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We have demonstrated that machine learning allows us to predict cognitive function

in aged people using near-infrared spectroscopy (NIRS) data or basic blood test data.

However, the following points are not yet clear: first, whether there are differences in

prediction accuracy between NIRS and blood test data; second, whether there are

differences in prediction accuracy for cognitive function in linear models and non-linear

models; and third, whether there are changes in prediction accuracy when both NIRS

and blood test data are added to the input layer. We used a linear regression model

(LR) for the linear model and random forest (RF) and deep neural network (DNN) for

the non-linear model. We studied 250 participants (mean age = 73.3 ± 12.6 years)

and assessed cognitive function using the Mini Mental State Examination (MMSE) (mean

MMSE scores = 22.9 ± 6.1). We used time-resolved NIRS (TNIRS) to measure absolute

concentrations of hemoglobin and optical pathlength at rest in the bilateral prefrontal

cortices. A basic blood test was performed on the same day. We compared predicted

MMSE scores and grand truth MMSE scores; prediction accuracies were evaluated using

mean absolute error (MAE) and mean absolute percentage error (MAPE). We found

that (1) the DNN-based prediction using TNIRS data exhibited lower MAE and MAPE

compared with those using blood test data, (2) the difference in MAPE between TNIRS

and blood test data was only 0.3%, (3) adding TNIRS data to the blood test data of the

input layer only improved MAPE by 1.0% compared to the use of blood test data alone,

whereas the use of the blood test data alone exhibited the prediction accuracy with

81.8% sensitivity and 91.3% specificity (N = 202, repeated five-fold cross validation).

Given these findings and the benefits of using blood test data (low cost and large-scale

screening possible), we concluded that the DNN model using blood test data is still the

most suitable for mass screening.

Keywords: mini-mental state examination, time-resolved near-infrared spectroscopy, basic blood test, linear

model, deep neural network for regression

INTRODUCTION

According to the World Alzheimer Report, the population of Alzheimer’s disease (AD) patients
is predicted to grow to over 100 million by 2050 (1). However, at present, there are no drugs
that can cure advance dementia, and therefore, delaying the onset of dementia has received great
attention (2). To this end, screening tests for cognitive dysfunction play a crucial role in prevention
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of dementia. Currently, the Mini Mental State Examination
(MMSE) is the most commonly used scale in cognitive function
evaluation (3). The MMSE is sensitive and cost-effective
screening test; however, it is a subjective examination, and does
not allow clinicians to examine a large number of patients in
a short time since it is carried out one by one between the
clinicians and the patients. In addition, the MMSE is difficult to
perform on patients with neurological disorders such as visual
and hearing impairment.

Recently, we have developed a deep learning (DL)-based
screening test of cognitive impairment which used a basic blood
test data for health examinations (4). The DL-based screening
test was developed based on the relation between cognitive
function and systemicmetabolic disorders in aged people. That is,
atherosclerosis induced by lifestyle-related diseases could cause
vascular cognitive impairment (VCI) through cerebral ischemia,
which plays an important role in dementia onset of not only
vascular dementia but also Alzheimer’s disease (AD) in the
elderly (5). To analyze the complex non-linear relationships
between systemic metabolic disorders and cognitive function,
we used a deep neural network (DNN). Employing DNNs,
we analyzed the relationship between 23 blood test items and
participant’s ages (input) and the ground truth MMSE scores in
the participants (output). Validation of the DNN model showed
higher prediction accuracy than the results of linear regression
models; we validated the prediction accuracy in the training data
(by a leave-one-out cross-validation) and in the test data that
were not used for training the DNNmodel.

In contrast to basic blood test for health examination,
a time-resolved near infrared spectroscopy (TNIRS) allows
direct measurements of cerebral hemodynamics and optical
characteristics such as optical pathlength which reflect brain
function and structural changes of the brain (6). Near infrared
spectroscopy is an optical method which allows for measurement
of hemoglobin (Hb) concentrations in cerebral blood vessels (7).
Recently, we used a TNIRS, which measures Hb concentrations
at rest, to assess cognitive function in aged people, e.g., persons
60 years and older (8). We found that concentrations of
oxyhemoglobin and oxygen saturation (SO2) in the prefrontal
cortex (PFC) at rest correlated with cognitive function assessed
by the MMSE in aged people (9). Therefore, using the same
DNN as above, we predicted cognitive functions by putting the
TNIRS parameters into the input layer of the DNN (10) and
observed prediction accuracies for the DNN model. However, it
is unclear which is more accurate in predicting the MMSE score,
with TNIRS parameters that reflect cerebral hemodynamics and
general blood test data that reflect systemic metabolic status. In
addition, we do not knowwhether there are changes in prediction
accuracy when both TNIRS and blood test data are added to
the input layer. Moreover, it is not yet clear whether there
are substantial differences in prediction accuracy for cognitive
function between DNN and the baseline models including the
linear regression (LR) model and random forest (RF) as one of
the non-linear models.

