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Sedation is a ubiquitous practice in ICUs and NCCUs. It has the benefit of reducing

cerebral energy demands, but also precludes an accurate neurologic assessment.

Because of this, sedation is intermittently stopped for the purposes of a neurologic

assessment, which is termed a neurologic wake-up test (NWT). NWTs are considered

to be the gold-standard in continued assessment of brain-injured patients under

sedation. NWTs also produce an acute stress response that is accompanied by

elevations in blood pressure, respiratory rate, heart rate, and ICP. Utilization of cerebral

microdialysis and brain tissue oxygen monitoring in small cohorts of brain-injured patients

suggests that this is not mirrored by alterations in cerebral metabolism, and seldom

affects oxygenation. The hard contraindications for the NWT are preexisting intracranial

hypertension, barbiturate treatment, status epilepticus, and hyperthermia. However,

hemodynamic instability, sedative use for primary ICP control, and sedative use for severe

agitation or respiratory distress are considered significant safety concerns. Despite

ubiquitous recommendation, it is not clear if additional clinically relevant information is

gleaned through its use, especially with the contemporaneous utilization of multimodality

monitoring. Various monitoring modalities provide unique and pertinent information about

neurologic function, however, their role in improving patient outcomes and guiding

treatment plans has not been fully elucidated. There is a paucity of information pertaining

to the optimal frequency of NWTs, and if it differs based on type of injury. Only one

concrete recommendation was found in the literature, exemplifying the uncertainty

surrounding its utility. The most common sedative used and recommended is propofol

because of its rapid onset, short duration, and reduction of cerebral energy requirements.

Dexmedetomidine may be employed to facilitate serial NWTs, and should always be

used in the non-intubated patient or if propofol infusion syndrome (PRIS) develops.

Midazolam is not recommended due to tissue accumulation and residual sedation

confounding a reliable NWT. Thus, NWTs are well-tolerated in selected patients and

remain recommended as the gold-standard for continued neuromonitoring. Predicated

upon one expert panel, they should be performed at least one time per day. Propofol or

dexmedetomidine are the main sedative choices, both enabling a rapid awakening and

consistent NWT.

Keywords: neurological wake-up test, multimodality monitoring, neurologic examination, daily-interruption of

sedation, traumatic brain injury, sedation cessation
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INTRODUCTION

There is widespread use of sedation for patients in the intensive
care unit (ICU) and neurocritical care unit (NCCU). This is
a necessary practice to facilitate endotracheal intubation and
mechanical ventilation, however, it is also Janus-faced. There
is good clinical utility, such as controlling patient distress,
attenuating anxiety, and abating pain recognition (1), with
neuro-specific benefits including reduced metabolic demands to
decrease energy consumption (2), decreased stress-related injury,
as well as seizure, temperature, and intracranial pressure (ICP)
control (3, 4). However, over sedation harbors complications,
including increased morbidity (5, 6), prolonged ventilation with
associated pneumonia (3), greater muscular atrophy, venous
stasis, thrombosis, and a protracted ICU length of stay. Further,
it may increase hospital costs secondary to ordering unnecessary
neuroimaging (1). Too little sedation can magnify agitation and
autonomic instability, leading to elevated ICP, hypertension,
tachycardia, and cerebral oxygen consumption (1). Thus, risks
and benefits must be carefully weighed when it comes to
achieving optimal sedation.

Sedation also precludes an accurate neurologic examination,
and continued sedation may mask significant changes in
the patient’s neurologic condition (7). This is concerning, as
upwards of 40% of patients with a traumatic brain injury
(TBI) demonstrate a significant deterioration of neurologic
function within 10 days (8). There is a known secondary
deterioration that evolves during the early period of brain
injury that is heterogenous and hard to predict (9). This is
due to secondary injury cascades that activate inflammatory,
excitotoxic, metabolic, and vascular phenomena. This augments
oxidative stress, elevates ICP and metabolic demands, causes
cerebral edema, activates coagulation cascades, and impairs
regional blood flow (7, 10). Continued sedation can also prevent
the acquisition of an accurate Glasgow coma scale (GCS) score.
This is imperative, as GCS scores are a robust prognostic marker
and indicator of potential surgical intervention (11, 12), and are
highly predictive of 6-month outcomes in TBI patients (13). This

Abbreviations: ACTH, adrenocorticotrophic hormone; BTF, Brain trauma

foundation; CBF, cerebral blood flow; CMRO2, cerebral metabolic demand for

O2; CPP, Cerebral perfusion pressure; CSF, Cerebrospinal fluid; CT, computed

tomography; DIS, daily interruption of continuous sedation; E, epinephrine; ED,

emergency department; ESICM, European Society for Intensive Care Medicine;

EVD, External ventricular drain; FOUR, Full Outline of UnResponsiveness;

GCS, Glasgow coma scale; GCS-M, Glasgow coma scale – motor component;

GFAP, glial fibrillary acidic protein; ICP, Intracranial pressure; ICU, Intensive

care unit; IPM, Intraparenchymal monitors; ISS, injury severity score; LPR,

Lactate to pyruvate ratio; MAP, Mean arterial pressure; MCA, middle cerebral

artery; MD, Intracerebral microdialysis; NCCU, Neurocritical care unit; NE,

norepinephrine; NFL, Neurofilament light chain; NIC, NeuroIntensive Care

Section; NSE, neuron-specific enolase; NWT, Neurological wake-up test; O2

sat, oxygen saturation; ONSD, Optic nerve sheath diameter; PbtiO2 , brain

tissue oxygen tension; PDH, pyruvate dehydrogenase; PET, positron emission

tomography; PRIS, Propofol infusion syndrome; rCBF, regional cerebral blood

flow; SAH, subarachnoid hemorrhage; SAPS 2, Simplified acute physiology score;

SIBICC, Seattle International Brain Injury Consensus Conference; SjvO2, jugular

venous oxygen saturation; SNS, Sympathetic nervous system; TBI, Traumatic brain

injury; TCD, Transcranial doppler; TDF, Thermal diffusion flowmetry; UCH-L1,

ubiquitin carboxyl-terminal hydrolase isozyme L1.

underlies the necessity for a brief cessation of sedation for an
accurate neurologic assessment, termed the neurological wake-
up test (NWT). The NWT is considered to be the gold-standard
for neuro-monitoring (1, 3), and is the basis for neuroanatomical
localization of pathology, identifying undiagnosed neurologic
ailments, detecting early neurologic signs of insult, determining
prognosis, and guiding appropriate therapy (3, 7, 14).

