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Background: Intracranial aneurysm rupture is a devastating medical event with a high

morbidity and mortality rate. Thus, timely detection and management are critical. The

present study aimed to identify the aneurysm radiomics features associated with rupture

and to build and evaluate a radiomics classification model of aneurysm rupture.

Methods: Radiomics analysis was applied to CT angiography (CTA) images of 393

patients [152 (38.7%) with ruptured aneurysms]. Patients were divided at a ratio of 7:3

into retrospective training (n = 274) and prospective test (n = 119) cohorts. A total of

1,229 radiomics features were automatically calculated from each aneurysm. The feature

number was systematically reduced, and the most important classifying features were

selected. A logistic regression model was constructed using the selected features and

evaluated on training and test cohorts. Radiomics score (Rad-score) was calculated for

each patient and compared between ruptured and unruptured aneurysms.

Results: Nine radiomics features were selected from the CTA images and used to build

the logistic regression model. The radiomics model has shown good performance in the

classification of the aneurysm rupture on training and test cohorts [area under the receiver

operating characteristic curve: 0.92 [95% confidence interval CI: 0.89–0.95] and 0.86

[95% CI: 0.80–0.93], respectively, p < 0.001]. Rad-score showed statistically significant

differences between ruptured and unruptured aneurysms (median, 2.50 vs. −1.60 and

2.35 vs. −1.01 on training and test cohorts, respectively, p < 0.001).

Conclusion: The results indicated the potential of aneurysm radiomics features for

automatic classification of aneurysm rupture on CTA images.

Keywords: intracranial aneurysm, aneurysm rupture, subarachnoid hemorrhage, machine learning, radiomics

INTRODUCTION

The incidence of intracranial aneurysm is ∼3% in the adult population at a mean age of 50 years
(1, 2). Aneurysms are responsible for about 80–90% of subarachnoid hemorrhages (SAH), with
a resultant mortality rate of 23–51%, and a permanent disability risk of 10–20% (3, 4). Proper
prevention is essential to reducing the risk of aneurysm rupture in the majority of cases, and timely
management in case of rupture is critical for reducing the complications and preventing re-bleeding
(2, 5, 6).
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CT angiography is the first-line imaging examination for
assessing cerebral aneurysms, with a reported sensitivity and
specificity of 98 and 100%, respectively (7, 8). CT angiography
is a fast and cost-effective diagnostic technique with a wide
availability and high spatial resolution. Compared with digital
subtraction angiography, which is the gold standard for
diagnosing intracranial aneurysms, CT angiography is non-
invasive and more widely available (6, 9).

Radiomics is a newly emerging technology that automatically
extracts features from medical imaging to quantify the
corresponding phenotypic characteristics (10). There is a
trend of increasing interest in radiomics features as non-invasive
imaging tools for estimation of pathological or histological
features, distinction of benign and malignant entities, prediction
of prognosis or treatment response, and inference to the
genetic expression (10–13). These imaging biomarkers possess
a potential to be more cost effective and provide a more
individualized medical care (11, 14, 15).

To our knowledge, no reported studies on the establishment
of a radiomics diagnostic model of intracranial aneurysm rupture
exist. Radiomicsmay enhance our understanding of the value and
clinical utility of the voxel-level imaging phenotypic features of
intracranial aneurysms. Automatic processes proved effective to
triage radiology workflow and to reduce the time to diagnosis
in acute neurological events (16). In this regard, a potential
role of radiomics is to automate the classification of aneurysm
rupture status. In our previous work, we have developed a deep
learning-based algorithm for automatic detection of intracranial
aneurysms (17). Herein, we continue to build a radiomics
signature of ruptured aneurysms that may be integrated with
the computer-assisted detection system for a comprehensive
automated aneurysm detection and rupture classification.

Therefore, this study aimed to identify the aneurysm
radiomics features associated with rupture and to build and
evaluate a classification model on CT angiography, which may
provide a basis for automated diagnosis of aneurysm rupture.

MATERIALS AND METHODS

Ethical approval for this retrospective study was obtained from
the institutional review board, and informed consent was waived.