In order to address these issues, we performed the following
analysis: first, we compared the prediction accuracies of the
MMSE score between TNIRS parameters and blood test data.

Second, we evaluated the effect of combination of TNIRS and
blood test data on the prediction accuracy. Finally, we compared
the prediction accuracies of LR, RF and DNN models. A LR
model for the linear model and RF and DNN for the non-
linear model are used in the analysis. This study used a group
of participants who performed both TNIRS measurements and
blood tests at the same time.

METHODS

Cognitive Screening Test Using the
Mini-Mental State Examination
We studied 250 participants [115 males, 135 females; age 73.3
± 12.6 (mean ± SD) range 27–100 (minimum – maximum);
188 participants aged ≥ 65 years, 62 participants aged <

65 years] who exhibited a variety of cognitive functions
ranging from normal to dementia. All participants had visited
Southern Touhoku Kasuga Rehabilitation Hospital (Sukagawa
City, Japan) due to various symptoms, including forgetfulness.
The participants provided written informed consent as required
by the Human Subjects Committee of the Rehabilitation
Hospital; when the participant had difficulty understanding the
concept of informed consent due to cognitive dysfunction, the
participant’s family provided consent.

Initially, we evaluated each participant’s cognitive function
using the MMSE, which is an effective screening tool that has
been used to systematically assess mental status (11) using cut-
off values of ≥ 24 for normal and <24 for risk of cognitive
impairment. The mean MMSE score was 22.9 ± 6.1 (mean ±

SD) range 4–30 (minimum – maximum); 135 cases were normal,
whereas the other 115 cases showed risk of cognitive impairment.
These MMSE scores were used to calculate residual error from
the estimated scores using machine learning techniques with the
input of age, blood test data, and TNIRS data as discussed in the
following sections.

Time-Resolved Near-Infrared
Spectroscopy Measurement and Blood
Test
Hb concentrations at rest in the bilateral PFC were measured
using a two-channel TNIRS system (TRS-21, Hamamatsu
Photonics K.K., Hamamatsu, Japan). Details of this system have
been described previously (12). Briefly, it consists of three
pulsed laser diodes with different wavelengths (760, 790, and
830 nm) having a pulse duration of 100 ps at a repetition
frequency of 5 MHz, a photomultiplier tube (H6279-MOD,
Hamamatsu Photonics K.K., Japan), and a circuit for time-
resolved measurement based on the time-correlated single
photon counting technique. The concentrations of Hb were
expressed in µM. In addition, we performed a blood test that
included a complete blood count and a basic metabolic panel
at the time of the experiment for all the participants. The
measurement data are shown in Table 1. The total number of
feature values from TNIRS parameters was 14 (i.e., 7 items with
2 channels as the TNIRS probes were set symmetrically on the
forehead, with a flexible fixation pad at the left frontal pole
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TABLE 1 | TNIRS parameters and blood test data.

TNIRS

parameters

Complete

blood count

General biochemical examination

Oxy-Hb (L, R) WBC count Total Protein BUN

Deoxy-Hb (L, R) RBC count Albumin Creatinine

Total-Hb (L, R) Hemoglobin A/G ratio Uric Acid

SO2 (L, R) Hematocrit AST (GOT) Glucose

OP1: 760 nm

LED (L, R)

MCV ALT (GPT) Na

OP2: 790 nm

LED (L, R)

MCH r-GTP K

OP3: 830 nm

LED (L, R)

MCHC Total cholesterol Cl

Platelet count Triglyceride

and right frontal pole). The numbers of feature values from
the complete blood count and general biochemical examinations
were 8 and 15, respectively.

All themeasured data are summarized inTable 2.MMSE score
is the response variable for all machine learning methods in this
study. Using the cut-off values of MMSE score, the Normal group
is the participants whose MMSE score of 24 and above, whereas
the Impaired group is the participants whose MMSE score under
24. Results from Spearman’s correlation analysis showed that
MMSE score was significantly correlated (r > 0.2) with Age, SO2,
RBC,Alb,Na andCl. It is noteworthy that the optical path lengths
(i.e., OP1, OP2, and OP3) were higher in the Impaired group
(i.e., participants whose MMSE score was below 24 showing risk
of cognitive impairment), and OP2 and OP3 in the right PFC
were significantly different between the Normal and Impaired
groups. These variables are important for achievement of higher
prediction accuracy in the learning models.

