frontalis and procerus muscle (“Reptilian stare,”

“Procerus sign”)

PSP-parkinsonism (PSP-P) Initially mimics Parkinson’s disease (PD), prominent axial symptoms,

attenuated response to levodopa, along with VSGP or slow vertical

saccade, hypokinesia without decrement, micrographia without

decrement in script size (26), freezing of swallowing (27) are helpful

clinical clues

PSP-Progressive gait freezing (PSP-PGF) Gait ignition failure, start hesitation, progressive freezing of gait (FOG)

within 3 years, along with VSGP or slow vertical saccade, stuttering or

stammering speech, axial rigidity without appendicular rigidity, fast

micrographia, rapid hypophonia, or tachyphemia

PSP-Corticobasal syndrome (PSP-CBS) VSGP/slow vertical saccade with features of CBS like delayed initiation

of horizontal saccade, limb apraxia, dystonia, myoclonus, cortical

sensory loss

PSP-speech/language disorder (PSP-SL) or PSP-PNFA VSGP or slow vertical saccade with features of PNFA like progressive

apraxia of speech (AOS), agrammatism, phonemic errors

PSP-frontal variant (PSP-F) VSGP/slow vertical saccade with frontal cognitive/behavioral

presentation like apathy, dysexecutive syndrome, reduced phonemic

verbal fluency, impulsivity, disinhibition, perseveration

PSP-postural instability (PSP-PI) Isolated postural instability within 3 years (repeated unprovoked falls or

fall during pull test)

PSP-ocular motor (PSP-OM) Isolated VSGP/slow vertical saccade/macro square wave jerk or eyelid

opening apraxia

PSP-primary lateral sclerosis (PSP-PLS) (28) PSP phenotype with marked upper motor neuron (UMN) signs (may be

a clinical clue for underlying GGT pathology)

PSP-cerebellar ataxia (PSP-C) (29) Progressive truncal and limb ataxia

Can mimic multisystem atrophy (MSA-C) or idiopathic late onset

cerebellar ataxia (ILOA); early falls, VSGP, no dysautonomia, cognitive

dysfunction are helpful clinical clues for PSP-C

Corticobasal syndrome

(CBS)

Classic CBS phenotype (CBD-CBS) (30) Asymmetric parkinsonism, limb dystonia, myoclonus, saccadic apraxia,

ideomotor apraxia, cortical sensory deficits, alien limb phenomena

Non fluent/agrammatic variant Primary progressive aphasia

phenotype (CBD-PNFA) (30)

Apraxia of speech (AOS), agrammatism

Frontal behavioral-spatial syndrome (FBS/ CBD-bvFTD) (30) Executive dysfunction, disinhibited behavior, personality changes

Mimics bvFTD, but with additional visuospatial and visuoconstructive

deficits

PSP-RS-like phenotype (PSPS/CBD-RS/CBD-PSP) (30) VSGP or slowing of vertical saccade, axial rigidity, postural instability,

early falls

Amnestic phenotype (31) Mimics AD like dementia at onset, additional asymmetric

motor/sensory signs, hyperreflexia, gait impairment, parkinsonism,

dystonia are clinical clues

Posterior variants clinically presenting with Posterior cortical

atrophy (CBD-PCA), Gerstmann-variant or Balint syndrome

(32)

Symmetric bi-parietal syndromic presentation with asymmetric

progression, progressive visuospatial impairments, fluent aphasia,

posterior alien hand, apraxia, agraphia, acalculia, optic ataxia,

oculomotor apraxia, simultagnosia with parkinsonism, myoclonus

Progressive dysarthria and orofacial apraxia variant (33) Presents with progressive loss of speech output, orofacial apraxia

(OFA) for lower facial and tongue movements, later development of

myoclonus, limb apraxia, akinetic-rigid parkinsonism

Prominent pseudobulbar effect and dysarthria, emotional

lability variant (34)

Presents with spastic dysarthria, pathological laughter/crying, later

development of asymmetric rigidity, dystonic posturing

Progressive conduction aphasia (35) Presents with progressive language problem with preserved fluency

and comprehension but with paraphasia and marked impairment in

repetitions of words or phrases

Frontal-type gait impairment (36) Presents with difficulty to initiate gait, imbalance during walking, marked

anxiety for falling, upper limb dyspraxia, paratonia, frontal release signs
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have been described, certain other presentations have been
reported in the literature (Table 1). Cognitive presentation of
CBD (CBD-Cog) mimicking bvFTD or AD is an increasingly
recognized phenotype with apathy, executive dysfunction,
language, and visuospatial problems (37). Asymmetric cortical
atrophy predominantly affecting peri-rolandic region, posterior
frontal, and parietal lobes (38) is the radiological hallmark of
CBS, but the predominant area of atrophy varies with underlying
pathology. CBS-CBD and CBS-PSP pathology: focal atrophy
involving premotor cortex, posterior superior frontal lobe and
supplementary motor area (SMA), CBS-TDP-43, and CBS-
AD pathology: more widespread gray matter loss, CBS-TDP43
pathology: fronto-temporal involvement (particularly prefrontal
cortex) and CBS-AD pathology: temporo-parietal involvement
(particularly parietal cortex) (39). In 25–56% of cases, clinical
diagnosis of CBS correlates with classic CBD pathology (CBD–
CBS) (40). Astrocytic plaques, ballooned, or achromatic neurons
and argyrophilic threads are pathological hallmarks of classic
CBD pathology. However, CBS phenotype can be associated
with various other pathological entities apart from classic CBD
pathology like, AD pathology, PSP pathology, and FTLD-TDP43
pathology (40).