Study Population
The inclusion criteria for this study were (1) adult patient over
18 years old and (2) a diagnosis of intracranial aneurysm on CT
angiography regardless of the rupture status of the aneurysm.
Exclusion criteria included (1) multiple aneurysms; (2) multiple
scans (only one time scan, often themost recent scan was selected
per case); (2) non-saccular (fusiform or dissecting), traumatic,
infectious, and previously treated aneurysms; (3) CTA images
with severe motion artifact; (4) cases with unavailable clinical
record; and (5) cases with unextractable radiomics features for
the segmented lesion due to too few dimensions according to the
feature extraction platform.

A flowchart of the patients’ inclusion and exclusion process
is shown in Figure 1, and the study workflow is summarized in
Figure 2.

Clinical and Imaging Data
CT angiography (CTA) imaging data of the patients with
intracranial aneurysm diagnosed between May 2016 and April
2019 were collected from Wuhan Union Hospital and Union
West Hospital. Patients were divided into two groups based on
aneurysm rupture status as follows: the ruptured aneurysm group
included patients with spontaneous subarachnoid hemorrhage
documented by conventional brain CT with nearby aneurysm
identified on CT angiography and confirmed by digital
subtraction angiography, without any other potential pre-
disposing factor (trauma, dissection, or local or systemic
infection), and the unruptured aneurysm group included patients
with intracranial aneurysm but no subarachnoid hemorrhage or
related clinical symptoms.

Patients’ clinical data and CTA imaging findings were
collected. Clinical data included sex, age, history of hypertension,
smoking, or previous SAH, and subsequent surgical treatment
of the aneurysm. Imaging findings included number, size,
shape [regular (smooth with no lobulation or daughter sac)
or irregular], and location of aneurysms [internal carotid
artery; middle cerebral artery; anterior circulation (anterior
cerebral artery, anterior communicating artery and posterior
communicating artery); and posterior circulation (vertebral
artery, basilar artery, and posterior cerebral artery)], as well as
the presence or absence of subarachnoid hemorrhage. PHASES
(Population, Hypertension history, Age of patient, Size of
aneurysm, earlier SAH from another aneurysm, and site of
aneurysm) score was calculated in accordance with previous
reports by summing up the scores assigned to each variable
(1, 18) as follows: population [0, North American, Chinese, or
European (other than Finnish); 3, Japanese; 5, Finnish], history
of hypertension (0, no; 1, yes), age (0, <70 years; 1, ≥70 years),
aneurysm size (0, <7.0mm; 3, 7.0–9.9mm; 6, 10.0–19.9mm;
10, ≥20.0mm), history of SAH (0, no; 1, yes), and aneurysm
location (0, internal carotid artery; 2, middle cerebral artery; 4,
anterior cerebral arteries, posterior communicating artery, and
posterior circulation).

Imaging Techniques
The imaging protocol included standard CT angiography of the
head or head and neck acquired on one of four imaging scanners
including Discovery CT750 HD (GE Healthcare, Chicago,
IL, USA; n = 161), SOMATOM Definition AS + (Siemens
Healthineers, Erlangen, Germany; n = 111), and Aquilion ONE
(Toshiba, Tokyo, Japan; n = 85) from Wuhan Union Hospital,
and Ingenuity CT scanner (Philips Healthcare, Best, The
Netherlands; n = 36) from Union West Hospital. The imaging
protocols are summarized in the Supplementary Materials.

Image Segmentation, Pre-processing, and
Feature Extraction
Two general radiologists with 5 and 7 years of experience in head
CTA independently manually segmented the region of interest
(ROI) around the intracranial aneurysm slice by slice on three
orthogonal views (axial, sagittal, and coronal) using 3D slicer
4.10.1 (https://www.slicer.org/).
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FIGURE 1 | Flowchart of the patients’ inclusion and exclusion process.