Serial NWTs are an integral part of continued ICU and
NCCU assessment of neurologic functioning but are concerning
because they require a temporary cessation of sedation. This
results in a significant sympathetic nervous system (SNS)
discharge, potentially resulting in neurologic injury via elevating
ICP, increasing cerebral oxygen demand, and reducing cerebral
perfusion. However, this must be weighed against the additional
clinical information acquired. Moreover, with the increasing
utilization of multimodality monitoring, there may be enough
information gathered to make the NWT both harmful and
redundant. Therefore, this paper will aim to elucidate the
utility of the NWT, if it still has a role with multimodality
monitoring, if there is an optimal frequency that imparts the
most favorable risk to benefit profile, and if the choice of
sedative has an influence on these quandaries. For this review,
PubMed was searched for all existing literature using the terms
brain injury, head injury, or TBI, with the terms sedation
cessation, daily interruption of sedation, wake-up test, stopping
sedation, spontaneous awakening trial, neurologic examination,
multimodality monitoring, frequency of awakening, and/or
frequency of neurologic exam.

MULTIMODALITY NEUROMONITORING

A healthy brain has robust autoregulatory mechanisms to
maintain constant cerebral blood flow (CBF) across a range of
mean arterial pressures (MAPs) from 65 to 150 mmHg. In the
presence of neurologic insult, there is often regional or global
impairment of autoregulation (1). Thus, continuedmonitoring of
ICP and CPP are often necessary. Utilizing transcranial doppler
(TCD)may assist in assessing the degree of autoregulation failure
(15). Other monitoring modalities include brain tissue oxygen
tension monitoring (PbtiO2), jugular venous oxygen saturation
(SjvO2), and brain neurochemistry by intracerebral microdialysis
(MD). Newer, less invasive monitoring technologies including
optic ultrasound, and the automated pupillometer to directly
augment the NWT are also seeing increased use. Lastly, a role for
brain injury biomarkers in diagnosis and prognosis is beginning
to emerge.

ICP
Normal ICP values are between 5 and 15 mmHg (16). Increased
ICP is defined as pressures>20 mmHg for more than 5min. This
monitoring can be achieved through insertion of a catheter into
the lateral ventricle to act as an external ventricular drain (EVD),
or via insertion of an intraparenchymal monitor (IPM) (7). There
is frequent discordance in EVD vs. IPM measures, but little
consistency exists about over vs. underestimating to allow for
correction (17). The EVD measure is considered most accurate,
but it also harbors increased rates of infection and hemorrhage.
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Furthermore, when maintained in a continuous open state, EVD
measures are often erroneous (18). EVD has been suggested for
use due to its ability to drain CSF, which can aid in controlling
refractory ICP elevations (19).

ICP monitoring is recommended as part of the official TBI
guidelines (20); consequently, there is widespread use of ICP
monitoring of brain injured patients across NCCUs (7, 9, 21). The
Brain Trauma Foundation (BTF) recommends monitoring for
comatose patients [GCS of (3–8)] that have an abnormal CT scan
(22). Based upon the International Multidisciplinary Consensus
Conference on multimodality monitoring, ICP monitoring is
strongly recommend, along with clinical examinations and other
monitoring modalities to accurately prognosticate and guide
treatment (11). ICP is frequently elevated following neurologic
insult, and is a recognized cause of morbidity and especially
mortality after TBI (7, 22–25). There is evidence to suggest that
aggressive management of elevated ICP can improve outcomes
in TBI patients (9, 22). Conversely, concerns have been raised
regarding no improved clinical outcomes with ICP monitoring,
and possibly increased mortality rates from its use, at least
in TBI patients (7, 26). This was corroborated by the BEST-
TRIP trial (27), which demonstrated that treatment guided by
ICP-monitoring was not superior to treatment guided by the
NWT and serial CT scans. In patients with hemispheric ischemic
stroke and associated cerebral edema, ICP monitoring is not
recommended (28).

Optic Ultrasound
Optic ultrasound is a quick, cost-effective, non-invasive method
to measure ICP by evaluating optic nerve sheath diameter
(ONSD). The optic nerve sheath is contiguous with the dura
and contains CSF that communicates with cerebral subarachnoid
components (29). Measuring 3-mm behind the globe at the
anterior portion of the optic nerve, an ONSD of 5-mm translates
to an ICP of ∼20 mmHg (29). A meta-analysis of six studies
calculated a sensitivity of 90%, and specificity of 85%, for
detecting elevated ICP (30). Another prospective study calculated
a sensitivity of 93.75%, and specificity of 86.67% for identifying
increased ICP (31). This means that somewhere between 6 and
10% of patients with elevated ICP will be missed using this
monitoring modality. This may be an acceptable trade-off given
its quick bedside ease of use, and when coupled with clinical
exam findings, may offset those limitations. Overall, measuring
ONSD has established itself as a reliable initial screening tool
for detecting ICP changes (32). It can also be useful to track
individual changes quickly per patient, as ONSD changes occur
within 5min of ICP shifts (33). Thismay play an especially crucial
role in situations where access to invasive monitoring techniques
are unavailable.

CPP
rCPP can be calculated with ICP monitoring, as CPP = MAP –
ICP. Uncertainty exists surrounding differing placements of zero
reference points for ICP and MAP, which represents a technical
hurdle in attaining accurate and consistent CPP values. This
is a major issue, as many of the studies behind recommended
CPP thresholds did not report their methods for obtaining CPP

(34, 35). Moreover, the BTF guidelines state that CPP is calibrated
to the level of the right atrium by convention (20). Most brain
injured patients are maintained at 30◦ of head elevation, and
the resultant 30 cm distance between the heart and head can
overestimate CPP by up to 11 mmHg, and at elevations up to
50◦, the CPP can be overestimated by 18 mmHg (36). Thus,
in patients with head of the bed elevation, it is crucial that the
arterial transducer is positioned at the level of the middle cranial
fossa, which is approximated to the tragus, to ensure accurate
CPP measurements (37).

The BTF recommends a CPP range between 60 and 70 mmHg
(20). Crucially, CPP elevation past 70 mmHg has been linked
to poor outcomes in TBI patients, along with lung damage,
whereas CPP levels below 70 mmHg have been associated with
worsening brain hypoxia (7). Andrews and colleagues found
that low CPP along with hypotension was the best predictor of
death in TBI patients (38). However, there is great variability
in outcomes. In one study half of the patients benefited from
higher CPP, and the other half benefited from lower CPP (39). To
attenuate this variability, some recommend individualizing the
CPP target (24, 40, 41) through the use of cerebral autoregulation
monitoring (42).

SjvO2
SjvO2 monitoring is used to acquire information pertaining
to cerebral oxygen supply, perfusion, and consumption. It is
performed via fiberoptic catheters placed into the internal jugular
bulb distal to the jugular foramen, or intermittently checking
jugular venous blood samples (7, 9). Falsely elevated SjvO2 can
be measured due to the presence of only extracerebral blood in
the jugular bulb (43), which depends on contamination from
extracerebral sources via aspirating too quickly, or misplacing
the catheter by a couple of centimeters (44). This modality is of
limited utility in severe global ischemia or very large infarcts, as
SjvO2 can rebound upward due incomplete oxygen extraction by
the ischemic tissue (43, 45).