Because of the overlapping phenotypes, whether PSP andCBD
are two different disorders or are part of a spectrum, is a matter
of debate (41, 42). Phenotypically, PSP and CBD pathology both
can present as speech/language (SL) dysfunction (agrammatic
non-fluent aphasia/speech apraxia), frontal cognitive/behavioral
presentation (F), Richardson’s syndrome, and corticobasal
syndrome (43). Interestingly, if a patient presents with VSGP
or slowing of vertical saccade, axial or symmetric limb rigidity
or akinesia, limb apraxia, and postural instability, the patient
can be classified as PSP-CBS or CBD-PSP. To get rid of this
conundrum, Movement Disorder Society (MDS) criteria (2017)
for PSP have introduced the novel diagnostic category “probable
4R-tauopathy” for joint clinical recognition of the patients with
PSP and CBD pathology and to facilitate the research on 4R-tau
targeted therapeutic strategies (16, 44). Probable 4R-tauopathy
includes “possible PSP with SL” and “possible PSP with CBS”
apart from all “probable PSP.”

On top of this, vertical gaze palsy can be seen in a lot of other
disorders apart from PSP-RS and asymmetric dystonic stiff limb
presentation can be seen in other disorders besides CBS. Thus,
clinicians should always be aware of these look-alikes (“mimics”)
of PSP and CBS (45, 46) (Table 2).

Predominant Language Dysfunction
Presentation
Progressive Nonfluent Aphasia (PNFA) or Agrammatic

Variant of Primary Progressive Aphasia (PPA-G)
PNFA/PPA-G can clinically present with apraxia of speech
(AOS), agrammatism, or mixed. AOS manifests as slow, labored,
effortful, hesitant speech with inconsistent speech sound error
and aprosody. “Groping after the target sound” is characteristic.
Patients have difficulty to utter polysyllabic words and sequences
of syllables (e.g., “puh-tuh-kuh”) (109). Phonemic speech sound
errors are more common (110). Errors in grammar mainly
affects syntax, function words, use of conjunction and verb

(109). Clinically, PPA-Gmust be differentiated from the semantic
variant PPA-S (single word comprehension and object knowledge
is affected with intact repetition, commonly TDP43 pathology)
and logopenic variant PPA-L (word finding difficulty with “tip-
of-the-tongue” hesitation and impaired repetition, commonly
AD pathology) (111). Orofacial apraxia is a common association
with PPA-G. Signs of PSP or CBS may arise as the disease
evolves (109). Predominately left peri-sylvian atrophy involving
left posterior fronto-insular region (inferior frontal gyrus and
insula) is seen in MRI brain (111). Around 30% of the cases are
genetic and association with MAPT, PGRN and C9orf72 have
been reported (112). PSP pathology is common in AOS variant
withmore dysarthric presentation and CBD pathology withmore
sentence comprehension deficit (113). Sometimes PiD pathology,
TDP43-A pathology if there is associated ALS (nfvPPA-ALS) or
AD pathology is also seen (112–114).

Predominant Cognitive or Mixed
Presentation
Three other primary tauopathies namely globular glial tauopathy
(GGT), argyrophilic grain disease (AGD) and Pick’s disease (PiD)
present as cognitive or mixed (cognitive and movement disorder
overlap). Clinical, radiological, and pathological features of these
entities have been described in Table 3.

Secondary Tauopathies
Anti IgLON5 Disease
Anti IgLON5 mediated secondary tauopathy stands at a
critical juncture of autoimmunity and neurodegeneration, where
deposition of hyperphosphorylated tau (both 3R and 4R) occurs
mainly in the hypothalamus, brainstem, and hippocampus.
Initially, it was described as an antibody mediated sleep
disorder (132, 133). Subsequently, many other phenotypes
(chameleons) have emerged and most of the times they
overlap (51, 134–137) (Table 4). MRI brain is mostly normal
or may show cerebellar, brainstem atrophy (138). Recognition
of these clinical phenotypes of anti IgLON5 are necessary
because of its treatability with immunomodulators can prevent
further neurodegeneration.

Chronic Traumatic Encephalopathy (CTE)
CTE is mainly a neurocognitive syndrome related to repeated
traumatic brain injury (TBI) where both 3R- and 4R- tau
deposition is seen (like AD). TBI likely ignites a vicious
cycle of neuroinflammation and tau phosphorylation, deposition
(139). Susceptibility depends on multiple factors like carrying
ApoE4 allele, cognitive reserve, etc. It was initially described in
boxers and named as “punch-drunk syndrome” or “dementia
puglistica.” Subsequently, the disease got noticed among
athletes like football players and war veterans. Gardner
et al. (140) has classified the older ones as “classic CTE”
(parkinsonism followed by cognitive symptoms) and the
recent ones as “modern CTE” (behavioral symptoms affecting
mood/affect followed by cognitive symptoms). From clinical
perspective, Jordan et al. (141) have divided CTE into
three phenotypes: (1) Behavioral and psychiatric (aggression,
impulsivity, delusions, depression, suicidality) that can mimic
bvFTD; (2) Cognitive (affecting attention, executive, memory,
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TABLE 2 | Mimics of PSP and CBS.