Before feature extraction, image pre-processing with
registration and resampling to a uniform pixel dimension of 1.0
× 1.0 × 1.0 mm3 with linear and nearest-neighbor interpolation

for CTA and segmentation images, respectively, was performed
using AK software (Artificial Intelligence Kit, Version V3.2.2.R,
GE Healthcare). Seven feature groups were extracted, including
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FIGURE 2 | Illustration of the study workflow. Clinical and imaging data of the potential candidates were collected and assessed for enrollment eligibility. The

aneurysms were segmented by two radiologists using 3D slicer software. Seven groups of radiomics features were extracted using Artificial Intelligence Kit (AK). The

feature number was reduced using a step-wise process. The selected radiomics features were used to build the radiomics model. The model was evaluated using the

area under receiver operating characteristic curve on training and test cohorts.

first-order statistics, shape, gray-level co-occurrence matrix
(GLCM), gray-level size-zone matrix (GLSZM), gray-level
run-length matrix (GLRLM), neighborhood gray-tone difference
matrix (NGTDM), and neighboring gray-level dependence
matrix (GLDM). To enhance intricate patterns in the data
invisible to the human eye (12), advanced filters including
Laplacian of Gaussian (LoG; sigma, 2.0 and 3.0mm), wavelet
decompositions with all possible combinations of high- (H)
or low- (L) pass filter in each of the three dimensions (HHH,
HHL, HLH, LHH, LLL, LLH, LHL, HLL), and local binary
pattern (LBP; level, 2; radius, 1.00) were applied. A total of
1,229 radiomics features were extracted from each aneurysm.
Definitions and calculations of the radiomics features used in this
study are available in the PyRadiomics documentation (http://
PyRadiomics.readthedocs.io/en/latest/) (19).

The reproducibility of the features was assessed by means
of intra- and inter-reader agreement for radiomics features
using 58 randomly chosen cases incorporating a balanced
number of images from each of the four scanners. To evaluate
the intra-reader agreement, reader 1 performed the region-of-
interest (ROI) segmentation twice with 1-month interval time.
Meanwhile, reader 2 independently segmented the same set
of images once to assess the inter-reader agreement with the
radiomics features extracted from the first ROI segmented by
reader 1. Intraclass correlation coefficient (ICC) was performed
to assess the intra- and inter-reader agreement. An ICC cutoff
of >0.8 was selected for accepted reproducibility level of the
radiomics features.

Dimensionality Reduction and Radiomics
Feature Selection
Feature extraction and dimensionality reduction were performed
using AK software. A stepwise process was carried out to select
the features in the training cohort as shown in the study workflow
(Figure 2). First, all features suggested by excellent ICC (>0.8)
were assessed by one-way ANOVA or Mann–Whitney U-test
to select the significant classifying features. Features that were
not significantly different between ruptured and unruptured
aneurysms were removed. Then, least absolute shrinkage and
selection operator (LASSO) regression analysis was adopted
for dimensionality reduction by performing variable selection
and regularization using 10-fold cross-validation. The remaining
features were assessed by the Spearman correlation test for severe
linear dependence. Features with >0.90 correlation coefficient
were excluded. Finally, multivariate logistic regression using
the backward likelihood ratio elimination method was used to
determine the most important and independent discriminating
features. Radiomics score (Rad-score) for each patient was
calculated by linear combination of the selected features weighted
by their corresponding logistic regression coefficient.

Model Development and Evaluation
Machine learning using logistic regression was used to build
the radiomics model using the selected radiomics features. The
radiomics model was assessed by calculating the area under
the receiver operating characteristic curve (AUC) on both the
training and test cohorts. Other performance metrics, including
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sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), and accuracy were also calculated.

Statistical Analysis
Statistical analyses were performed using SPSS (Version 25,
IBM) and R (Version 4.0.2, https://www.r-project.org/). The
R packages used in the analyses included psych, pROC, and
e1071. Z-score normalization of the data was performed as a
pre-processing step. The Shapiro–Wilk test was used to assess
the normality of distribution. Univariate analysis was performed
for comparing the clinical factors of ruptured and unruptured
aneurysms by using the chi-square test or Fisher exact test
for categorical variables, and Student t-test or Mann–Whitney
U-test for continuous variables, where appropriate. Significant
factors were assessed by multivariate logistic regression analysis.
Receiver operating characteristic (ROC) curves were generated
to assess the performance of the radiomics model on the
training and test cohorts. Hosmer–Lemeshow test was performed
to evaluate the goodness of fit of the radiomics model. The
significance level was set at p = 0.05 for the basic statistical
analyses and p= 0.01 for the selection of radiomics features.

