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INTRODUCTION

Our brain is comprised of billions of neurons, which can connect via synapses that rely on
electrical signaling and the release of chemical messengers to communicate and propagate signals
through neural networks. By forming such networks, neurons are capable of monitoring previous
firing activity, and using this information to adapt subsequent firing rate. This so-called activity-
dependent plasticity is critical for the encoding of new information, and the tuning of (low activity)
connections (1–3). The physiological mechanisms of synaptic plasticity have largely been attributed
to Long-Term Potentiation (LTP) (4, 5), and Long-Term Depression (LTD) (6–8), which result
from molecular processes such as receptor trafficking or synaptic scaling (3). Both LTP and LTD
are induced by postsynaptic NMDA receptor activation, which lead to an influx of calcium into the
postsynaptic dendrites (8–10). This triggers a complex series of intracellular signaling cascades,
resulting in synaptic modifications such as AMPA receptor trafficking (11, 12). The pattern of
stimuli delivered to the post synapse determines whether LTP or LTD will occur; low frequency
stimulation induces LTD, whereas high frequency stimulation induces LTP (8, 13). These processes
underlie much of our knowledge on the molecular mechanisms of learning and memory.

However, if the principles of Hebbian synaptic plasticity (LTP, LTD) alone were to drive the
strengthening and weakening of synaptic connections, activity would, over time, be driven toward
destabilization. This is because continuously firing synapses could only become stronger (driven
to saturation) and unused synapses quiescent (until completely lost) (14). Consider a synapse that
is strengthened by LTP; meaning the presynaptic neuron becomes more effective at depolarizing
the postsynaptic neuron. With each continued stimulation, the postsynaptic neuron will be
more easily depolarized, in a positive feedback loop, resulting in a hyperexcitable postsynaptic
neuron. Over time, not only will the original presynaptic connection be strengthened, but other
unrelated presynaptic inputs could cause a depolarization of the hyperexcitable postsynaptic
neuron, resulting in unregulated synaptic transmission (15). Therefore, other mechanisms must
exist, which regulate synaptic plasticity on a global network level to maintain stability of synapses
and maintain specificity of neural activity (16, 17).

Metaplasticity refers to any change in the direction or degree of synaptic plasticity (ex. LTP,
LTD) based on prior neural activity (18). While both synaptic and metaplasticity are dependent on
previous neural activity, metaplasticity does not directly alter the efficacy of synaptic transmission
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(as LTP/LTD), but it adjusts the neurons’ ability to induce
LTP/LTD with subsequent neural activity. Metaplasticity in
some sense can be considered as the plasticity of synaptic
plasticity, e.g., maintaining the dynamic nature of a neuron’s
firing threshold, when this neuron reaches a certain firing rate
(16, 18, 19). Metaplasticity works through similar synaptic
modifications as LTP/LTD, such as NMDA receptor activation
and modification (20), and changes in calcium signaling
triggering complex signaling cascades (18). Metaplastic
modifications, for example at NMDA receptors, can occur either
at specific synapses or across the whole neuron, and on time
scales from minutes to weeks (19). Depending on the temporal
pattern and strength of previous neural activity, metaplastic
mechanisms can be additive; for example promoting increased
synaptic strengthening through repeated excitatory (LTP-
inducing) stimulation. Metaplasticity can also be stabilizing;
for example acting against subsequent synaptic strengthening
when repeating excitatory (LTP-inducing) stimulation (19, 21).
This stabilizing form of metaplasticity is often referred to
as homeostatic metaplasticity, as it specifically regulates the
dynamic threshold of synaptic plasticity to maintain equilibrium,
or homeostasis (16, 17). We hypothesize, based on research from
human and animal studies, that the timing between excitatory
stimulations are what differentiate between promoting additive
or homeostatic metaplasticity.

We focus on the role of metaplasticity in Transcranial
Magnetic Stimulation (TMS). We describe the recent use of
accelerated (repeated) stimulation protocols, both in research
and clinical applications, and the molecular mechanisms
required to promote either homeostatic or additive metaplastic
effects. Finally, we showcase the therapeutic potential of
accelerated stimulation, and hypothesize that increasing the
currently practiced stimulation intervals may be more efficacious
in promoting additive metaplastic effects in various clinical
applications of rTMS in rehabilitation, neurology, psychiatry, and
cognitive decline.