The distributions for age and MMSE scores are shown in
Figures 1, 2, respectively. Most ages ranged from 60 to 90. The
maximum score of 30 was the highest frequency for theMeasured
MMSE scores.

From the clinical profiles as shown in Table 3, 171 patients
(68.4%) had cerebrovascular diseases (cerebral hemorrhage: 49,
cerebral infarction: 100, subarachnoid hemorrhage: 22) out of the
total 250 patients. 177 patients (70.8%) had at least one life-style
disease including diabetes, hyperlipidemia and hypertension,
while the remaining 73 patients were not suffering from life-
style diseases.

Machine Learning Models for Data
Analysis
We employed LR, RF, and neural network models to estimate
MMSE scores by age, TNIRS parameters, and blood test data. LR
was first investigated as the baseline model to compare prediction
accuracy with the results of other learning models. LR and RF
weremodeled using the scikit-learn package in Python 3, whereas
DNNs were performed on the Tensorflow 2 platform (13) for the
data analysis. A repeated five-fold cross validation was used to
thoroughly compare the results of LR, RF and DNN, i.e., 10 times

of five-fold cross validation were performed for each model using
the random seeds from the number of 100–109 in serial.

Linear Regression Model

Explainable and reproducible results are important for the first
step in the analysis, and a variety of linear regression has been
used for the study of Alzheimer’s disease. The LR introduced in
this study is the ordinary least-squares regression, which can be
formulated as a set of n equations of the form yi = b0 + b1xi1 +
b2xi2 + . . .+ bkxik + εi, where yi is the response for the number i
in the sample data , xij is the predictor value, bj is the coefficient,
and εi represents an error term.

Random Forests

RF is a basic ensemble algorithm that combines a number
of classification or regression trees and is based on the
bagging technique. The RF algorithm is a powerful model
as the ability to handle highly non-linearly correlated
data, robustness to noise, tuning simplicity. Importantly,
the applicability of RF for the prediction of Alzheimer’s
disease from neuroimaging data has recently been more
acknowledged as one of the methods to achieve higher
prediction accuracy (14). The RF classifier requires only a
few hyper-parameters for tuning the performance. In the
present study, we used the module RandomForestRegressor with
the settings of the number of estimators (n_estimators:
100) and the maximum depth (max_depth: 8) in the
scikit-learn package.

Neural Networks

The DNN for regression was modeled in the Tensorflow 2 as
a multi-layer, feedforward neural network. It is noteworthy
that an activation function called the scaled exponential linear
unit (SELU) was chosen with the ADAM optimizer for the
best accuracy in this problem domain. The combination
of batch normalization, dropout, and L2 regularization
as the regularization algorithms were applied during
the training phase to avoid overfitting and acquire stable
DNNmodels.

The weighted combination α =
∑n

i=1 wixi + b aggregates
input signals xi in each layer to activate an output signal f (α)

to the connected neuron in the next layer. The DNN in this study
included 35 neurons in the input layer (i.e. age, 14 variables in
the TNIRS parameters, and 23 variables in the blood test items;
Figure 3).

Each hidden layer was placed with 256 neurons, and the total
number of hidden layers was four based on the results of a
random search of hyper-parameters. The DNN model with 256
neurons and four hidden layers showed the best accuracy for this
regression problem. Each function (f ) was used throughout the
network, and the bias (b) accounted for the neuron’s activation
threshold. After examining the results from a random search of
hyper-parameters, we chose SELU as it is a non-linear activation
function with excellent characteristics to help normalize the
input signals. Before applying SELU to each hidden layer, the
algorithms for batch normalization and 10% of the dropout rate
were performed for the input signals.
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TABLE 2 | Measured data.

Data type Item All patients (N = 250) Correlation

to MMSE

score

Normal (N = 135) Impaired (N=115) Difference (normal vs. impaired)