Clinical entity Look-alikes (Mimics) Clinical clues Radiological clues

Progressive

supranuclear palsy

(PSP) (for classic

PSP-RS with VSGP)

Niemann-Pick type C (NPC) (47, 48) Splenomegaly, ataxia, dystonia, chorea, cognitive, and

psychiatric symptoms, downgaze palsy, epilepsy, history

of gelastic cataplexy, usual age of onset earlier than PSP

(though can be late onset)

Frontal and cerebellar atrophy, white

matter T2 hyperintensities in

parieto-occipital periventricular regions

Anti Ma2 related paraneoplastic

syndrome (49, 50)

Hypothalamic- pituitary endocrine dysfunction, weight

gain, sleep disorders (e.g., hypersomnia, narcolepsy,

REM sleep behavioral disorders), rapid progression,

history of testicular cancer

T2 FLAIR hyperintensities in mesial

temporal, dorsal midbrain, medial

thalamus and hypothalamus

Anti IgLON5 related autoimmune

disease (51, 52)

NREM and REM parasomnia, gait instability, cognitive

impairment with or without chorea, autonomic

dysfunction, bulbar dysfunction, sleep apnoea, and

stridor

Mostly normal, may show brainstem,

cerebellar and hippocampal atrophy, T2

FLAIR hyperintensities in hypothalamus

and brainstem

Anti LGI1 related autoimmune

disease (53, 54)

Rapidly progressive dementia, facio-brachial dystonic

seizure, hyponatremia, episodic bradycardia, humming

T2 FLAIR hyperintensities in bilateral

hippocampus and medial temporal lobes

Whipple’s disease (55, 56) Oculomasticatory myorhythmia, dementia, myoclonus,

ataxia, history of frequent diarrhea, weight loss, arthralgia

T2 FLAIR hyperintensities and mildly

contrast enhancing lesions in midbrain,

mesial temporal lobe, hypothalamus and

corticospinal tracts

Frontotemporal lobar degeneration

with MAPT gene mutation

(FTLD-MAPT) (57, 58)

Family history of FTD-parkinsonism Symmetric fronto-temporal atrophy

Kufor-Rakeb disease (mutations in

ATP13A2) (59, 60)

Juvenile onset, spasticity, facial-faucial-finger

mini-myoclonus, upgaze palsy, oculogyric crisis,

dementia, psychiatric features, levodopa responsive

parkinsonism

Diffuse cerebral and cerebellar atrophy,

increased iron accumulation can be seen

in caudate and putamen in T2*/SWI MRI

Mitochondrial disorders (Polymerase

gamma/POLG1 gene mutations) (61)

Deafness, ataxia, epilepsy, migraine, neuropathy, positive

family history

Cerebellar atrophy, T2 hyperintensities in

cerebellar white matter, dorsal thalamus

and inferior olivary nucleus

Perry syndrome (mutations in DCTN1,

TDP-43 proteinopathy) (62–64)

Unexpected weight loss, respiratory problem

(hypoventilation), central sleep apnoea,

apathy/depression, family history of parkinsonism or

respiratory problems

Mostly normal, frontotemporal and

midbrain atrophy can be seen

Gaucher disease (Type 3) (mutations

in GBA) (65)

Hepatosplenomegaly, horizontal > vertical gaze palsy

and slow saccade, head thrusts, epilepsy, cognitive

decline, usual age of onset earlier than PSP, ataxia,

spasticity

Normal or mild diffuse cortical and

midbrain atrophy

Prion diseases like familial

Creutzfeldt-Jakob disease (66, 67) or

Gerstmann-Straussler-Scheinker

disease (GSS) (mutations in PRNP)

(68, 69)

Rapid progression, cognitive decline, myoclonus, ataxia T2 FLAIR hyperintensity and DWI

restriction in caudate, putamen and

thalamus, cortical ribboning in DWI MRI,

cerebellar atrophy

Cerebral autosomal dominant

arteriopathy with subcortical infarcts

and leukoencephalopathy (CADASIL)

(70, 71)

History of migraine, transient ischemic attacks/stroke,

positive family history, cognitive decline (executive

dysfunction), apathy or depression, subcortical white

matter hyperintensities (mainly anterior temporal lobe,

external capsule) in MRI brain

Periventricular white matter T2

hyperintensities and characteristic

hyperintensities of anterior temporal lobe

and external capsule

Spastic paraplegia type 7 (SPG7)

(72–74)

Spastic ataxia, optic neuropathy, bladder dysfunction

(multisystem atrophy-cerebellar type /MSA-C mimicker)

Cerebellar atrophy

Spinocerebellar ataxia type 2, type 3,

type 17 (SCA2, SCA3, SCA17)

(75–78)

Ataxia with parkinsonism, slow horizontal saccade (in

SCA2), bulging eyes with upgaze palsy (in SCA3),

autonomic dysfunction, cognitive decline and chorea (in

SCA17), positive family history

Cerebellar atrophy

Autosomal recessive parkinsonism

due to Synaptojanin 1 (SYNJ1) gene

mutation (45, 79)

Early onset parkinsonism, dystonia, with vertical

supranuclear gaze palsy, history of seizure, cognitive

decline

Diffuse cortical atrophy, thinning of

quadrigeminal plate, hippocampal

sclerosis

Corticobasal syndrome

(CBS)

Frontotemporal lobar degeneration

with Progranulin gene mutation

(FTLD-PGRN) (57, 58)