Normal values range from 55 to 75% oxygen saturation (O2

sat). Lower values are indicative of ischemia, and values< 50 and
> 75% are both associated with poor patient outcomes (7, 9, 45).
However, there are concerns about the clinical utility of this
measurement, as one positron emission tomography (PET) study
demonstrated that the SjvO2 value did not drop to <50% until
∼13% of the brain became ischemic (46). Normal range SjvO2

values are also often obtained in the presence of ongoing focal
ischemia, hyperemia, and/or shunting (9), along with frequent
false positive desaturations (9, 47). Vidgeon et al. state that
there is no solid evidence to support its use for ongoing clinical
monitoring (9).

PbtiO2
Brain tissue oxygenation monitoring provides information
pertaining to focal oxygenation, with typical values ranging from
15 to 30 mmHg (2–4 kPa), and a critical hypoxic threshold
commonly established at 10 mmHg (<1.33 kPa) (7, 9). This
monitoring is carried out through a thin electrode placed in
either peri-ischemic at-risk tissue for focal measurements, or
in frontal white matter to estimate global cerebral oxygenation
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in diffuse brain injury (7, 9). Ischemic changes with regional
differences have been detected following TBI (48), and these
transient periods of ischemia are correlated with worsened
patient outcomes (49). Brain injured patients with brain hypoxia
(PbtiO2 < 10 mmHg) have significantly poorer outcomes and
increased mortality (50). The BOOST-II trial demonstrated
improved outcomes with less mortality when guiding therapy
by PbtiO2 plus ICP monitoring vs. ICP alone (51). A systematic
review comparing PbtiO2-based therapy alongside ICP/CPP
monitoring to ICP/CPP-based therapy alone reported a favorable
outcome for the PbtiO2-based group (52). Not all trials report a
positive outcome, and they are largely based on low quality of
evidence, therefore PbtiO2-guided therapy and clinical outcomes
remain subject to debate (53).

Intracerebral Microdialysis (MD)
MD is utilized to measure brain neurochemistry. It is performed
via the insertion of a microdialysis catheter that contains a
semipermeable membrane, which is perfused with artificial
CSF, allowing passive diffusion and measurement of various
neurotransmitters, and metabolic substrates and products, like
glucose, lactate, pyruvate, glycerol, glutamate, et cetera (7). The
MD catheter may be placed adjacent to a focal lesion to detect
early metabolic alterations, or in the non-dominant frontal
region in the case of diffuse injury (9, 54). Its most promising
application is detecting ischemia and neuronal damage prior
to being clinically detectable, allowing for early intervention to
salvage brain tissue (40, 55). LPR is a sensitive marker of brain
ischemia and redox state (9, 54). Elevated LPR measurements
correlate with symptom severity and fatal outcomes after brain
injury (54, 55). Elevated LPR > 25 is associated with poor
outcomes in TBI (9), and elevated LRP coupled with low glucose
correlates with worsened outcomes in TBI and subarachnoid
hemorrhage (SAH) patients (40, 56). One study showed that
length of time spent with elevated LPR > 40 correlated
with frontal lobe atrophy at 6 months (57). Thus, MD offers
unique insight into cellular bioenergetics and their perturbations
following brain injury. There is increasing use of MD, and certain
protocols have been established, with alarm levels of LPR set
at >30, and/or glucose levels < 0.8 mmol/l (58). Despite the
promising utility, its overall value as a tool for guiding clinical
decision making has yet to be fully elucidated (7, 40, 58).

Regional CBF
Thermal diffusion flowmetry (TDF) can directly measure
regional CBF (rCBF). This measurement is achieved through
insertion of a probe into the brain with proximal and distal
thermistors, which calculates the power required to maintain a
temperature difference between them, and this is proportional
to cerebral tissue perfusion (59). It is typically inserted nearby
“at-risk” tissue, such as the white matter of a vascular territory at
risk for vasospasm (60). Its use is limited due to sparse clinical
data on how it can guide management, its ability to measure
only a very small volume, and its high sensitivity to positioning
(60, 61). Consistently, the consensus summary on multimodality
monitoring state that “a TDF probe may be used to identify
patients with focal ischemic risk within the vascular territory of

the probe,” citing a weak recommendation with very low quality
evidence (11). A recent systematic review found that both very
low and very high rCBF measures were associated with poor
outcome and correlated with intracranial hypertension, and that
rCBF and PbtiO2 were largely congruent (59). However, they
stress the lack of data, stating much more research needs to be
undertaken prior to widespread adoption.

Brain Injury Biomarkers
Measurement of blood or CSF brain injury biomarkers is
a cost effective and less invasive tool that may assist in
triaging, prognosticating, and following the course of disease.
The most studied of these include S100B, glial fibrillary acidic
protein (GFAP), ubiquitin carboxyl-terminal hydrolase isozyme
L1 (UCH-L1), neuron-specific enolase (NSE), and neurofilament
light chain (NFL). Among these, only S100B is part of an
official set of TBI guidelines where it has suboptimal real-world
performance (62), largely owing to poor specificity and large
numbers of false positives (63, 64). In those guidelines, it is
utilized to triage emergency department (ED) patients for CT
scans based on S100B levels (65). In the ALERT-TBI study, they
found a combination of GFAP and UCH-L1 was highly sensitive
in triaging patients for CT scans (66). In another report, GFAP
levels were highly predictive of CT positivity, and adding other
biomarkers did not improve discrimination (62). Accordingly,
an active role for biomarker measures in continued NCCU
assessment and guiding therapies is tenuous, because rather than
portending impending secondary insults, late elevations signify
the occurrence of secondary damage (65).

Nevertheless, the various biomarkers are still robust markers
of neuronal damage. Increased S100B levels within 24 h of severe
TBI strongly correlates with mortality, as does elevated NSE and
GFAP (67), while also correlating with lesion expansion and brain
hypoxia (65). Therefore, serial measures in the NCCU can aid
in establishing extent of damage, or if new damage is ongoing.
This can be refined by taking differing kinetics into account,
such as GFAP vs. S100B, whereas the former persists for days
after an initial injury, the latter rises and falls within hours
(68). The prognostic and diagnostic impact of such measures
is obvious, but how they can guide continued management
remains unclear. Furthermore, given their reliability as markers
of neuronal damage, research utilizing biomarkers in patients
undergoing NWTs will be an important step in its continued
safety assessment.