Response variable MMSE score 22.9 ± 6.1 – 27.4 ± 2.1 17.5 ± 4.7 p < 0.001

Demographics Age 73.3 ± 12.6 −0.42 68.4 ± 13.1 79.1 ± 9.0 p < 0.001

Sex M:115 F:135 – M:67 F:68 M:48 F:67

TNIRS OP1 R 19.1 ± 1.7 −0.07 19.0 ± 1.7 19.3 ± 1.8 p = 0.33

OP2 R 19.5 ± 1.8 −0.12 19.4 ± 1.7 19.8 ± 1.9 p = 0.09

OP3 R 18.4 ± 1.7 −0.12 18.2 ± 1.6 18.6 ± 1.8 p = 0.08

HbO2 R 38.2 ± 8.3 0.16 39.2 ± 8.3 37.0 ± 8.0 p = 0.04

Hb R 18.8 ± 3.9 −0.07 18.5 ± 3.9 19.2 ± 3.8 p = 0.15

tHb R 57.0 ± 11.3 0.09 57.7 ± 11.6 56.2 ± 10.8 p = 0.29

SO2 R 66.8 ± 3.7 0.30 67.8 ± 3.3 65.6 ± 3.8 p < 0.001

OP1 L 19.0 ± 1.7 0.01 19.0 ± 1.7 19.0 ± 1.7 p = 0.92

OP2 L 19.3 ± 1.8 −0.04 19.2 ± 1.7 19.4 ± 1.8 p = 0.47

OP3 L 18.0 ± 1.6 −0.04 17.9 ± 1.6 18.0 ± 1.7 p = 0.54

HbO2L 36.8 ± 8.0 0.09 37.6 ± 8.1 35.9 ± 7.9 p = 0.10

Hb L 18.4 ± 3.9 −0.15 17.9 ± 4.0 18.9 ± 3.7 p = 0.03

tHb L 55.2 ± 10.9 0.01 55.4 ± 11.3 54.9 ± 10.5 p = 0.68

SO2L 66.6 ± 4.0 0.30 67.7 ± 3.6 65.3 ± 4.1 p < 0.001

Blood test WBC 5,865.2 ± 1,780.9 0.06 6,031.1 ± 1,837.2 5,670.4 ± 1,699.7 p = 0.11

RBC 420.0 ± 58.2 0.22 432.6 ± 56.0 405.3 ± 57.4 p < 0.001

Hb 13.2 ± 7.8 0.05 13.9 ± 10.5 12.3 ± 1.7 p = 0.11

Ht 38.9 ± 4.8 0.18 39.8 ± 4.7 37.9 ± 4.7 p = 0.001

MCV 92.6 ± 7.3 −0.10 91.8 ± 8.7 93.5 ± 4.9 p = 0.07

MCH 30.2 ± 1.9 −0.09 30.1 ± 1.9 30.4 ± 1.9 p = 0.22

MCHC 32.6 ± 1.2 0.06 32.6 ± 1.3 32.5 ± 0.9 p = 0.36

PLT 23.8 ± 6.7 0.19 25.1 ± 7.0 22.3 ± 6.1 p = 0.001

TP 7.1 ± 3.6 0.01 7.0 ± 0.6 7.2 ± 5.3 p = 0.64

Alb 3.9 ± 0.4 0.27 4.0 ± 0.4 3.7 ± 0.5 p < 0.001

A/G 1.3 ± 0.3 0.14 1.3 ± 0.3 1.3 ± 0.3 p = 0.02

AST-GOT 22.0 ± 9.2 0.05 22.2 ± 9.9 21.9 ± 8.2 p = 0.84

ALT-GPT 20.6 ± 17.7 0.13 22.5 ± 21.1 18.3 ± 12.3 p = 0.06

r-GT 28.1 ± 25.1 0.18 31.3 ± 25.3 24.4 ± 24.5 p = 0.04

T-cho 177.5 ± 38.8 0.12 180.4 ± 35.9 174.1 ± 41.6 p = 0.22

TG 116.6 ± 51.5 0.18 124.3 ± 53.8 107.5 ± 47.1 p = 0.01

UA 5.1 ± 1.5 0.15 5.3 ± 1.5 4.8 ± 1.6 p = 0.04

BUN 15.2 ± 6.1 −0.06 15.2 ± 6.3 15.3 ± 5.8 p = 0.86

CRE 0.8 ± 0.4 0.05 0.8 ± 0.4 0.7 ± 0.2 p = 0.21

Na 140.3 ± 3.2 0.21 140.8 ± 2.5 139.7 ± 3.7 p = 0.01

K 4.2 ± 0.5 0.13 4.3 ± 0.5 4.1 ± 0.5 p = 0.04

Cl 103.1 ± 3.6 0.20 103.7 ± 3.2 102.6 ± 4.0 p = 0.02

Glucose 99.6 ± 23.3 −0.07 98.8 ± 23.3 100.5 ± 23.3 p = 0.58

Variables correlated with measured MMSE score and differences between the normal (i.e., participants whose MMSE score of 24 and above) and impaired (i.e., participants whose

MMSE score under 24) groups using the Student’s t-test. Important variables (|r| > 0.2 or p < 0.1) are highlighted in bold.