Frontotemporal dementia associated with amyotrophic

lateral sclerosis (FTD-ALS phenotype), family history of

early onset dementia/ALS, language dysfunction,

hallucination, prominent parietal signs like apraxia,

dyscalculia, visuospatial impairment

Asymmetric fronto-temporal atrophy with

temporo-parietal, parieto-occipital

involvement

(Continued)
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TABLE 2 | Continued

Clinical entity Look-alikes (Mimics) Clinical clues Radiological clues

Frontotemporal lobar degeneration

with FUS, C9orf72 and TANK-binding

kinase 1 (TBK1) gene mutation

(80–84)

Frontotemporal dementia associated with amyotrophic

lateral sclerosis (FTD-ALS phenotype), family history of

dementia or ALS, history of hallucination, psychosis in

C9orf72

Frontotemporal atrophy, additional

caudate atrophy in FUS and cerebellar,

thalamic atrophy in C9orf72

Primary progressive aphasia (CBS-PNFA) in TBK1

mutation,

Familial and sporadic

Creutzfeldt-Jakob disease (CJD)

(85–88)

Rapid progression, cognitive decline, myoclonus, ataxia T2 FLAIR hyperintensity and DWI

restriction in caudate, putamen and

thalamus, cortical ribboning in DWI MRI

Vascular insults like multi infarct state

(vascular CBS) (89–91)

History of transient ischemic attacks or stroke, dementia,

history of dyslipidemia, ischemic heart disease, atrial

fibrillation, peripheral vascular disease

MR evidence of multiple brain infarcts of

different stages, stenosis of internal carotid

arterial system in MR Angiography

Antiphospholipid antibody syndrome

(APLA) with or without cerebral

infarction (92–94)

History of repeated pregnancy loss, deep vein

thrombosis, chorea

Multiple T2 hyperintensities in subcortical

white matter

Presenilin 1 (PSEN1) mutation (95)

(gene responsible for early onset

Alzheimer’s disease/EOAD)

Family history of dementia, earlier age of onset than

classic CBS, seizure, cognitive impairment

Diffuse cortical atrophy including

temporo-parietal lobe, subcortical and

periventricular white matter T2

hyperintensities

Amyloid precursor protein (APP) gene

mutation (96, 97) (gene responsible

for early onset Alzheimer’s

disease/EOAD)

Family history of dementia and/or parkinsonism, earlier

age of onset than classic CBS, prominent cognitive

impairment, with or without seizure

Medial temporal/Hippocampal atrophy

Cerebrotendinous xanthomatosis

(CTX) (98, 99) (mutation in CYP27A1)

Usual age of onset early than CBS, ataxia, tendon

xanthoma, early cataract, cognitive decline, spasticity

Dentate and peri-dentate cerebellar white

matter T2 hyperintensities

Fahr’s disease (Primary familial brain

calcification/PFBC) (100)

Usual age of onset early than CBS, history of seizure,

neuropsychiatric features including dementia, executive

dysfunction and psychosis, positive family history

Evidence of bilateral brain calcification

(basal ganglia, dentate, centrum

semiovale) in CT or MRI

Stiff limb syndrome (focal variant of

stiff person syndrome) (101, 102)

Fluctuating stiffness (more with activity), tonic spasms

provoked by tactile stimuli, anti GAD antibody positivity,

ataxia, history of autoimmune diseases like type 1

diabetes, thyroiditis

Mostly normal, T2 FLAIR hyperintensities

in medial temporal lobes can be seen

Anti glycine receptor (anti-GlyR)

antibody mediated (103, 104)

Rapid progression, hyperekplexia (excessive startle),

progressive encephalomyelitis with rigidity and

myoclonus (PERM), trigeminal/facial disturbance, ataxia

Mostly normal, subcortical and

periventricular white matter T2

hyperintensities can be seen

Diffuse Lewy body disease (DLB)

(105, 106)

Fluctuating cognition, visual hallucination, delusion,

neuroleptic sensitivity, autonomic dysfunction

Diffuse cortical atrophy (with relatively

preserved medial temporal) in MRI and

occipital hypoperfusion with “cingulate

island sign” (preserved metabolism of the

posterior cingulate) on SPECT/PET

Adult-onset leukoencephalopathy

with axonal spheroids and pigmented

glia (ALSP) due to CSF1R gene

mutation (107, 108)

Relative earlier onset than CBS, psychiatric symptoms

with personality change, progressive cognitive decline,

frontal executive dysfunction, pyramidal signs, history of

seizure, rapid disease course

Dilation of the lateral ventricles, bilateral

white matter T2 FLAIR hyperintensities

with diffusion restriction, thinning of corpus

callosum, abnormal signal intensities in

corpus callosum and pyramidal

tract, calcifications in the white matter

visuospatial domains) that can mimic FTD or AD; (3) Motor
(parkinsonism, ataxia, dysarthria, spasticity). Chronic post-
concussive syndrome (CPCS) comes as differential but its
temporal relation with the acute concussive event and the
presence of headache are the helpful differentiating features
(139). Pathologically CTE differs from AD, though both are
secondary tauopathy with mixed 3R- and 4R-tau deposition.
Perivascular deposition of tau positive NFTs along the depth
of cortical sulci is the pathological hallmark of CTE. TDP-
43 inclusions are more common in CTE, while Aß amyloid

deposition is more in AD (142). Additionally, tau filaments
in CTE have a unique ß-helix region with a hydrophobic
cavity, containing cofactors necessary for tau aggregation and
propagation (143).