METAPLASTICITY IN TMS

TMS is a widespread and increasingly popular non-invasive
brain stimulation technique, where electromagnetic pulses allow
stimulation to pass non-invasively through the skull (22). When
pulses are applied in a certain pattern, as repetitive TMS
(rTMS), protocols can have lasting excitatory or inhibitory
effects (23–25). Two commonly used stimulation protocols are
intermittent Theta Burst Stimulation (iTBS), requiring only 3min
of stimulation time, resulting in a lasting increase of cortical
excitability, and continuous Theta Burst Stimulation (cTBS),
requiring only 40 s of stimulation for a lasting decrease in cortical
excitability (26). The after effects of these protocols have been
shown for up to 1 h following stimulation (26, 27).

While iTBS is normally an excitatory protocol, causing an
increase in cortical excitability of the stimulated brain region,
it has been shown that when applied twice in quick succession
iTBS effects switch from excitatory to inhibitory (28). Conversely,

when cTBS (an inhibitory protocol) is applied for double the
normal duration, its effects switch from inhibitory to excitatory
(28). Several studies have reported similar effects of repeating
iTBS or cTBS stimulation protocols, with the timing between
protocols being an important factor in the magnitude and
direction of aftereffects (19, 29, 30). For example, using a
“priming” iTBS protocol which does not induce plasticity,
followed by a “test” iTBS protocol has shown that short intervals
of 5min between priming and test resulted in homeostatic-
like changes in excitability, i.e., an opposite effect. Interestingly,
longer breaks of 15min resulted in an increase inMEP amplitude
after the test iTBS (30). However, 15min between priming and
test iTBS/cTBS has also been shown to induce in homeostatic-
like metaplastic effects (29). While the timing between repeated
TBS sessions is clearly important, the optimal interval is less clear.
15min between iTBS sessions has been shown to promote both
homeostatic (29) and MEP enhancement after the second iTBS
(30), while 10min between priming and test iTBS has shown
enhancement of MEP amplitude (31), but 5 and 20min between
iTBS sessions did not (32). Therefore, when 2 iTBS sessions are
repeated with short (<30min) between, conflicting effects on
MEP amplitude have been reported.

“Accelerated” protocols, which consist of multiple stimulation
sessions on a single day, have recently been introduced for the
treatment of depression (33–37). Due to their short duration,
the TBS protocols, in particular iTBS, have been promising
candidates for accelerated protocols (38). Also, a large trial
recently found that iTBS was not-inferior to the classical
10Hz rTMS protocol, confirming the clinical potential of this
shorter stimulation protocol to treat depression (39). Indeed,
several studies have shown additional benefits for accelerated
iTBS protocols in the treatment of severe, treatment resistant
depression (40, 41). In the clinic, an interval of 15min is often
used between iTBS sessions, with these sessions repeated up to 5
times on a single treatment day (40, 41).

We recently conducted a study investigating the effects of
accelerated iTBS over motor cortex, consisting of 5 repeated
iTBS sessions in a single day. iTBS with 8- or 15-min time
interval between sessions were delivered to healthy participants
in a fully within subject design; where participants received
4 different conditions (accelerated iTBS with 8-min intervals,
accelerated iTBS with 15-min intervals, single iTBS and sham)
(42). We compared change in Motor Evoked Potential (MEP)
amplitude up to 90min following stimulation, across the
stimulation conditions.

We found that there was no difference in the effects of
accelerated iTBS on MEP amplitude, also when compared to
sham stimulation, and thus no additive metaplasticity induced
by five stimulation sessions applied successively in 8- or 15-
min intervals. We argue that such intervals between iTBS
protocols are likely too short to avoid processes of homeostatic
plasticity. With only 8 or 15min between sessions, homeostatic
mechanisms may be working against additive metaplastic effects
to maintain network stability and therefore result in a net
effect of no change in excitability following these accelerated
protocols (42).
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TIMING-DEPENDENT METAPLASTICITY

In agreement with this notion, animal studies in rats, and
rat hippocampal slices have shown that a sufficiently long
pause between excitatory stimulation sessions was necessary
for additive (LTP) plasticity effects to occur (43–45). This
may have to do with the time required for metaplasticity
mechanisms, for example synapse strengthening with AMPA
receptor trafficking (15).