The output signals (f (α)) in each layer were determined
by using a weighted combination of the input signals xi from
upstream of the DNN. In the output layer, a loss function,
L

(

W, B
∣

∣ j
)

, was measured by using the mean square error
between the estimated value and the actual MMSE score. The
learning process updated the weights (W) and biases (B) until
the loss function, L

(

W, B
∣

∣ j
)

, was minimized. Note that W is
the collection {Wi}1 :N−1, where Wi denotes the weight matrix

connecting layers i and i+ 1 for a network of N layers. Similarly,
B is the collection

{

bi
}

1 :N−1
, where bi denotes the column vector

of biases for layer i+ 1.

RESULTS

We first evaluated correlations between the measured parameters
and cognitive functions evaluated by the MMSE to discuss
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FIGURE 1 | Age distribution: 73.3 ± 12.6 (mean ± SD).

how prediction accuracy of the MMSE score could be
improved. Then, both linear regression and DNN regression
were performed. Predicted MMSE scores with substantial
residual error were reviewed by referring to the participant’s
diagnosis results.

Correlation Analysis
Correlation analysis showed a significant negative correlation
between the age of the participants and the MMSE scores (r
= −0.42, p < 0.01). Age was the most important variable
because the baseline concentration of SO2 and blood counts
changed with aging. The baseline concentration of SO2 in the
PFC measured by TNIRS varied between participants; however,
we found a significant positive correlation between MMSE and
SO2 in the left PFC (r = 0.30, p < 0.01) and the right PFC
(r = 0.30, p < 0.01) as shown in Figure 4. Hence, in addition
to age, the baseline concentrations of SO2 in the left and
right PFCs are useful for estimating the MMSE score using
the TNIRS.

Interestingly, optical path lengths for light (791,
836 nm) transmitted through tissue in the right PFC were
significantly different between the Normal and Impaired
groups (p < 0.05). Optical path lengths were inversely
proportional to an MMSE score higher than 15. Note that
optical path lengths (OPs) in the left PFC and the right
PFC in Figure 4 were measured using the LEDs of 836
nm wavelength.

Comparison Between Two Types of Deep
Neural Networks
We first compared two types of DNNs using the repeated five-
fold cross validation. The sample size of training data was
202 by removing the instances containing any missing value
from the data of the 250 participants. Both DNNs with 4
hidden layers were modeled with the same hyper-parameters
described in SectionMachine LearningModels for Data Analysis.
DNN2 exhibited slightly better accuracy as MAE: 3.97 ±

0.07 (mean ± SD) and MAPE: 26.0 ± 0.3 % (mean ± SD)
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FIGURE 2 | MMSE score distribution: 22.9 ± 6.1 (mean ± SD).

TABLE 3 | Clinical profiles of patients.

Lifestyle-related diseases

HT DM HL HT HT HT HL HT HT HT HT None Total

DM HL G G HL HL DM HL

DM DM G G

G

CH 18 1 0 6 6 0 0 6 1 0 0 11 49

SAH 9 0 4 1 3 0 0 3 0 0 0 2 22

CI 16 3 7 12 10 2 2 14 1 1 5 27 100

HI 2 0 0 0 0 0 0 0 0 0 0 3 5

BF 16 1 0 4 4 0 0 2 0 0 0 12 39

Others 10 0 0 4 0 0 0 1 0 1 1 18 35

Total 71 5 11 27 23 2 2 26 2 2 6 73 250

HT, hypertension; DM, diabetes mellitus; HL, hyperlipidemia; G, gout; CH, cerebral hemorrhage; SAH, subarachnoid hemorrhage; CI, cerebral infarction; HI, head injury; BF, born fracture.

compared with DNN1 as MAE: 4.11 ± 0.07 (mean ± SD) and
MAPE: 26.3 ± 0.4 (mean ± SD) as shown in Figures 5A,B.
It is noteworthy that DNN2, which uses 14 of the TNIRS
parameters, produced the predicted MMSE scores with a smaller
variance; however, these prediction results are biased as the
predicted MMSE scores of the participants with the measured
MMSE score under 20 are mostly higher than the actual
MMSE score.

Result From the Deep Neural Network
Trained With Both Time-Resolved
Near-Infrared Spectroscopy and Blood
Test Data
By applying both TNIRS and blood test data, we confirmed
that the third DNN (DNN3) generally improves prediction
accuracy (MAE: 3.91 ± 0.07, MAPE: 25.3 ± 0.4%), which was
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FIGURE 3 | Structure of the deep neural network for data analysis. The input vectors include age, blood test data, and TNIRS data. The output vector is regressed to

estimate the MMSE score. The hidden layer contains no backward connections from downstream layers.