Combination Monitoring
Each of these multimodal monitoring components provide
unique and clinically relevant information pertaining to
neurologic functioning. Multiple modalities can complement the
information from one another synergistically, hence the rationale
for using multiple monitoring modalities concurrently (9). When
used in conjunction, the emergence of similar pathologic patterns
can point to the cause of underlying deterioration or increase the
likelihood of picking up early changes. It is also imperative to
utilize a combination of regional (MD, PbtiO2, TDF) and global
(ICP, CPP, SjvO2, biomarkers) monitoring to ensure a complete
picture of ongoing processes.
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For instance, Muizelaar, while evaluating the utility
of multimodality monitoring to predict hypoperfusion,
recommends utilizing a combination of ICP, CPP, and PbtiO2

monitoring (69). Aligning with this, Smith et al. state that the
simultaneous measurement of ICP and brain tissue oxygenation
is a simple, logical approach, as a single probe can monitor both
measurements (41). Accordingly, the Seattle International Brain
Injury Consensus Conference (SIBICC) recently stated that
PbtiO2 should be the second monitored variable after ICP (70).

Multimodality Neuromonitoring Conclusion
Recently, the Neurocritical Care Society and the European
Society of Intensive Care Medicine held a panel to evaluate and
discuss the evidence of multimodality monitoring (24). They
conclude that a single monitoring modality is demonstrably
insufficient. Despite this, they state that there is no consensus on
their use, and more studies are required to ascertain if utilization
translates to improved patient outcomes (24). However, they
underscore the importance of the neurologic exam and the NWT,
stating that it remains a cornerstone in the accurate assessment
of patients. The vast amounts of information gathered via these
monitoring modalities, how to evaluate and integrate them, and
their ability to guide optimal therapeutic plans is still being
elucidated (11). Currently, though multimodality guided therapy
can improve neurologic physiological variables, it has yet to show
an improvement in outcomes (60).

THE NWT

Temporarily and intermittently stopping sedation of ventilated
patients to mitigate the harmful effects of over sedation is
termed a daily interruption of continuous sedation (DIS) trial.
Though widely utilized and studied, firm recommendations
are tenuous because of large scale reviews with conflicting
conclusions about their utility (3, 71). Despite lacking firm
recommendations for DIS protocols, the NWT, which involves
a daily cessation of sedation for neurological examination
purposes, is regarded as the gold-standard for evaluating patients
with brain injury in the ICU and NCCU (1, 3, 7, 14, 24, 72–
74). Neither neuroimaging, nor multimodality monitoring can
replace the neurologic examination (75), and it remains the most
valuable tool for the assessment of brain injured patients, from
stroke (74), to SAH (76, 77), and TBI (14, 24, 72). A recent
intensive care symposium in Paris aiming to update neurocritical
care recommendations states that the neurologic examination
is indispensable for the accurate assessment of comatose
patients, along with the simultaneous use of neuroimaging and
multimodality monitoring (78). The SIBICC panel recommend
a sedation holiday (an NWT) in TBI patients with ongoing
ICP monitoring to facilitate an accurate neurologic exam (79).
They could not reach consensus on absolute nor relative
contraindications, but they do not endorse the NWT until
ICP is within acceptable limits (<22 mmHg) for at least 24 h.
This is in line with preexisting intracranial hypertension being
regarded as an absolute contraindication to the NWT (14).
Additional hard contraindications include barbiturate treatment,
status epilepticus, or hyperthermia.

Importantly, the NWT is not akin to a true awakening
response, but rather an arousal reaction (73). Essential
components of the NWT include GCS rating of the motor
component (GCS-M), by asking the patient to obey simple
commands, such as moving an extremity, squeezing the
practitioner’s fingers, etc. If no responses are elicited, a painful
stimulus is provided, such as a sternal rub, supraorbital pressure,
mandibular pressure, or a trapezius squeeze, and the provoked
motor response is recorded. The other essential components of
the NWT include evaluation of pupil diameter with attention
paid to anisocoria, both direct and indirect pupillary light
reflexes, and any focal neurologic deficits along each extremity
(3). The automated infrared pupillometer has emerged as a
rapid, noninvasive neuromonitoring tool to provide an objective
assessment of pupillary reactivity, and drastically increase
reliability and sensitivity of the pupil examination (41, 80–82).
Deterioration of the pupillary light reflex is a strong predictor
of outcome after brain injury, and subtle pupillary changes
are often a harbinger of elevated ICP, secondary brain injury,
cerebral edema, hydrocephalus, and intracranial shift (80).

Neuroworsening, defined as a reduction in GCS-M ≥ 2
points, or development of pupillary anomalies, mandates further
investigation (83). Irrespective of the utility of multimodality
monitoring, the NWT remains integral in the overall evaluation
of patients. Evolving pathology can be picked up earlier, and
some deteriorationmay only be detected by physical examination
(7). This helps in patient assessment, and in monitoring
treatment effectiveness (24). Many patients may have ongoing
damage without clear abnormalities picked up through other
monitoring modalities (83). The NWT is especially useful
following decompressive craniectomy, or cases of SAH-related
vasospasm, as deterioration may occur before ICP elevations and
neuroimaging changes are detected (76). In cases of temporal
hematomas, brain herniation can occur without concomitant
elevations in ICP (16, 84). In patients with cerebral edema
secondary to hemispheric ischemic stroke, such as malignant
middle cerebral artery (MCA) infarction, ICP monitoring is not
recommended because ICP elevations do not occur for days, and
midline shift and pupillary abnormalities often occur even with
ICP values < 20 mmHg (28, 74, 85). These cases necessitate
NWTs for early detection. This may become more pertinent with
the 2020 BTF update recommending decompressive craniectomy
for control of late, medically refractory ICP elevation (86).
Table 1 outlines the indications and contraindications.

NWT Safety
Despite presumed benefit provided by NWTs, some concerns
have been raised pertaining to the acute stress response elicited
with discontinuation of sedation. During each arousal, there
is a significant acute stress response with SNS discharge
that induces hypertension and tachycardia (73). This is
reflected by significantly increased levels of stress hormones.
Adrenocorticotrophic hormone (ACTH) can be increased by
72.5%, cortisol by 30.7%, epinephrine (E) by 87.5%, and
norepinephrine (NE) by 40.4% (88). However, the increased
levels of NE do not reach levels required for augmenting the risk
of microthrombi formation (89). These changes are mirrored by
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TABLE 1 | Brief outline of indications and contraindications to the NWT.