It has been well-established in animal studies, that a single
round of TBS (a 4-pulse burst at 100Hz, repeated at 5Hz for
10 bursts) is effective at inducing LTP in CA1 hippocampal
pyramidal neurons (46, 47). TBS has since then been used
extensively to reliably induce LTP in vitro (48). Interestingly,
repeating this single TBS protocol with a time interval of
>40min, was capable of almost doubling the potentiation
compared to the first TBS alone (43). This additional potentiation
is thought to work through strengthening the smaller synapses
which weren’t strengthened by the first TBS protocol (43). This
may have to do with the number of AMPA receptors; smaller
synapses contain fewer AMPA receptors and therefore don’t
generate a response to trigger a depolarization following a single
TBS (43). Several other studies have provided evidence for
increased potentiation by spaced TBS, however the magnitude
and duration of the effects depended on a series of factors
such as rat strain, rat age, and the time interval. In adult
Wistar rats, adult Long-Evans (LE) rats, and young LE rats,
4 h was required between TBS to induce additional potentiation
(44, 45). However, in young Sprague Dawley (SD) rats, a
single TBS repeated at 1-h intervals could induce further
potentiation, following up to 3 repeated TBS stimulations
(4 did not produce additional potentiation) (43, 45). These
different studies used different stimulation intensities; Frey

et al. (44) found that reducing stimulation intensity in the
second stimulation was effective for promoting potentiation 4-
h later, while Cao and Harris (45) and Kramár et al. (43)
kept stimulation intensities constant. However, these studies
consistently show that additional potentiation following repeated
TBS in animal slices is possible. Enhanced, additive LTP-
like plasticity may be promoted when repeating TBS with
50–60min between sessions (43, 45). After 3 TBS protocols,
spaced 60min apart, potentiation had been raised to 150%
baseline, which is about three times higher than if just
one protocol was given (43, 48). This suggests that 3 TBS
protocols repeated at 60 min-intervals may be effective at
promoting maximal, additive metaplasticity effects (Figure 1A).
If there is less time between TBS protocols, for example
10min, homeostatic metaplasticity mechanisms may dominate,
promoting a stabilizing rather than additive plasticity response
(Figure 1B).

DISCUSSION

Activity-dependentmetaplasticity is considered to be homeostatic
if the first stimulation protocol alters the threshold for subsequent
LTP/LTD in the opposite direction, thereby stabilizing (network)
brain activity (49). Interestingly, this reversal of aftereffects has
been shown specifically when stimulation protocols were given
with a short (0–5min) interval (28, 30), providing support for
homeostatic metaplasticity mechanisms in rTMS protocols (19).
While homeostatic metaplasticity mechanisms are important
for stabilizing network activity, they can be counteractive
when promoting plasticity effects through rTMS. In fact, when
applying rTMS protocols, the explicit goal is not stabilization but
promotion of additive, increased plasticity effects.

FIGURE 1 | Theoretical stimulation setup and effects in response to different spacings between repeated stimulations. (A) Repeating excitatory (iTBS) stimulation 3

times, with 60min between sessions, promotes additive strengthening of stimulated synapses. Overall, the repeated stimulation increases potentiation [this has been

shown in animals using a different TBS protocol (43, 45)]. (B) Repeating the same 3 iTBS stimulations, but with only 10min between sessions results in stabilization

(homeostatic metaplasticity) and no change in overall plasticity.
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Animal studies have shown that timing is important in
the molecular mechanisms underlying metaplasticity. While
there is overlap between the mechanisms of additive and
homeostatic metaplasticity, there are temporal differences which
may differentiate between both principles at the molecular
level. Based on evidence form animal models, leaving 60min
between excitatory stimulation protocols may promote additive
rather than homeostatic metaplastic effects in accelerated TMS
treatment protocols.

Clinical Implications
If longer intervals between iTBS sessions are capable of
promoting additive metaplasticity, as has been shown in animal
studies (43) as well as improving clinical outcomes in the
treatment of depression (50), longer spaced intervals between
iTBS sessions will likely be beneficial for other therapeutic
applications of iTBS. iTBS is increasingly being used as a
treatment in a range of clinical applications such as rehabilitation,
as well as neurological and psychiatric disorders. For example,
to promote motor recovery after stroke (51), for managing
spasticity associated with Multiple Sclerosis (MS) (52), and
decreasing obsessive symptomatology associated with Obsessive
Compulsive Disorder (OCD) (53), just to name a few. These
protocols all must adhere to the established safety guidelines
(54), and recommendations for clinical TMS use (55, 56).
These include total pulse number, interval between TBS session,
intensity of stimulation, and cumulative weekly applications (54).
Accelerated iTBS has been successfully and safely used in the
treatment of depression (38, 40, 41), with patients receiving
a total of 32,400 pulses at 110% resting motor threshold,
over 20 sessions (5 sessions per day, 15min between sessions)
in 4 days (41). Therefore, while following the established
safety guidelines is the upmost priority, and local health
authorities should always approve each stimulation protocol
(54), delivering three iTBS sessions on a single day with 1 h
between sessions should theoretically be safe and tolerable for
most patients.