FIGURE 4 | SO2 and optical path length (OP). MMSE score is correlated with (A) SO2 in the left and right PFC (r = 0.30, p < 0.01) and (B) right PFC (r = 0.30, p <

0.01). No significant correlation between MMSE score and OP is found, however, mean values of OPs in (C) the left PFC (mean: 17.9 and 18.0, p < 0.1) and (D) the

right PFC (mean: 18.2 and 18.6, p < 0.1) are different between the normal and impaired groups.

approximately 5% better than the result of LR and 3% better
than that of RF as discussed in Section Comparison Between
Two Types of Deep Neural Networks. In Figure 5C, there is
one outlier (measured MMSE score: 18, predicted MMSE score:
10.3) because of the extraordinary low values of 58.0% in SO2
in the left PFC (mean: 66.6±4.0%) and 84 mEq/L in Cl (mean:
103.1±3.6 mEq/L), where Age, SO2 in the left PFC, and Cl

are the most weighted variables in DNN3. The corresponding
participant suffered from both subjective symptoms of cerebral
hemorrhage and congestive heart failure.

A comparison of the residual errors between Group 1
(Measured MMSE score <16), Group 2 (Measured MMSE score
16–23), and Group 3 (Measured MMSE score >24) showed that
the mean residual errors were statistically different between the
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FIGURE 5 | Measured and predicted scores: (A) DNN1 (input variables: age and 23 blood test items), (B) DNN2 (input variables: age and 14 TNIRS parameters) and

(C) DNN3 (input variables: age, 14 of the TNIRS parameters and 23 blood test items).

three groups by one-way ANOVA (F(2,199) = 142.19, p < 0.001),
as shown in Figure 6. The prediction results are optimistic than
the measured MMSE scores, especially for the measured MMSE
score of <16.

By applying the cut-off values of ≥24 for normal and <24 for
risk of cognitive impairment, as shown in Table 4, DNN3 has the
prediction accuracy with 88.7% sensitivity and 100% specificity.
Note that the sample size of normal participants is 69, and it is
half of the ones with risk of cognitive impairment as 133.

Comparison
From the comparison of results between LR, RM, and DNNs
presented in Table 5, using a repeated five-fold cross validation,
we confirmed that the DNNs improved prediction accuracy
compared with LR and RM. In all three versions of the DNN,
the values for MAE were significantly lower (p < 0.001) than the
results for LR and RM. In particular, DNN3 generally improved
MAPE by 5% compared to the LR.

Adding both input variables of blood test and TNIRS into the
LR and RF did not lead to improvement in MAE. Because the
number of variables becomes 38 whereas the training sample size
is 200 during the repeated five-fold cross validation, these models
may suffer from the curse of dimensionality (i.e., exponentially
increasing sparsity to find the optimal solutions) (15). In contrast,
DNN3 showed the lowest MAE even when input variables were
added to this regression problem.

DISCUSSION

We examined the following points regarding the method of
estimating cognitive function based on TNIRS data and blood
test data: (1) differences in prediction accuracy between applying
TNIRS and blood test data, (2) the effect of combination of
TNIRS and blood test data on the prediction accuracy, and (3)
differences in prediction accuracy for cognitive function between
LR, RF and DNNmodels. We discuss each point below.

Differences in Prediction Accuracy
Between Applying TNIRS and Blood Test
Data
We evaluated the prediction accuracy of cognitive function by
MAE and MAPE to compare the differences between the results
of TNIRS and blood test data. We found that prediction using
TNIRS data exhibited lower MAE and MAPE compared with
those using blood test data, however, the difference in MAPE
between TNIRS and blood test data was only 0.3%. In the
present study, the TNIRS probes were set on the forehead, thus
measuring regional cerebral blood flow and oxygen metabolism
in the PFC, which plays an important role in cognitive function
(16). We reported that TNIRS parameters correlated with
cognitive function expressed by MMSE in aged people (17). In
contrast, blood test data reflect systemic metabolic dysfunction
which affects cognitive function including malnutrition (18),
anemia (19), lipid metabolism (20), purine metabolism (18), and
renal function impairment (21). That is, TNIRS directly reflects
cognitive function, while blood test data indirectly reflect it.