Indications Contraindications (3)

When CT is unimpressive/borderline in a

patient who has been sedated and

intubated prior to imaging (65)

Preexisting intracranial

hypertension (ICP > 20 mmHg

for > 5min)

Patients with SAH – to detect vasospasm

(76)

Ongoing or recent barbiturate

treatment

Patients with temporal hematomas or

following decompressive craniectomy (3)

Status epilepticus

In general, for clinical monitoring in

sedated and intubated patients devoid of

contraindications, myriad significant safety

concerns, or substantial bodily injuries

Hyperthermia (≥38.0–38.5◦C)

Evaluation following successful surgical

removal of intracranial masses (10)

Patient has reduced intracranial

compliance and develops volatile

ICP/CPP reactions in response

to NWT (87)

significantly increased ICP and CPP values, with a mean increase
of 3 and 8 mmHg, respectively. During the NWT, ICP reached an
average value of 15.3 mmHg, and CPP reached an average value
of 84.4 mmHg (88).

Skoglund et al. explored ICP and CPP changes in TBI and
SAH patients (21 patients) undergoing NWTs (127 total NWTs).
In pooling all patients, they demonstrated a mean increase in ICP
of 8 mmHg, reaching an average value of > 20 mmHg. The mean
CPP increase was 5.2 mmHg, reaching average values of > 81
mmHg (76). There were important subgroup differences, with
TBI patients showing higher ICP values at baseline and during
the NWT, and SAH patients presenting with higher CPP values
at baseline and greater changes during the NWT, indicating the
need for patient stratification based upon injury type and baseline
characteristics. Furthermore, highlighting the heterogeneity of
brain injuries, there was great variability in these metrics. Several
patients developed a sustained increase in ICP levels to >30
mmHg for an average of 3.6min. Similarly, some patients had
a sustained decrease in CPP values to ≤50 mmHg for an average
of 10min, and these reductions were far more common in TBI
patients. Overall, in 23/127 trials, CPP decreased to <50 mmHg
due to ICP ≥ 25 mmHg, although these were generally short-
lived deviations. The average ICP values peaking at >20 mmHg
were interpreted to be safe and well-tolerated by the authors due
to their mild and transient nature. Consistently, they refrained
from performing NWTs in clearly unstable patients and those
with plateau waves, which are sudden rapid elevations of ICP
to 50–100 mmHg due to cerebral vasodilation (90). In contrast
to the current study (76), the previously discussed research by
Skoglund and colleagues showed less dramatic ICP and CPP
elevations in response to the NWT (88). Stover hypothesizes that
these discrepancies may reflect a learning curve to the NWT,
or involve examinations undertaken on less severely injured
patients with preserved autoregulation (73). In either case, it
certainly indicates the heterogeneity of brain injury and the
unpredictable clinical course that may ensue (9).

Excluding those with preexisting intracranial hypertension,
the increases in ICP and CCP were transient and interpreted
to be well-tolerated without advancing neurologic deterioration
(3). Additionally, though these increases occur, they are not met
with alterations in overall cerebral metabolism or oxygenation,
suggesting its safety in most patients (1, 24). Components of
multimodality monitoring were evaluated for changes occurring
due to the NWT in 17 severe TBI patients (11 focal, 6
diffuse/mixed) (91). Patients were included if they had a severe
TBI and were mechanically ventilated under propofol sedation,
with ongoing MD, PbtiO2, and/or SjvO2 monitoring. They were
excluded if they received recent or ongoing barbiturate infusion,
required continuous propofol sedation for ICP control or tube
tolerance, or if they were unstable. It was demonstrated that
there were no significant changes in measures of glucose, lactate,
pyruvate, glutamate, glycerol, or LPR as measured by MD.
Similarly, changes in oxygenation as measured by both PbtiO2

and SjvO2 showed no significant alterations. Consistent with
previous reports, ICP and CPP values significantly increased
during the NWT, by 7.6 and 6 mmHg, respectively, reaching
values of 16.7 and 94.4 mmHg. These reports demonstrate that
although there is a stress response elicited by the NWT, and
ICP and CPP elevations occur in parallel, neurochemical and
cerebral perfusion alterations are minimal. This indicates that
these perturbations are well-tolerated in this cohort of TBI
patients, and are unlikely to cause secondary injury to the brain
(7, 72).

In one prospective study of 20 patients (54 total NWTs),
comprising 12 with TBI and nine with SAH, upwards of 34%
of planned NWTs were not attempted as the patients were
not seen as stable enough due to elevated ICP, hemodynamic
instability, and need for continuous sedation (92). Of the 54
attempted NWTs, upwards of 33% were terminated early due
primarily to ICP-crisis (>20mmHg), agitation (22%), or systemic
desaturation (11%). Moreover, in those patients with NWT
cessation, they noted a statistically significant reduction in PbtiO2

measures, decreasing from an average of 28 mmHg to 19
mmHg, which is still well-above hypoxic thresholds (9, 29).
Crucially, in none of their patients did PbtiO2 fall below 15
mmHg, which is within commonly cited normal ranges (9).
While not rising to the level of statistical significance, a trend
was noted between baseline lower brain glucose, higher total
LPR, and neurologic deterioration from the NWT, which seems
to corroborate the benefit of multiple simultaneous modalities
of monitoring. Overall, however, there were no significant
alterations in lactate, pyruvate, LPR, or glucose in patients
undergoing NWTs. The authors speculate that MD is useful for
baseline patient discrimination, without adding value during the
NWT itself, at least in their cohort. Logically, this statement
does not appear sound, as subtle metabolic alterations would
necessarily precede injury progression, especially given their
perilesional placement, potentially indicating the NWT is safer
than presumed. Likewise, as shown by Skoglund et al. (76,
91), transiently increased ICP to >20 mmHg may not be as
deleterious as assumed. If they are not coupled with concomitant
metabolic indicators of ischemia or inadequate perfusion, it is
unlikely that neurologic deterioration is occurring; in no reports
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on the NWT to date has there been evidence of secondary
deterioration (3). Therefore, though patients that developed
intracranial hypertension in response to the NWT had stoppage
of the examination, the preponderance of data indicate most of
these patients were likely to tolerate the exam without promoting
neurologic injury. Nevertheless, differential findings in PbtiO2

measures between this report by Helbok et al. (92) and the
aforementioned one by Skoglund et al. (91), further demonstrate
the marked heterogeneity of brain injured patients and need for
scrupulous patient stratification (73). An additional confounder
between the two reports is that of considerably different sedative
use. Helbok et al. (92) utilized a combination of propofol,
midazolam, dexmedetomidine, and fentanyl, whereas Skoglund
et al. (91) used continuous propofol infusion with intermittent
morphine administration. These significant differences make
conclusions questionable, however, it may give insight into
optimal sedative practices to facilitate successful NWTs.