RESULTS

Patients and Aneurysm Characteristics
A total of 393 patients [234 (59.5%) females] with 393 intracranial
aneurysms were included. There were 152 (38.6%) patients with
ruptured aneurysms and evident subarachnoid hemorrhage. The
demographic, clinical, and imaging characteristics of the study
population and data division are summarized in Table 1. Given
the small number of cases from Union West Hospital (36/393,
9.2%) hindering solo use for validation, the entire data from
two hospitals were mixed and randomly divided into training
and testing cohorts at a ratio of 7:3 (274 cases for retrospective
training and 119 cases for prospective testing). As evident from
Table 1, no significant differences were present between the
training and test cohorts in patients’ age, sex, patient category
(in-patients vs. out-patients), number of cases imaged by each
scanner, history of hypertension, smoking, or previous SAH,
aneurysm size, location, and rupture status and the subsequent
surgical treatment of the aneurysms (all p > 0.05).

Clinical risk factors of aneurysm rupture in the study
population are summarized in Table 2. Univariate analysis
revealed five potential risk factors for aneurysm rupture,
including age, aneurysm size, location, and shape, as well as
PHASES score. Multivariate analysis showed the age, aneurysm
size, location, and shape to be independent clinical risk factors
for intracranial aneurysm rupture.

Inter-reader and Intra-reader Agreement
A total of 1,229 features were included in the intra-class
correlation test. Features with ICC of<0.8 were excluded. A total
of 32 features (27 overlapping features) were excluded based on
both intra- and inter-reader agreement. Eventually, 1,197 features
were selected for further analyses. The overall intra-reader
agreement of the 1,197 features was excellent (mean ICC= 0.979;
range, 0.804–1.000). The overall inter-reader agreement of the

TABLE 1 | Study population characteristics and data division.

Variable Total n = 393 P-value

Training cohort Testing cohort

No. of patients 274 (70%) 119 (30%) NA

Age in years, median (IQR) 55 (49–63) 57 (50–66) 0.20

Sex

Male 113 (41.2%) 46 (38.7%) 0.66

Female 161 (58.8%) 73 (61.3%)

Patient category

Out-patient 148 (54.0%) 59 (49.6%) 0.44

In-patient 126 (46.0%) 60 (50.4%)

Imaging scanner

TOSHIBA 57 (20.8%) 28 (23.5%)

SIEMENS 82 (29.9%) 29 (24.4%) 0.62

GE medical systems 112 (40.9%) 49 (41.2%)

Philips 23 (8.4%) 13 (10.9%)

History of hypertension 69/133 (51.9%) 37/65 (56.9%) 0.55

History of smoking 27/132 (20.5%) 17/61 (27.9%) 0.27

History of previous SAH 11/160 (6.9%) 5/70 (7.1%) 1.00

Maximal aneurysm size in mm, 4.3 (3.1–6.2) 4.7 (3.5–6.6) 0.38

median (IQR)

Aneurysm location

ICA 154 (56.2%) 67 (56.3%)

MCA 44 (16.1%) 13 (10.9%) 0.50

Anterior circulation 64 (23.4%) 31 (26.1%)

Posterior circulation 12 (4.4%) 8 (6.7%)

Ruptured aneurysms 106 (38.7%) 46 (38.7%) 1.00

Subsequent surgical treatment 77/194 (39.7%) 35/91 (38.5%) 0.90

Data are number of patients and percentages unless otherwise specified. ICA, internal

carotid artery; IQR, interquartile range; MCA, middle cerebral artery; NA, not applicable;

SAH, subarachnoid hemorrhage; SD, standard deviation.

selected 1,197 features was also excellent (mean ICC = 0.976;
range, 0.801–1.000).