Alzheimer’s Disease (AD)
AD is the most common cause of dementia worldwide.
Pathologically, extracellular Aß amyloid plaques and intracellular
tau (mixed 3R and 4R) positive neurofibrillary tangles are
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TABLE 3 | Clinical, radiological, and pathological clues for GGT, AGD, and PiD.

Disease entity Clinical features Radiology Pathology

GGT (28, 115, 116)

(4R-tauopathy)

• Can clinically present with bvFTD

(Type 1), PSP/CBS with MND/PLS

spectrum (Type 2) and mixed (Type

3), based on topographic location

of white matter deposits of tau

immunoreactive globular glial

inclusions (117)

• Atypical PSP with marked upper

motor neuron (UMN) signs

(PSP-PLS phenotype) can be a

clinical clue

• Other phenotypes: PPA-G with

chorea (118), PPA-S (119), Mill’s

hemiplegic variant of MND (120)

• Frontotemporal atrophy with T2 FLAIR hyperintensities

in white matter involving cortical-white matter

junctions, subcortical and periventricular areas,

anterior commissure, posterior horn of lateral

ventricles, cerebral peduncle, basis pontis (regions

corresponding to traversing corticospinal fibers)

(28, 120, 121)

Tau-immunoreactive globular inclusions

in astrocytes (GAI) and oligodendrocytes

(GOI) (117, 122)

• Type 1: frontotemporal involvement

• Type 2: motor cortex and/or corticospinal

tract involvement

• Type 3: frontotemporal, motor cortex

and/or corticospinal tract involvement

AGD (123, 124)

(4R-tauopathy)

• Limbic predominant 4R-tauopathy

that commonly presents with very

late onset (>75 year) slowly

progressive mild cognitive

impairment with prominent

psychiatric symptoms (limbic

involvement), disinhibited

behaviors, change of appetite and

eating disorders (hypothalamic

involvement), late-onset

schizophrenia and delusional

disorders, late-onset

bipolar disorder

• AGD can be seen in very late onset

CBD, PSP

• CBD-Cog patients have found to

have more AGD pathology than

CBD-CBS (37)

• Other phenotypes: Late onset

Parkinson’s disease with dementia,

hallucination, delusion, mimicking

Lewy body dementia (DLB)

(125, 126), bvFTD presentation with

diffuse cortical involvement (127)

• Can rarely present with rapid

cognitive decline, seizure,

psychotic episodes, urinary

incontinence in younger population

(<75 year), mimicking prion

disease (128)

• Medial temporal lobe atrophy

• Midbrain atrophy if associated PSP pathology

• Argyrophilic grains spindle- or comma-

shaped Gallyas positive, 4R tau in

neuronal dendrites and axons

• CBD, PSP, and AD pathology are

commonly associated

PiD (129, 130)

(3R-tauopathy)

• bvFTD (most common

presentation), sometimes can

present as PPA-S

• bvFTD: Frontal (predominantly medial frontal cortex

and also involving dorsolateral and orbitofrontal

regions) >temporal atrophy (131)

• PPA-S: mainly left anterior temporal lobe, with

involvement of inferior temporal gyrus, fusiform gyrus,

anterior hippocampal region (113, 131)

Pick bodies, Pick cells, ramified astrocytes

seen (144). Apart from classic amnestic presentation, non-
amnestic phenotypes of AD are increasingly being recognized
like, language variant (e.g., logopenic aphasia with word
finding difficulty), visuospatial variant (posterior cortical
atrophy/PCA with impaired spatial cognition), behavioral
variant (executive dysfunction with impaired reasoning, problem
solving), and mixed cognitive-motor presentation (atypical
parkinsonism) (145, 146). In the latest National Institute
on Aging and Alzheimer’s Association (NIA-AA) Research

Framework criteria (2018), AD has been re-defined based on the
underlying pathology (amyloid pathology/A, tau pathology/T
and neurodegeneration/N) that can be documented in vivo
by biomarkers or by post-mortem examination (147). From a
movement disorder perspective, many studies have reported
extrapyramidal signs including parkinsonism in AD with
widely varied prevalence (20–100%) (148). Parkinsonism in
AD is mostly unresponsive to levodopa and the patients with
AD-parkinsonism phenotype usually show relatively rapid
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TABLE 4 | Phenotypic presentations (chameleons) of IgLON5 disease.

Sleep disorders NREM and REM parasomnias (commonly

vocalization, simple or finalistic limb

movements, RBD), sleep apnea and

stridor, excessive daytime somnolence

Bulbar dysfunction Dysphagia, dysarthria, laryngeal stridor,

recurrent acute respiratory failure

(mimicking ALS or myasthenia)

PSP phenotype VSGP and gait instability (restriction in

upgaze is more than downgaze in contrast

to PSP)

MSA phenotype Parasomnia, dysautonomia (urinary

dysfunction, episodic profuse sweating),

stridor, parkinsonism, ataxia

Acute or subacute

encephalopathy

Huntington’s disease (HD)

phenotype

Cognitive impairment with chorea

Orofacial dyskinesia Facial myokymia and orolingual

myorhythmia (mimicking Whipple’s

disease)