One of the DNNs (DNN3) exhibited the prediction accuracy
(MAE: 3.91 ± 0.07, MAPE: 25.3 ± 0.4%), which was 88.7%
sensitivity and 100% specificity by applying the cut-off values of
≥ 24 for normal and<24 for risk of cognitive impairment. On the
other hand, the studies of cerebrospinal fluid (CSF) biomarkers
for AD demonstrated that the accuracy and specificity were
between approximately 70 and 90% (22, 23). Compared with
these results, the diagnostic accuracy of our methods is similar
or even higher. It can be regarded as acceptable for real clinical
applications, however, the DNNs in this study were just modeled
using the training data of 202 patients and random search of
hyper-parameters through the repeated five-fold cross validation,
aiming at the comparison with the other regression models
rather than improvement in prediction accuracy. Estimation of
external validity in the prediction accuracy thus should be further
studied by testing various data with the conditions of different
populations including healthy people. In addition, further studies
are necessary to clarify the sex difference in dementia. It has often
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FIGURE 6 | Comparison of the residual errors between group 1 (measured MMSE score < 16), group 2 (measured MMSE score 16–23), and Group 3 (measured

MMSE score ≥ 24).

TABLE 4 | Prediction accuracy of the DNN3 in the two-class classification of

MMSE (N = 202, five-fold cross validation).

Ground truth MMSE Predicted MMSE Accuracy

≥ 24 < 24

≥ 24 69 0 Specificity: 100%

< 24 15 118 Sensitivity: 88.7%

been reported that women have a higher frequency of dementia
than men (24). As shown in Table 1, we observed no statistical
difference between the two groups in this study, and it did not
contribute to the prediction accuracy.

The Effect of Combination of TNIRS and
Blood Test Data on the Prediction
Accuracy
Then, we evaluated changes in prediction accuracy when both
TNIRS data and blood test data were added to the input layer
in the learning models. We found that when LR was used
to predict cognitive function, the combination of TNIRS and
blood test data as inputs resulted in lower prediction accuracy
than inputting TNIRS and blood test data separately. This
phenomenon is consistent with the curse of dimensionality in
linear models; that is, if the number of data dimensions becomes
too large, the number of combinations that can be expressed

by the data increases rapidly, and as a result, sufficient learning
results cannot be obtained with finite sample data (15). With
SELU activation function, dropout, and batch normalization
algorithms on each hidden layer, the DNNs were able to extracted
non-linear features from variables with noise and showed the
highest accuracy in MAE even with both input variables of
blood test and TNIRS data. Nonetheless, for the DNN models,
adding TNIRS data to the blood test data of the input layer
only improved MAPE by 1.0% compared to the use of blood
test data alone. These results suggest that, when predicting
cognitive function with DNN, adding TNIRS data to blood
test data has no major effect on improving the prediction
accuracy. On the other hand, the use of the blood test data
alone in DNN1 exhibited the prediction accuracy with 81.8%
sensitivity and 91.3% specificity, and it is rather suitable for
rapid mass-screening by considering the availability of blood
test data.

Differences in Prediction Accuracy
Between LR, RF and DNN Models
We also compared the prediction accuracy of cognitive function
between LR, RF, and DNN. The MAE and MAPE from the
results of DNN were the smallest when both TNIRS data and
blood test data were added, while LR showed the worst accuracy
(MAE: 5.11 ± 0.34, MAPE: 30.2 ± 1.3%) by adding the both
data. In particular, there is a strong correlation between SO2 in
the left PFC and right PFC (r = 0.79, p < 0.01), and SO2 in
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TABLE 5 | Comparison of prediction results (mean values from 10 trials of five-fold cross validation).

Selected variables and metrics Linear regression Random forest DNN Difference

between

results of

DNN and the

others

Blood test items (23 variables) MAE 4.73 ± 0.17 4.56 ± 0.06 4.11 ± 0.07 p < 0.001

MAPE 29.1 ± 0.8 (%) 29.6 ± 0.3 (%) 26.3 ± 0.4 (%)

TNIRS parameters (14 variables) MAE 4.69 ± 0.31 4.26 ± 0.09 3.97 ± 0.07 p < 0.001

MAPE 29.2 ± 1.1 (%) 27.7 ± 0.6 (%) 26.0 ± 0.3 (%)

Both input variables of blood test and TNIRS (23 + 14 variables) MAE 5.11 ± 0.34 4.36 ± 0.09 3.91 ± 0.07 p < 0.001

MAPE 30.2 ± 1.3 (%) 28.3 ± 0.4 (%) 25.3 ± 0.4 (%)

General improvement in MAPE was found only in DNNs (Bold).