Dimensionality Reduction and Feature
Selection
Of the 1,197 features included in the analysis, 762 features have
shown to be significantly different (p < 0.05) between ruptured
and unruptured aneurysms in the training cohort. Of these,
67 features were selected by LASSO regression analysis, with
the best-tuned regularization parameter λ of 0.9 found by 10-
fold cross-validation. The features were further reduced to 42
features by excluding those with Spearman correlation coefficient
of >0.90. Finally, multivariate logistic regression analysis with
the backward likelihood ratio elimination method revealed
nine features as the most important independent classifiers
(p < 0.01, Table 3). The nine features were used to build the
radiomics model and calculate the radiomics score for each
patient as follows:

Rad-score = (Wavelet-HHL.firstorder.Entropy ×

1.7182) + (LBP-3D-m1.firstorder.90Percentile × −1.2051)
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+ (LBP-3D-m2.firstorder.Skewness × −0.4051) + (LoG-
sigma-20mm-3D.GLCM.ID × 1.8458) + (LoG-sigma-
20mm-3D.GLSZM.SmallAreaHighGrayLevelEmphasis ×

TABLE 2 | Clinical risk factors for aneurysm rupture in the study population.

Factor Ruptured

(n = 152)

Unruptured

(n = 241)

Univariate

analysis (p)

Multivariate

analysis (p)

Age, years

(mean ± SD)

55 ± 9 57 ± 11 0.005 0.02

Sex 0.07 NA

Male 70 (46.1%) 89 (36.9%)

Female 82 (53.9%) 152 (63.1%)

Hypertension 36/63

(57.1%)

70/135

(51.9%)

0.49 NA

Smoking 14/60

(23.3%)

30/133

(22.6%)

0.91 NA

Previous SAH 4/61 (6.6%) 12/169

(7.1%)

0.89 NA

Aneurysm size, mm

(mean ± SD)

6.1 ± 2.8 4.6 ± 2.6 <0.001 0.03

Aneurysm location <0.001 <0.001

ICA 46 (30.3%) 175 (72.6%)

MCA 30 (19.7%) 27 (11.2%)

Anterior circulation 65 (42.8%) 30 (12.4%)

Posterior circulation 11 (7.2%) 9 (3.7%)

Aneurysm shape <0.001 <0.001

Regular 61 (40.1%) 180 (74.7%)

Irregular 91 (59.9%) 61 (25.3%)

PHASES score (mean

± SD)

4.2 ± 2.5 2.1 ± 2.2 <0.001 0.31

Data are number of patients and percentages unless otherwise specified. Significant

p-values are highlighted in bold. Anterior circulation includes anterior cerebral artery,

anterior communicating artery, and posterior communicating artery. Posterior circulation

includes vertebral artery, basilar artery, and posterior cerebral artery. PHASES, Population,

Hypertension history, Age of patient, Size of aneurysm, Earlier SAH from another

aneurysm, and Site of aneurysm; NA, not applicable; SAH, subarachnoid hemorrhage;

SD, standard deviation.

0.5863) + (LoG-sigma-30mm-3D.GLCM.InverseVariance
× 0.7882) + (Wavelet-LHH.firstorder.RootMeanSquared
×−1.0978) + (Wavelet-LHL.firstorder.Median × −0.6913) +
(Wavelet-LLH.GLDM.SmallDependenceEmphasis×−1.2181)

The Rad-score showed statistically significant differences
between ruptured and unruptured aneurysms (median Rad-
score of ruptured aneurysms: 2.50, range: −0.97–7.81; median
Rad-score of unruptured aneurysms:−1.60, range:−14.11–4.55;
p < 0.001 in the training cohort and median Rad-score of
ruptured aneurysms: 2.35, range: −1.02–7.41; median Rad-score
of unruptured aneurysms: −1.01, range: −11.53–5.19; p < 0.001
in the test cohort). The selected Rad-score cutoff value of 1.00
yielded a sensitivity of 87 and 79% and a specificity of 84 and 80%
on training and test cohorts, respectively.