Motor neuron disease

(MND) phenotype

Distal muscle atrophy, fasciculation

Stiff-person syndrome

spectrum (SPS) phenotype

Peripheral nerve hyperexcitability with

cramps, hyperekplexia, stiffness,

myokymia, neuromyotonia

Cerebellar ataxia phenotype Postural and intention tremor, titubation,

gait, and limb ataxia

Cervical and truncal

dystonia

progression, severe deficits on neuropsychological testing and
high frequency of major depression and dysthymia (149).
However, in these scenarios of cognitive-motor overlap, the
clinicians must differentiate cortical “pseudo-parkinsonian”
features like ideomotor apraxia, paratonic rigidity, and
frontal/higher level gait disorders from true parkinsonian
(nigrostriatal) features like bradykinesia, lead-pipe rigidity,
and parkinsonian/middle-level gait disorders (148). Dementia
with Lewy bodies/DLB (occurrence of dementia prior to
or within a year of onset of motor symptoms, cognitive
fluctuation, well-formed visual hallucination, neuroleptic
sensitivity, and autonomic dysfunction), Parkinson’s disease
dementia/PDD (onset of dementia after 1 year of parkinsonian
motor symptoms) and Creutzfeldt–Jakob disease/CJD (rapid
progression, cerebellar ataxia, seizure, and chorea) can mimic
AD-parkinsonism phenotype with dementia, rigidity, and
myoclonus (149). Lastly, genes responsible for early onset AD
(EOAD) like presenilin 1 (PSEN1) and amyloid precursor protein
(APP) can give rise to atypical parkinsonism like corticobasal
syndrome (CBS) (95, 96). Besides the CBS phenotype, dystonia
in AD can also be drug-induced (e.g., rivastigmine, mirtazapine,
neuroleptics) (150–152). Choline esterase inhibitors (ChEIs) can
induce truncal dystonia in the form of Pisa syndrome (tonic
lateral flexion of the trunk) in patients of AD (153–155). Apart
from parkinsonism, cortical reflex myoclonus is common in
advanced AD (in around 50%). Myoclonus can appear early in

the disease course in early onset familial AD and in AD with
faster progression (156). Small amplitude postural jerky tremor
(minipolymyoclonus) has also been reported in AD (157).

Geographically Isolated
Tauopathies—Sociocultural and
Environmental Impact
Guadeloupean Parkinsonism
High frequency of atypical parkinsonism with PSP like
presentation is seen in French-Caribbean islands of Guadeloupe
and Martinique (158). Two phenotypes have been described: (1)
Guadeloupean PSP-like syndrome (Gd-PSP) with levodopa-
resistant parkinsonism, early postural instability, and
supranuclear gaze palsy (differs from classic PSP phenotype
because of the high frequency of tremor, dysautonomia, and
hallucination); (2) Guadeloupean Parkinsonism-dementia
complex (Gd-PDC) with levodopa-resistant parkinsonism,
subcortical dementia, and hallucination (9). Eating the fruits
and infusions of the leaves of Annona muricata (soursop),
containing Annonacin (toxic inhibitors of the mitochondrial
respiratory chain complex I) has been proposed as a risk factor.
Apart from supratentorial atrophy, 3rd ventricular dilatation
(in both subgroups) and midbrain atrophy in Gd-PSP (like
classic PSP), hypointense signals noted in T2 FLAIR, T2∗

sequences over substantia nigra, red nucleus, globus pallidus,
and putamen in both subgroups (an important radiological
clue) (9). Pathologically, they can mimic PSP or may have some
atypical features like absence of tufted astrocytes and more tau
positive neurons than true NFT (159).

Western Pacific Amyotrophic Lateral Sclerosis and

Parkinsonism-Dementia Complex (ALS/PDC)
Historically, epidemiologist Kurland and neurologist Mulder
described the high incidence of atypical parkinsonism and
familial ALS in Guam (southernmost of the Mariana islands)
in native Chamorro tribe. Subsequently, Hirano et al. termed it
as “Parkinsonism-dementia complex of Guam (PDC)” because
of the common association of dementia (160). Three high-
incidence foci have been described so far in the literature: (1)
Guam, USA (“Lytico-bodig” disease in Chamorro tribe), (2)
PapuaNew Guinea, Indonesia (Auyu and Jakai tribe) (161),
and (3) Hohara and Kozagawa regions of Kii Peninsula,
Honshu Island, Japan (“Muro” disease) (10). Though the clinical
description varied in literature, most common presentation
described was rapidly progressive, familial, symmetric akinetic-
rigid parkinsonism (PSP or “Bodig” phenotype) along with
distal muscle atrophy (ALS or “Lytico” phenotype), hyperreflexia,
vertical gaze palsy, and dementia (160). While overall the
incidence of ALS/PDC has decreased, in Kii peninsula it is still
being reported because of the use of traditional medicines (10).
Ophthalmomyiasis-like pigmentary retinopathy (“criss-crossed
tracks of depigmentation” of the retinal pigment epithelium)
has been reported in these patients of Kii peninsula (162). MRI
brain shows rapidly progressive frontotemporal atrophy mainly
in PDC subtype (163). Typical “Hummingbird sign” (164) has
been reported too. Pathologically, ALS/PDC can be called a

Frontiers in Neurology | www.frontiersin.org 9 November 2020 | Volume 11 | Article 599384

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ganguly and Jog Tauopathy and Movement Disorders

“multiple proteinopathy” because apart fromwidespread 3R- and
4R-tau positive neuronal and glial inclusions, NFTs throughout
the gray and white matter, including in the lower motor neurons
in the spinal cord, TDP-43 deposits and accumulation of alpha
synuclein deposition as Lewy bodies and Lewy neurites were
also noted in the amygdala, substantia nigra and locus coeruleus
(165). Several etiological hypotheses exist in the literature.
Ingestion of toxic chemicals in the flour from seed of cycad plants
containing toxic β-methylamino-l-alanine (l-BMAA) and cycasin
has been proposed in “cycad hypothesis.” Japanese folk medicine
(Kampo) also contains Sotetsu seed (cycad) (10). Cyanobacteria
(Blue-green algae) containing toxic BMAA reaches the cycad
seeds via the roots and these native people cook bats who eat these
cycad seeds (160). Interestingly, C9orf mutation has recently
been reported in some of these people of Kii peninsula (166), but
not in Guam (167).