Additional predictors of NWT failure were shown by Esnault
et al. in a large 7-year study at one center, with 242 patients, of
whom 96 underwent an NWT (93). Some significant differences
were found between patients that the authors felt should vs.
should not undergo NWTs. Notably, patients that did not receive
NWTs had higher ISS (26 vs. 16) and SAPS 2 scores (46 vs.
38), indicating more severe total body injuries, along with lower
GCS scores (6 vs. 7), more shift (50 patients vs. 15), and the
presence of more subdural hematomas (86 patients vs. 40). This
underscores that in patients with severe comorbid injuries, and
with significant shift, the NWT may be regarded as unsafe.
Also, in patients with comorbid injuries, their brain injury, albeit
severe, may be outweighed by more deleterious and imminent
concerns. Nonetheless, this study demonstrated that 39.5% of
their patients had discontinuation of NWTs. Of those patients
with discontinued NWTs, it was due to neurologic deterioration
in 71% of cases, with the remaining 26% due to respiratory
distress. Most neurologic deteriorations were due to seeing
no improvement in the neurologic exam (32% of stoppages),
or intracranial hypertension [(ICP > 20 mmHg for > 5min)
16% of stoppages]. As previously discussed, other research has
demonstrated that these short-lived increases in ICP from the
NWT are not met with alterations in cerebral metabolism or
subsequent neurologic deterioration, making it likely that these
elevations were not clinically relevant (91, 92). Not only that, the
majority of premature stoppages were simply due to seeing no
improvement in the exam, which does not constitute a safety
concern in itself, bolstering the case for the NWT being well-
tolerated in most patients in these studied cohorts. However,
the significant number of patients displaying no improvement
in their clinical exam is important, as a major function of the
NWT is to accurately assess neurologic functioning. However,
although the examination did not change in those patients from
before to after sedation cessation, it may have still played a role
in long-term assessment if subtle changes were later recognized,
or if the lack of change remained consistent. They also identified
two patient cohorts with a significantly increased probability of
NWT failure: those with a subdural hematoma > 5mm thick
on first imaging, or initial GCS <5. Finally, they note that the
patients that were unable to tolerate an NWT had significantly

worse outcomes at 1 year, implicating the NWT as a long-term
prognostic tool.

Does the NWT Provide Clinical
Information?
While the NWT is widely used, there is little information about
the clinical benefits procured by it in the literature. Theoretical
rationale is a good starting point, but is incomplete on its own
(72). Stocchetti et al. demonstrated that out of 449 TBI patients,
12.9% were misclassified as having a more severe brain injury due
to sedation masking their neurologic functioning, precluding an
accurate assessment (94). Compatibly, in the study by Esnault
et al., 21% of patients that underwent a NWT were able to
be extubated within 48 h (93). Only one randomized controlled
trial of 97 patients (38 head-injured patients) on the NWT
exists (95), which demonstrated a reduction in the duration of
mechanical ventilation by an average of 3.9 days, and decreased
ICU stay by 3 days in the head-injury group, albeit neither
of these measures were statistically significant. The differences
detected in the head-injury only group are stark in comparison
to all pooled patients. The authors note that they estimated 45
patients were needed per group to detect significant changes,
and the head-injury only subgroup had 21 in the intervention
group and 17 in the control. Therefore, given the magnitude of
those differences, it likely was not powered properly to achieve
statistical significance in that patient cohort and requires further
study in a larger patient population. Importantly, the authors did
not comment on any relevant neurologic information gathered
via this intervention, only noting that it was safe and well-
tolerated. There has been only one study directly commenting
on pertinent clinical information gained by performing NWTs
(92), which showed that it rarely led to accrual of additional
clinically relevant information (3, 96). In this study, when
utilizing NWTs, they noted an increase in GCS and Full Outline
of UnResponsiveness (FOUR) scores in half of their patients
but did not comment on any change in treatment modality,
nor associated prognosis. Although, that observation is still
important, because it indicates a much more accurate neurologic
examination and clinical representation was achieved in utilizing
the NWT. In only one patient was a new focal neurologic deficit
discovered. In that patient, increased brain lactate and decreased
glucose was observed hours prior to the NWT, underscoring the
utility of multimodality monitoring.

ICP Time-Dose Interaction
The transient elevations in ICP in response to the NWT is a
point of clinical uncertainty. Most data indicate that sustained
elevations in ICP, and ICP elevation refractory to medical
management are deleterious and associated with worse outcomes
(76, 83, 97). Consistently, the 2020 BTF update recommends
decompressive craniectomy for ICP control only when prolonged
and medically recalcitrant, noting late intervention improves
mortality whereas early intervention does not (86, 98). The
concept of “ICP dose” is becoming increasingly investigated. It
recognizes that ICP thresholds are arbitrary and meaningless
without accounting for the time spent at “deleterious” levels,
and without consideration for the complex interactions of ICP,
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cerebral blood flow, cerebral metabolism, and the feedback
mechanisms involved in cerebral autoregulation, neurovascular
coupling, and CO2 reactivity (99). Multiple studies have begun
to investigate this, demonstrating an association between poorer
clinical outcomes with greater time spent above certain ICP
thresholds (100–102). In one of these reports, it was shown that
increased ICP time-dose was associated with higher mortality
and poor outcomes, but no association was found between
episodic ICP elevations (5min> 20mmHg) and outcomes (101).
Helbok et al. point out that the injured brain is not aware of
thresholds, and that even a “normal ICP” does not guarantee
adequate cerebral perfusion, as ICP-dependent changes in
CPP are dynamic, and the threshold-based approach is an
oversimplification of a complex pathophysiological process (99).
In patients with borderline ICP values, they can be stratified and
managed appropriately with the addition of clinical examinations
and other neuromonitoring to determine the presence or absence
of brain hypoxia, cerebral hypoperfusion, or metabolic distress,
allowing an individualized approach (99). This concept lends
more credence toward the NWT and its associated transient ICP
excursions as safe and well-tolerated in a majority of patients.

NWT Conclusion
The NWT remains contemporaneously regarded as the sine
qua non for optimal assessment of the brain-injured patient
(3, 7, 14, 24, 83, 92). The limited amount of published literature
suggests safety and tolerability in most patients, including those
with ICP elevations during the NWT itself. At present, patients
with pre-existing sustained intracranial hypertension, those
with status epilepticus, marked hyperthermia, or undergoing
barbiturate treatment have absolute contraindications to the
NWT. Other indicators that a patient may be unable to
tolerate an NWT and require careful risk stratification include:
hemodynamic instability, recent myocardial ischemia, patients
with reduced intracranial compliance, ongoing midazolam
sedation, or ongoing sedation for the purposes of controlling
agitation, tube control, respiratory distress, seizure activity, or
as a primary treatment for ICP control. Further predictors of an
inability to tolerate an NWTmay include: subdural hematoma >

5mm thick on first imaging or initial GCS<5 (93), or emergence
during the examination of shivering, cardiac arrythmias, or
systemic desaturation (92). Individual patients with volatile ICP
or CPP responses during exammust be handled in a case-by-case
basis with appropriate risk-benefit profiles appraised, with more
careful appraisal using concurrent multimodality monitoring.