Radiomics Model Performance
The radiomics model ROC curves and Rad-scores for each
patient in the training and test cohorts are shown in Figure 3. The
radiomics model has shown a good performance in classification
of aneurysm rupture [AUC: 0.92 (95% CI: 0.89–0.95) and 0.86
(95% CI: 0.80–0.93) on training and test cohorts, respectively,
p < 0.001]. On the training cohort, the accuracy, sensitivity,
specificity, and positive and negative predictive values were 82,
77, 86, 77, and 86%, respectively. On the test cohort, the accuracy,
sensitivity, specificity, and positive and negative predictive values
were 76, 70, 81, 70, and 81%, respectively. The Hosmer–
Lemeshow test showed a good fitness of the radiomics model
on training and test cohorts (P = 0.78 and 0.83, respectively).
Example cases from the study population are shown in Figure 4.

DISCUSSION

Intracranial aneurysm rupture is an acute neurological event
with a high morbidity and fatality risk; therefore, an accurate
and timely detection is critical. In this study, radiomics
analysis was applied to CT angiography images of patients
with ruptured and unruptured intracranial aneurysms, and a

TABLE 3 | Candidate radiomics features according to multivariate logistic regression analysis.

Feature* Coefficient P# OR 95% CI for OR

Wavelet-HHL.firstorder.Entropy 1.861 0.000 6.433 3.338–12.398

LBP-3D-m1.firstorder.90Percentile −1.293 0.000 0.274 0.142–0.530

LBP-3D-m2.firstorder.Skewness −0.618 0.006 0.539 0.348–0.835

LoG-sigma-20mm-3D.GLCM.ID 1.671 0.000 5.318 2.609–10.837

LoG-sigma-20mm-3D.GLSZM.SmallAreaHighGrayLevelEmphasis 1.097 0.005 2.994 1.386–6.467

LoG-sigma-30mm-3D.GLCM.InverseVariance 0.716 0.003 2.046 1.279–3.274

Original.GLSZM. SizeZoneNonUniformityNormalized −0.665 0.014 0.514 0.302–0.876

Wavelet-LHH.firstorder.RootMeanSquared −1.066 0.007 0.345 0.159–0.746

Wavelet-LHL.firstorder.Median −0.689 0.006 0.502 0.308–0.817

Wavelet-LLH.GLDM.SmallDependenceEmphasis −1.207 0.001 0.299 0.152–0.591

LoG-sigma-20mm-3D.firstorder.Skewness 0.513 0.038 1.671 1.030–2.711

LoG-sigma-30mm-3D.firstorder.10Percentile 0.996 0.041 2.708 1.040–7.046

*Feature calculation is based on PyRadiomics (19). #Radiomics features with p-value of <0.01 (shown in bold) made up the eventual radiomics signature. OR, odds ratio; 95% CI, 95%

confidence interval.
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FIGURE 3 | Receiver operating characteristic (ROC) curves of the radiomics model performance on training (A) and test cohorts (B). Radiomics score (Rad-score) of

each patient on training (C) and test cohorts (D) show the association of high Rad-score with risk of aneurysm rupture.
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FIGURE 4 | Example cases of unruptured and ruptured aneurysm features. Case 1: sagittal reconstructed maximum intensity projection (MIP, A) and 3D

volume-rendered (3D-VR) CT angiography (CTA, B) images of a 52-year-old-male with unruptured aneurysm. The aneurysm was small (3.5mm in maximal diameter),

regular, and located on the internal carotid artery. Radiomics score was −6.1 indicating a low risk of rupture. Case 2: MIP (C) and 3D-VR CTA (D) images of a

50-year-old-male with ruptured aneurysm. The aneurysm measured 9.4mm in maximal diameter, was irregular (lobulated with multiple daughter sacs), and located on

the anterior communicating artery. Radiomics score was 3.5 indicating a high risk of rupture.

radiomics classification model was developed and evaluated. The
radiomics model has shown a good performance in classification
of aneurysm rupture on the training and test cohorts (AUCs of
0.92 and 0.86, respectively). The results indicate a great potential
of radiomics signature as an automatic diagnostic marker of
intracranial aneurysm rupture.