Nodding Syndrome (NS)
Children in the East Africa, mostly the Acholi tribe in
northern Uganda (“lucluc”), Wapogoro tribe of Tanzania
(“kifafa cha kusinzia”) and South Sudan suffer from a
deleterious syndrome initially presenting as stereotypical head
dropping movements (triggered by food, cold weather) that
gradually leads to cognitive impairment, malnutrition, impaired
growth, seizures, epileptic encephalopathy, and parkinsonism
in late stage (168, 169). Often the affected children die by
accidental drowning and burns. Clinically, NS overlaps with sub-
Saharan Nakalanga syndrome (NLS) with pituitary dwarfism
(169). Several etiological hypotheses exist in the literature,
autoimmune reaction toleiomodin-1 epitope of Onchocerca
volvulus (nematode causing river blindness) has been mostly
mentioned. Recently, widespread tau-immunoreactive NFTs
and pre-tangles have been noted, mostly in the gyral crests
of the frontal and temporal cortex, brainstem, substantia
nigra, and locus coeruleus (11). MRI shows varying degree
of cortical atrophy mainly involving fronto-temporal regions
(170). Presence of tau pathology in NS is a pathological factor
for the disease or just an effect of repeated seizure, is still to
be determined.

Cluster of PSP in Northern France
Caparros-Lefebvre et al. (171) have reported a cluster of older
onset (mean age 74 years) PSP cases (53% PSP-P, 33% PSP-RS)
from suburban towns centered onWattrelos and Leers, northern
France. Etiopathogenesis has been linked to the environmental
toxic exposure from the industrial dumping of phosphate and
chromate ores in the territory.

Being familiar with these disease phenotypes are needed
because many a times patients migrate and a so-called
“geographically isolated” tauopathy can present to a clinician
practicing far away.

Novel Tauopathies—Are They?
Mulroy et al. (4) in their recent paper on “novel tauopathies,” have
highlighted how pathological tau deposition is interestingly being
noted in some other movement disorders like ADCY5 related
dyskinesia, Beta-propeller protein associated neurodegeneration

(BPAN), Benign hereditary chorea (BHC) Type 2, Huntington’s
disease (HD), Progressive ataxia, and palatal tremor (PAPT)
and Spinocerebellar ataxia (SCA 11, 31). These are mostly
isolated case reports and whether there is any pathological
significance of tau in these disorders or tau is just an
innocent bystander, is largely unknown. Presence of tau
may be because of co-existing other known tauopathy,
as a part of “mixed proteinopathy” or be just because
of old age. Similarly, tau pathology is also seen in post
encephalitic parkinsonism (172), Niemann-Pick type C disease
(173) subacute sclerosing panencephalitis (SSPE) (174) and
in prion disease like Gerstmann-Straussler-Scheinker disease
(GSS) (175) although the clinico-pathological significance is
still unknown.

A PRACTICAL CLINICAL APPROACH TO
TAUOPATHIES AND MOVEMENT
DISORDERS

Considering tauopathies from a movement disorder perspective,
interlacing clinical phenotypes and pathological, genetic
heterogeneity often make it difficult to diagnose them clinically.
Some clinical pointers like VSGP, frontal disinhibited behavior,
amyotrophy, prominent language involvement, chorea, and
cerebellar ataxia can be helpful clues for the clinician on this
regard (Figure 2).

FAMILIAL FTD WITH PARKINSONISM—A
PHENOTYPIC OVERLAP

The overlap of familial frontotemporal dementia and
parkinsonism needs special attention because it is one of
the commonest presenting phenotypes baffling the movement
disorder specialists. Frontotemporal dementia and parkinsonism
linked to chromosome 17 (FTDP-17) has recently been
described as “familial FTLD-tau” because of the similarity of
neuropathological features and disease progression between
patients of familial FTLD-tau with MAPT mutations and
sporadic FTLD-tau subtypes (PiD, PSP, CBD, and GGT)
(176). Parkinsonism associated with familial FTD and MAPT
mutation varies from mild to the aggressive form in severity
and can occur early or late in this spectrum (57). Chromosome
17 carries another gene named progranulin (PGRN), that is
also linked with the spectrum of frontotemporal dementia-
parkinsonism, but with TAR DNA binding protein 43 (TDP43)
inclusions instead of tau. Apart from these two common
genetic associations (MAPT and PGRN), parkinsonism in
familial FTD can also be liked with chromosome 9 open reading
frame 72 (C9orf72) gene where overlap with motor neuron
disease (FTD-MND) is commonly seen (177, 178) (Table 6).
Four other less common genetic links reported in familial
FTD with parkinsonism cases are—chromatin modifying
protein 2B (CHMP2B), transactive response DNA-binding
protein (TARDBP), valosin-containing protein (VCP), and
fused-in-sarcoma (FUS) genes (179–181).
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FIGURE 2 | Clinical pointers for diagnosing tauopathies. *Novel tauopathies, +DDPAC, disinhibition–dementia–parkinsonism–amyotrophy complex related to MAPT

mutation (intron 10 + 14).