The reliability of the neurologic exam, its cost, and its ability to
detect subtle deficits not picked up via multimodality monitoring
make it indispensable. Multimodality monitoring can assist
in ensuring cerebral metabolism and perfusion/oxygenation
are adequate against the background of elevated ICP or
a stable exam. This monitoring may be essential in those
patients in whom NWTs are contraindicated. It may assist
in individualizing treatment, and detecting metabolic distress
before injury has completed. In one randomized controlled
trial, ICP-guided treatment did not have better outcomes than
clinical examination and neuroimaging alone (27). Overall,
multimodality neuromonitoring should be seen as a complement

TABLE 2 | Brief outline of a list of pros and cons of the NWT.

Pros Cons

Theoretical and widely touted ability to

detect changes in neurologic status or pick

up new deficits that other avenues cannot

No documented clinical benefit (ie

lack of noted change in management

or detection of new deficits)

More active clinical involvement may lead

to more active management

Acute stress response with ICP and

MAP elevations, and variable CPP

changes

DIS protocols generally reduced ICU

length of stay, ventilator time, and

associated pneumonia. May hold for NWT,

with limited evidence in single randomized

trial

Increased cerebral metabolic demand

and oxygen consumption may lead to

deterioration in certain patients

Aid in patient stratification due to some

patients displaying volatile ICP/CPP

reactions, and others easily tolerating

sedation cessation

May be contemporaneously

redundant with multimodality

neuromonitoring providing large

amounts of information into

neurologic function

to the NWT, and vice versa (41). More investigations are required
to tease out the absolute clinical utility of the NWT, with specific
regard to patient outcomes and management guidance (73).
Current pros vs. cons are listed in Table 2.

IS THERE AN OPTIMAL FREQUENCY OF
PERFORMING NWTS?

Another central question pertaining to NWTs is their optimal
frequency of utilization. Unfortunately, there are a paucity of
studies examining this issue, and no clear guidelines have been
set. Furthermore, due to the NWT not being recommended in
established TBI care guidelines (20), there is great variability
in their utilization and frequency. However, these guidelines
have come under scrutiny due to their reliance on absolute
thresholds (103). The recent SIBICC recommends a sedation
holiday (NWT) to facilitate an accurate neurologic examination
in severe TBI patients with ongoing ICP monitoring, but do not
mention frequency (79). One report suggests that upwards of
50% of NCCU centers in Scandinavian countries do not utilize
NWTs (104), which may partly be explained by differences in
sedative use. In those centers utilizing NWTs, the majority use
daily, with sometimes twice daily checks (7, 72), and one center
utilizes NWTs between 4 and 6 times per day (7).

This demonstrates the enormous variability in both use
and frequency of NWTs, necessitating the need for more data
and guidelines to be established to guide clinical practice.
Indeed, only one official recommendation has been offered, from
the European Society for Intensive Care Medicine (ESICM)
NeuroIntensive Care Section (NIC) (14). They convened an
expert panel and state that a daily, brief interruption of sedation
is recommended to facilitate an accurate neurologic examination
(an NWT) and improve outcomes, giving it moderate evidence
and a strong recommendation. Additionally, they state that brain
injured patients, ICU patients, and in general all critically ill
patients, shoulder undergo a neurological examination on initial
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ICU admission, and at least once daily, giving it moderative
evidence, and a best practice recommendation. They also note
the clear contraindication, as previously stated, with DIS and
NWTs not recommended in patients with preexisting intracranial
hypertension, assigning it moderate evidence and a strong
recommendation (14). Lastly, in their concluding remarks,
they note that despite technological advances, the neurologic
examination remains a foundation of accurate evaluation and
prognostic assessment of neurologic function, pointing out the
robust prognostic value of GCS scores and pupillary light
responses. Therefore, the only concrete recommendation that has
been put forth pertaining to the optimal frequency of NWTs is
at minimum once daily. Randomized controlled trials will need
to be undertaken utilizing differential NWT frequencies to gain
insight into what the optimal frequency is, if different patient
populations have an impact on this, and what influence injury
type has. Thus, much more research will need to be carried out
before concrete recommendations about NWT frequency can be
given and guidelines administered.

CHOICE OF SEDATIVE

Another consideration is sedative selection. There are myriad
sedating agents utilized in the ICU and NCCU, namely propofol,
benzodiazepines, dexmedetomidine, opioids, and barbiturates.
The most common agents utilized in ICUs and NCCUs are
propofol and midazolam (7), and these may be used in
conjunction with opioids for additional analgesia. Recently,
dexmedetomidine has begun to see increasing use, and it
represents another attractive option for sedation. They each
possess their own risk vs. benefit profiles.

Propofol
Propofol enjoys ubiquitous ICU and NCCU use owing to several
factors, including its neuroprotective effects. It is recommended
to use for ICP control in current TBI-care guidelines (20), and
it dampens cerebral metabolic oxygen demand (96). It possesses
both rapid onset of action, and rapid plasma clearance, which
facilitates reliable recovery of consciousness even after prolonged
administration and thereby a consistent NWT. In higher doses
it can induce burst suppression, which can effectively treat
status epilepticus (96). It can abate oxidative stress, making it
especially useful to combat the free radical generation in head
injury (105). An MD study in TBI patients comparing propofol
to midazolam found no significant differences in measures of
LPR, glutamate, glycerol, or glucose between the two agents
over a 72-h period (106). The doses utilized in that study
may have been inadequate, and it was a short-term, small
study, therefore more investigations are required to determine if
propofol can improve outcomes via mitigating oxidative stress.
Two retrospective studies have shown that sedationwith propofol
decreasedmortality in TBI (107) and hemorrhagic stroke patients
(108). It also has risks, including depressing effects onmyocardial
contractility, reductions in MAP, elevation in pancreatic enzymes
and pancreatitis, and the development of propofol infusion
syndrome (PRIS) (105). Though ICP reductions occur which
mediate elevations in CPP, occasionally, MAP can fall to such

an extent that CPP decreases, which requires judicious fluid
resuscitation and vasopressor use. PRIS is a rare but extremely
dangerous adverse effect of propofol infusion. It can lead to
multi-organ failure and when suspected requires immediate
cessation of propofol. Early warning signs include unexplained
lactic acidosis, increasing need for inotropic agents, lipemia,
and Brugada-like ECG changes (109). Risk factors for PRIS
include large cumulative doses of propofol, young age, innate
mitochondrial impairments, low carbohydrate intake, high fat
intake (which propofol itself possesses, owing to the lipid
formulation), critical illness, and catecholamine infusion (109).
Importantly, PRIS is believed to be more common in TBI
patients, largely owing to the larger doses often used for ICP
control (105). For this reason, continuous propofol infusion
should not be infused at a rate > 4 mg/kg/h for > 48 h
(105). Propofol is an ideal agent for the NWT, and is widely
recommended and utilized. Although rare, PRIS may limit its
utility for long-term use in brain injured patients.