Clinically, several risk factors have been considered to be
associated with intracranial aneurysm development, growth, and
rupture (2, 5, 20, 21). Patients’ age, sex, race, familial history,
and history of hypertension, smoking, alcohol consumption, and
previous stroke, as well as aneurysm size, multiplicity, location,
and shape, are all reported risk factors, with variable results across
studies mostly due to the variation in the study populations (2, 5,
22, 23). PHASES is a scoring system of six easily retrievable risk

factors that was developed for prediction of aneurysm rupture
risk (24). It had also shown a potential for prediction of aneurysm
growth (1, 18). In our study population, younger age, larger
aneurysm size, location on the middle cerebral artery, anterior or
posterior circulation, and irregular shape were the independent
clinical risk factors of aneurysm rupture, which is generally
consistent with previous studies (2, 22, 25). It is noteworthy that
controversy exists regarding the age as a risk factor for aneurysm
rupture; however, it is an important contributing factor to the
treatment decision (2).

Previous machine learning studies on intracranial aneurysm
rupture status classification and rupture risk assessment have
shown encouraging results. A recent study on morphologic and
hemodynamic features of cerebral aneurysm on CTA revealed
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the projection ratio, irregular shape, and size ratio as important
discriminators of ruptured aneurysms (26). Another study on
clinical and imaging features has shown the location and size to
have a strong association with aneurysm rupture (22). A study
by Kim et al. (27) focusing on rupture status of small (<7mm)
aneurysms of anterior circulation on 3D digital subtraction
angiography developed a CNN-based prediction system, which
outperformed human readers. An earlier study on 60 aneurysms
proposed a classification model of aneurysm rupture status using
geometrical and wall shear stress parameters (28).

Radiomics has been successfully applied to intracranial
aneurysm morphology analysis. Liu et al. (29) employed
radiomics for identifying the morphological features associated
with rupture in sidewall and bifurcation aneurysms on 3D
digital subtraction angiography images. It was concluded that
bifurcation configuration is an independent risk factor for
aneurysm rupture regardless of the location. In our study,
we have employed a large number of radiomics features with
a systematic selection approach for building a classification
model of aneurysm rupture on CT angiography. Radiomics
features automatically extracted from PyRadiomics are calculated
in a pixel-by-pixel manner and could closely reflect the
morphologic features of the 3-dimensional object, such as an
aneurysm (29). Radiomics calculation is a fast and automatic
process once the structure of interest has been delineated;
therefore, selected radiomics signature can be integrated
with the automatic aneurysm detection systems, such as
that developed by our team (17) or those reported in the
literature (7, 30), for a comprehensive aneurysm detection and
rupture classification. Automatic depiction of patients with
ruptured aneurysms may also help prioritize the work list in
radiology departments and facilitate the timely management of
these patients.

Our study is limited by the retrospective enrollment,
which carries a risk of selection bias. Second, although the
radiomics calculation was automatic, the ROI segmentation
was manual, which is prone to interoperator variability and
hinders the clinical application of radiomics. Future utility
of automatic segmentation might reduce the interoperator
variability and improve the clinical feasibility of radiomics
(31). Additionally, we had a heterogeneous data recruited from
two institutions with CTA images acquired by four different
scanners comprising various protocols. Large sample size and
pre-processing techniques may partially control for the data
heterogeneity (32). On the other hand, it was anticipated that
training themachine learningmodels on heterogeneous datamay

improve the robustness and clinical feasibility (33). However,
given that the reproducibility of radiomics studies is a common
dilemma (10, 12, 34), therefore, our radiomics model likewise
needs further exploration and validation on newly recruited
external data.

In conclusion, our results demonstrated that a successful
diagnostic classification of aneurysm rupture using radiomics
features is achievable. As a non-invasive imaging tool, CTA-
based radiomics analysis may provide a helpful practical
method to automatically identify patients with ruptured
intracranial aneurysm.
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