Phenotypically, MAPT and PGRN both can present with
akinetic-rigid variant of parkinsonism. But MAPT commonly
presents with PSP like phenotype with symmetric motor

involvement while PGRN presents with corticobasal syndrome
(CBS) like phenotype with asymmetric involvement and
parietal lobe signs like apraxia, dyscalculia, visuoperceptual,
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TABLE 5 | Clinical and radiological clues for familial FTD with Parkinsonism.

Clinical clues Radiological clues Targeted gene Suspected

pathology

Early onset (3rd or 4th decade), PSP

phenotype, vertical supranuclear gaze palsy

Symmetric fronto-temporal atrophy MAPT Tau

Late onset (5th or 6th decade), CBS

phenotype, FTD-MND overlap, language

involvement, apraxia, dyscalculia, visuospatial

impairment, episodic memory involvement,

hallucination

Asymmetric fronto-temporal atrophy,

more posterior involvement

(temporo-parietal, parieto-occipital),

significant white matter

hyperintensities

PGRN TDP43

FTD-MND overlap, early cognitive, and/or

behavioral symptoms, psychosis, hallucination,

chorea (Huntington’s disease phenocopy),

positive family history of MND or FTD

Symmetric fronto-temporal and

cerebellar atrophy

C9orf72 TDP43, Ubiquitin

TABLE 6 | Clinical phenotypes associated with MAPT gene mutations.

Clinical Phenotype MAPT gene mutation

Early prominent personality

change with

disinhibition–dementia–

parkinsonism–amyotrophy

complex (DDPAC)

intron 10 + 14 (190, 191)

Early onset aggressive

parkinsonism

N279K, P301S, intron 10 +

16,G389R, intron 10 + 13

(57)

CBS phenotype N410H, P301S (192, 193)

G389R, C291R (96)

Rest tremor (uncommon in

FTD-parkinsonism)

K317M,G389R, Q336H

(194, 195)

and visuospatial dysfunction (57, 58, 182). Penetrance is
100% in MAPT, while it is age dependent in PGRN and
reaches about 90% at the age of 70 (58). So, if there
is no family history, MAPT is unlikely but PGRN can
still be a possibility. Progression of disease is relatively
faster in PGRN (131) and hallucinations (183) are more
common. Radiologically, symmetric fronto-temporal atrophy
is seen in MAPT involving anteromedial temporal lobe and
orbitofrontal region (184) while caudate atrophy (185) (also
common in FUS) (186) can also be seen. However, PGRN
commonly presents with asymmetric fronto-temporal atrophy
and more prominent posterior atrophy involving temporo-
parietal, parieto-occipital regions (58, 182). White matter hyper-
intensities are more frequent in PGRN (187). Additional
cerebellar and thalamic atrophy can be seen in C9orf72
along with symmetric frontotemporal atrophy (188, 189)
(Table 5).

In addition to this, specific mutations in the MAPT gene can
present with subtle phenotypic differences (57) (Table 6). On the
other hand, Forrest et al. have noted pathological variability with
specific mutations in MAPT like PSP pathology in S305S, CBD
pathology in S305S, IVS10+16 and R406W, PiD pathology in
K257T and GGT pathology in P301L, IVS10+16 mutation (176).

CONCLUSION

Tauopathy is a complex clinico-pathological hub encompassing
multiple facets of movement disorders, dementia, and motor
neuron disease. Topographic localization of tau accumulation
shapes the clinical phenotype with varied combination of
these domains. They can present with diverse overlapping
phenotypes and their presentation can be mimicked by a
lot of other diseases. Recognizing these “chameleons” and
“mimics” are necessary from clinical and therapeutic standpoints.
Emerging secondary tauopathies and geographically isolated
tauopathies, many a time having relation with secondary
environmental factors, are continuously invoking more and
more research on the pathogenesis of tauopathy. Obviously,
we can’t stamp a disorder as “tauopathy” by mere presence
of tau pathology in the brain. But is there a reliable clinical
criterion for tagging a disorder as “tauopathy” ? MDS-PSP
criteria has introduced the diagnostic category of “probable 4R-
tauopathy” for ante mortem diagnosis of patients with PSP
or CBD pathology (16). However, the spectrum of tauopathy
is expanding far beyond these two pathological subtypes and
tau deposition is being seen in different disease entities.
Confirming the role of tau as a pathogenic factor for these
disorders is the unmet need of the hour. The crosstalk between
autoimmunity and neurodegeneration or neuroinflammation
and tau aggregation also demands further research on this
regard (196).

Traditionally, tauopathy has been depicted in the literature
either as a pathological construct or from a cognitive perspective,
while the evolving movement disorder domain of tauopathy is
often neglected. Intertwining of the clinical, radiological, genetic,
and pathological domains of movement disorder makes the
spectrum intriguing but creates diagnostic confusion. Subtle
clinical and radiological clues are the keys here to navigate
through this conundrum. They are not only helpful for
targeted genetic testing and predicting the pathology before
autopsy, but also can open the door for utilizing newer
biomarkers like ligand gated imaging or CSF biochemistry more
efficiently and encourage further research on protein based
therapeutic strategies.
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