rTMS is also used as a treatment for the cognitive decline
associated with neurodegenerative disorders such as dementia,
and Alzheimer’s Disease (AD) (57–61). However, there are
ethical implications of using rTMS for cognitive enhancement, in
particular in healthy participants (62). It is important to maintain
the consensus ethical requirements that (1) participants/patients
provide informed consent, (2) the benefit of the research
outweigh the risks, and (3) there is equal distribution of burdens
and benefits across patients (this is violated if a particular
group of patients with different economic, physical or social
conditions) (54).

Importantly, the here described principles of additive and
homeostatic metaplasticity not only apply to the here discussed
accelerated TMS treatments and the question of optimal time
interval between its repeated stimulation sessions, but likewise
can be used to explain and optimize other forms of plasticity-
inducing TMS protocols such as Paired Associated-Stimulation
(PAS) or paired-coil TMS (pcTMS).

In humans, neural excitability and synaptic plasticity can be
probed by TMS to peripheral nerves and motor cortex (63, 64).

In such a transcortical loop, timings of afferent (muscle/nerve
to brain), cortical, and efferent (brain to muscle) responses
can be used to quantify central motor excitability (63). For
example, delivering a conditioning TMS pulse to an afferent
tract (ex. the wrist), followed (10–48ms) by stimulation of the
efferent tract (motor cortex), will alter Motor Evoked Potentials
(MEP’s) measured from thumb flexor muscles (63). It has been
shown that wrist stimulation 20–22 msec preceding motor
cortex stimulation elicits a facilitated MEP, with a latency of
about 1ms, compared to MEPs given without the conditioning
wrist stimulation (63). Repeating this afferent (wrist) efferent
(motor cortex) stimulation, in Paired Associated Stimulation
(PAS), can induce lasting effects on motor cortex excitability
(64, 65), providing evidence for synaptic plasticity. Interestingly,
evidence of homeostatic and additive metaplastic responses
have also been recorded using PAS stimulation (66, 67). When
two LTP-inducing PAS protocols were separated by 30min,
a decrease in MEP amplitude was measured, indicating a
homeostatic (stabilizing) metaplastic responses (66). Similarly,
LTD-inducing PAS immediately preceding a motor-learning
task facilitated motor-learning (67), again providing support
for homeostatic plasticity mechanisms dominating at early time
points following stimulation.

Additionally, the effects of brain stimulation are not only
localized to the site of stimulation, but can also spread to
different areas through complex cortical networks. Similarly to
PAS, this has been shown using paired-coil TMS (pcTMS), where
multiple coils are used to probe different cortical areas and
assess connectivity (68, 69). For example, a single TMS pulse
to motor cortex can cause a depression of the MEP measured
following a subsequent (6–30ms) TMS pulse to contralateral
motor cortex (70). Therefore, TMS can also be used to assess
connectivity between brain areas (68). In other words, TMS
stimulation can propagate to different cortical regions, having
both local and remote effects on (meta) plasticity. This has
valuable clinical implications, where inducing plasticity effects
in a cortical network are important (69). In stroke patients
for example, localized damage can disrupt connectivity and
can have functional consequences (69), therefore stimulation
effects should promote network plasticity, rather than localized
plasticity. Similarly, in the treatment of depression, superficial
stimulation uses cortical connectivity to influence deeper cortical
structures, resulting in improvement of clinical symptoms (71,
72). Therefore, it is important to use TMS to strengthen
connectivity, and to promote additive, metaplastic changes also
on the network activity level.

With the increasing and widespread application of rTMS
protocols in the clinic, it is important to optimize protocols
to maximize their effects, while remaining within established
safety and ethical guidelines for use in the clinic (54, 56).
Single iTBS has proven promising, but accelerated iTBS at
longer time intervals (60min) between sessions could maximize
clinical outcomes through additive metaplasticity, preventing
homeostatic metaplasticity from stabilizing stimulation effects.
Clinical efficacy of PAS and pcTMS protocols may be similarly
increased by optimizing the timing between stimulations
according to these principles of metaplasticity.
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