the left and right PFCs are relatively weighted in LR. For the
non-linearmodels, RF andDNN, prediction accuracies improved
when both TNIRS data and blood test data were added. MMSE
score shown in Figure 3 is undoubtedly the non-linear response,
not only because the participants with the MMSE score under
16 were mostly hard to complete the test itself due to their
comorbidities, but also the maximumMMSE score is 30 whereas
healthy people can often achieve the score. RF also has the
nature of feature selection as an ensemble of unpruned regression
trees, induced from bootstrap samples in the training data, using
random feature selection for the tree induction process (25). This
random feature selection can prevent over-fitting to some degree.
Nonetheless, there was a lot of noise in the training data of the
250 participants, and RF was not able to handle this, especially
in cases where only data with noise were subsampled. From
the blood test data, ∼20 variables, with the exception of A/G,
PLT, and Cl, had <5% variable importance. From the TNIRS
data, most variables also had <5% variable importance, with
the exception of SO2 in the left and right PFCs. Most variables
in RF thus held lower weights, which were the same as the
noise level.

Interestingly, the prediction accuracy for cognitive
function differed depending on the MMSE score
(Figure 6). The underlying mechanism is not yet clear;
however, it should be considered that individuals with
low MMSE scores (MMSE score <16) may suffer from
more brain neuronal death compared to individuals with
high MMSE scores (MMSE score >24). The TNIRS
and basic blood test data in the present study reflect
CBF/oxygen metabolism in the PFC and systemic metabolic
disorders associated with the risk of cognitive dysfunction,
respectively; however, both methods cannot detect brain
neuronal cell death directly. Therefore, the DNN-based
prediction for cognitive function may underestimate
cognitive impairment.

Clinical Application of the DNN-Based
Prediction for Cognitive Impairment
The DNN-based prediction method of cognitive impairment
seems to be superior to the existing dementia screening test
such as MMSE for the following reasons. First, in contrast

to the MMSE which is subjective test, the present method is
objective test. Second, it is difficult to administer the MMSE
to individuals with disorders such as visual and hearing
impairments. In contrast, the DNN-based method evaluates
cognitive function in a short time. Finally, due to these
advantages, this method can perform mass screening tests of
cognitive impairment for a large number of subjects in a
short time.

Taking advantage of the above advantages, we are applying the
DNN-based prediction method to screening tests for dementia;
details were described in the previous study (4). Briefly, the
test is optionally performed in general health examination.
Those classified as Class A (predicted MMSE scores 28≤, ≤30;
normal) will receive general life guidance, while those assessed
as Class B (predicted MMSE scores (24≤, <28; suspected
MCI) or Class C (predicted MMSE scores <24; suspected
dementia) will be advised to visit the outpatient clinic for
further consultation. In the outpatient clinic, if their cognitive
function is not impaired or MCI, their systemic metabolic
disorders that are risk factors for dementia will be treated by a
general practitioner. If there is an apparent cognitive impairment,
MRI and other imaging modalities including TNIRS will be
performed. Patients diagnosed with dementia will be treated by
a dementia specialist.

Limitations of the Present Study
Finally, the limitations of the present study should be discussed.
First, we validated the prediction accuracy of the DNN models.
The accuracy of the DNN model of blood test data was further
validated in a new test group of patients after the training
process of the DNN model was done in the previous study,
however, in the present study the accuracy of the DNN model of
TNIRS was validated only by repeated five-fold cross validation
using the training data of 202 patients, due to less availability
of measured data of TNIRS parameters compared to the blood
test data. Second, most of the patients for training of the DNN
models received medical treatments for their systemic metabolic
disorders and cerebrovascular diseases at the time of this study.
These treatments might affect the training of the DNN models
of blood test data and TNIRS. Third, the DNN model of blood
test data might miss cognitive impairment in the patients whose
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cause is limited to the brain. Indeed, the DNNmodel of blood test
data missed cognitive impairment in the patients with chronic
cerebrovascular diseases who exhibited normal blood test data.
The use of TNIRSmay be useful to avoid suchmisdiagnosis using
the DNN model of blood test data (6). In order to establish the
DNN modes as a screening test for dementia, further studies are
needed to resolve these limitations.

CONCLUSION

The present study demonstrated that the DNN allowed for the
prediction of cognitive function expressed by MMSE scores with
high accuracy based on TNIRS and/or blood test data. We found
that (1) the DNN-based prediction using TNIRS data exhibited
lower MAE and MAPE compared with those using blood test
data, (2) the difference in MAPE between TNIRS and blood test
data was only 0.3%, (3) adding TNIRS data to the blood test data
of the input layer only improved MAPE by 1.0% compared to
the use of blood test data alone, whereas the use of the blood
test data alone exhibited the prediction accuracy with 81.8%
sensitivity and 91.3% specificity (N = 202, repeated five-fold
cross validation). The DNN model using blood test data seems
to be more suitable for mass screening of cognitive impairment
at present.
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