Midazolam
Midazolam has rapid onset with a rapid recovery. It decreases
cerebral oxygen demand, although to a lesser extent than
propofol, and has only slight influences on ICP levels (96).
Despite possessing a short half-life, when infused continuously,
its half-life increases due to both high lipid-solubility with
associated tissue accumulation, and the presence of active
metabolites that may be deleterious (7, 96). Consistently,
midazolam use is associated with higher mortality rates in
ICUs (110). Its persistent use leads to protracted sedation
and prolonged time to awakening, which will confound a
consistent NWT (96, 111). It also causes significant respiratory
depression and inhibition of the cough reflex, along with
issues of tolerance development and significant withdrawal
symptoms upon cessation. Its use is also a risk factor for ICU
delirium, which is itself associated with worse outcomes (105).
Accordingly, its use increases ICU length of stay, and either
propofol or dexmedetomidine sedation is preferred to improve
clinical outcomes in intubated ICU patients (112). Midazolam is
not recommended for use when serial NWTs are desired.

Dexmedetomidine
Dexmedetomidine is a sympatholytic agent that can achieve
excellent sedation without respiratory depression, while
possessing anxiolytic and analgesic properties. It has rapid onset
of action and elimination, does not accumulate in tissues, has a
half-life of 6min, and a terminal elimination half-life of 2–2.5 h,
making it ideal for a reliable NWT (96, 105, 113). It also decreases
ICP through reducing CBF, increases CPP, and reduces incidence
of delirium (105). Though it often leads to a slight decrement in
blood pressure, there may be an initial vasoconstrictive effect due
to peripheral smoothmuscle α-2 adrenergic receptors that occurs
more rapidly than its sedative and sympatholytic effects (114).
One report of all patients undergoing mechanical ventilation
demonstrated that dexmedetomidine was associated with fewer
ventilator-associated events and increased chance of extubation
in comparison to midazolam and propofol (115). However, as the
patient cohort did not comprise strictly brain-injured, care must
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be taken to extrapolate those findings to the NCCU. A meta-
analysis of eight studies concluded that dexmedetomidine is a
safe and efficacious agent in the NCCU (116). In a TBI murine
model, dexmedetomidine showed significant neuroprotective
effects (117), although human studies are required to corroborate
these findings. Given its known role of impeding SNS discharge
(118), it may decrease the injury-promoting catecholaminergic
influence in TBI (119), and has been shown to decrease plasma
cortisol after administration (120). This could make this choice
of sedative especially useful in the NWT for lessening the NE
and E excursions. In one report of 198 severe TBI patients,
dexmedetomidine facilitated the highest mean daily time in
target Richmond Agitation-Sedation Scale (RASS) compared to
propofol, or dexmedetomidine plus propofol (121). Moreover,
in another report of 85 severe TBI patients it was demonstrated
that in comparison to propofol or midazolam, dexmedetomidine
patients were better able to be aroused and cooperate, suggesting
it may facilitate a more appropriate level of sedation, better
enabling serial NWTs (122). Overall, this agent represents an
extremely attractive option to utilize for long-term sedation and
to facilitate an NWT. However, more studies are required, and
given its limited clinical data, some authors do not currently
recommend its use for sedation in brain-injured patients (96).

Sedative Conclusion
Most recommendations call for continuous propofol sedation,
allowing for more frequent cessation of sedation for NWTs (3,
7, 73, 105). There has been some consideration of maintaining
a low-dose of analgesics during NWTs (73). Thus, the few
recommendations on the subject suggest using propofol to
facilitate a smoother transition toward the NWT, with careful
attention paid to the development of PRIS, and ensuring
infusion rates remain < 4 mg/kg/h unless for bolus ICP control.
Dexmedetomidine has not yet received strong recommendations,
especially in the NCCU, due to an absence of large-scale data.
However, the existing literature indicates that dexmedetomidine
can be safely and efficaciously used for brain-injured patients,
and its rapid onset and short half-life devoid of residual tissue
accumulation make it a very attractive choice to facilitate serial
NWTs. It is already utilized in NCCUs that employ NWTs
and has established feasibility and tolerability for the process
(92). Moreover, a recent retrospective observational study found
that dexmedetomidine was more commonly prescribed than
propofol to facilitate frequent neurologic assessments (123). It
is strongly recommended as the sedative agent of choice in the
non-intubated patient or with development of PRIS (105). The
primary choice of sedative should be individualized, and further
based on comfort levels and experience.

Midazolam use is not recommended for sedation because
it precludes the ability to perform reliable, serial NWTs (105);

it is associated with greater ICU length of stay, duration of
mechanical ventilation, and delirium compared to propofol or
dexmedetomidine (124); and is associated with dramatically
prolonged time to awakening compared to propofol (125–
128) and dexmedetomidine (129, 130). Despite the numerous
pitfalls of midazolam use, it remains one of the most common
sedatives utilized in ICUs (3). Therefore, in centers that primarily
use midazolam, it must be recognized that NWTs may lack
consistency due to bioaccumulation and residual sedation,
with much greater time to awakening. Notwithstanding, when
multimodality monitoring is not utilized, the NWT becomes the
only source of information about neurologic function. This is
already a reality in many lower-income countries and areas, with
assessment coming from neurologic exams and serial CT imaging
(131). In those cases, the NWT should still be done despite
midazolam use, with acknowledgment that time to awakening is
increased and day to day reliability of the exam diminished.

CONCLUSION

It is widely recognized that the NWT is considered the gold-
standard for continued evaluation of brain-injured patients.
Hard contraindications exist for patients with preexisting
intracranial hypertension, hyperthermia, in status-epilepticus, or
on barbiturate therapy. The NWT also induces a significant
systemic stress response with ICP elevations, but there has yet
to be evidence of secondary deterioration, plus MD and PbtiO2

metrics have shown no alterations in the few reports on the
subject. The advent of multimodality neuromonitoring has added
a tremendous amount of data pertaining to neurologic function
into the physician’s armamentarium, but have yet to demonstrate
clearly improved patient outcomes, and uncertainties exist about
their ability to change and guide clinical decisions. NWT
frequency is an additional point of uncertainty; the only available
expert recommendation endorsed a frequency of at least once
per day. Propofol is the most widely recommended sedative to
facilitate serial NWTs, but dexmedetomidine represents another
viable choice, especially in the non-intubated patient or should
PRIS develop. More research is required to elucidate the clinical
utility of the NWT, its ability to detect neurologic insults and
guide appropriate management, and establish guidelines about
the optimal frequency of its utilization with stratification based
on injury type and patient population.
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