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Glaucoma is the second leading cause of blindness worldwide, affecting ∼80 million

people by 2020 (1, 2). The condition is characterized by a progressive loss of retinal

ganglion cells (RGCs) and their axons accompanied by visual field loss. The underlying

pathophysiology of glaucoma remains elusive. Glaucoma is recognized as a multifactorial

disease, and lowering intraocular pressure (IOP) is the only treatment that has been

shown to slow the progression of the condition. However, a significant number of

glaucoma patients continue to go blind despite intraocular pressure-lowering treatment

(2). Thus, the need for alternative treatment strategies is indisputable. Accumulating

evidence suggests that glial cells play a significant role in supporting RGC function and

that glial dysfunction may contribute to optic nerve disease. Here, we review recent

advances in understanding the role of glial cells in the pathophysiology of glaucoma.

A particular focus is on the dynamic and essential interactions between glial cells and

RGCs and potential therapeutic approaches to glaucoma by targeting glial cells.

Keywords: Glaucoma, glia, retinal ganglion cells, Müller glial cells, microglia, astrocytes, oligodendrocytes, retinal

glia interactions

INTRODUCTION

Glaucoma is a group of eye diseases that can cause vision loss and blindness. The number of
people with glaucoma is increasing due to the age-related nature of the disease (3). Hence, it
is estimated that more than 120 million people worldwide will suffer from glaucoma in 2040
(4). Glaucoma is characterized by progressive degeneration of retinal ganglion cells (RGCs) and
is often asymptomatic until its advanced stages when vision loss is irreversible (5). Glaucoma
can be classified as either primary or secondary, with secondary glaucoma attributable to
known pathologies or medications. Glaucoma may be further classified as either open-angle or
angle-closure according to the anatomy of the aqueous outflow pathway (2, 6). In all subtypes of
glaucoma, the inner retinal degeneration, especially the gradual loss of RGCs, is a hallmark (7).
RGCs are the output neurons of the retina, and their axons transfer visual information from the
retina to the brain (8). RGC dysfunction and death lead to vision impairment and ultimately to
blindness. To date, no approved treatments for glaucoma directly target RGCs. Instead, the only
available treatments are indirectly protective for RGCs by lowering the intraocular pressure (IOP).
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It is, therefore, crucial to identify cellular mechanisms for the
prevention of RGC degeneration, the repair of dysfunctional
cells, and the promotion of axonal regeneration to limit the
projected burden of vision impairment and blindness from
glaucoma (9, 10). Although the most investigated risk factors
for glaucoma progression include IOP, age, genetic background,
thinner corneal thickness, and vascular dysregulation (11), other
disease mechanisms such as oxidative stress, mitochondrial
dysfunction, excitotoxicity, and immunological processes may
contribute to the pathophysiology of the disease (2, 12, 13).
In this context, accumulating evidence suggests that glial cells
in the retina and optic nerve may play important roles in the
pathogenesis of RGCs (14–16). However, despite having been
studied for more than a century, there are substantial aspects of
the interrelationship between glial cells and RGCs that are still to
be elucidated (17, 18).

Emerging literature emphasizes the roles of glia in both the
maintenance of the retina and in the pathogenesis of glaucoma
(15, 19). Although Müller glia, astrocytes, oligodendrocytes,
and microglia have different developmental origins, they
are now known to share many functions. Although some
functions are subserved simultaneously by different glia,
others are performed by specific glial subtypes (14, 19–22).
Similarly, attention has turned to the complex interactions
between retinal glia and neurons and the centrality of
these interactions to retinal homeostasis (14, 19, 23, 24).
Likewise, it is evident that the glial response to injury
stimuli can further perpetuate RGC damage (17, 23, 25, 26).
Despite these important advances in our understanding of
the interactions between glia and retinal neurons in health
and in the context of glaucoma, there is still much to
be learned.

GLIAL CELLS OF THE RETINA ARE NOT
JUST SUPPORT CELLS

Glial cells are named after the Greek word for glue, as it was
thought that their function was simply to bind the neurons
in the central nervous system (CNS) together (27). It is
now understood that glial cells play a range of diverse and
complex functions beyond the provision of structural support
to neurons. Two basic types of glial cells are found in the
human retina: macroglia and microglia. Retinal macroglia are
comprised of Müller glia and astrocytes. Macroglia maintain
retinal homeostasis by regulating ion exchange, glucose, and
neurotransmitter transport (14). Microglia respond to retinal
injury and are important in the maintenance of neuronal
networks and the mediation of neuroinflammation (14, 28–
30). In the optic nerve, oligodendrocytes, another type of
macroglia, and astrocytes provide essential support to RGC
axons as they travel to the brain (31). Accumulating evidence
suggests that both types of glial cells are interacting with the
retinal and optic nerves, and are important contributors to
the pathophysiological processes leading to glaucomatous RGC
loss (14, 15, 17, 23, 32–34).

A PARTNERSHIP BETWEEN MÜLLER GLIA
AND RETINAL GANGLION CELLS

Müller glia are found throughout the retina, with processes
extending from the outer limiting membrane to the inner
limiting membrane and surrounding the RGCs. Their unique
morphology and distribution are related to the role of Müller
glia as mediators of the transport of molecules between RGCs
and the vitreous humor, retinal vessels, and the subretinal space
(15) (Figure 1). Müller glia have multiple functions and are
symbiotically associated with RGCs.

Glutamate Clearance to
Avoid Neurotoxicity
An essential role of Müller glia is their ability to rapidly remove
excess glutamate from the extracellular space by amino acid
transporters (excitatory amino acid transporters), keeping it
at low concentrations to avoid excitotoxicity (18, 24, 35, 36).
Glutamate is converted to glutamine via the glial-specific enzyme
glutamine synthetase. Glutamine subsequently serves as the
precursor for glutamate in neurons. In patients with glaucoma
and some animal models of the disease, an augmentation of
glutamine expression in Müller glia has been shown, indicating
an enhanced activation of the glutamate–glutamine cycle (37–
39). In addition, it is thought that increased glutamine levels in
Müller glia might be due to reduced glutamine requirement in
damaged RGCs (37). In addition to removing excess glutamate
from the synapse, Müller glia can also use glutamate as a
metabolic substrate (16, 18, 26) (Figure 2).

Glial Cell Line-Derived Neurotrophic Factor
in Glutamate Homeostasis
Another crucial Müller glia feature is the ability to release
neurotrophic factors. In this context, studies have shown that
ischemia-induced glial cell activation results in the release
of glial cell line-derived neurotrophic factor (GDNF), which
increases glutamate uptake, thereby potentially facilitating
neuroprotection by reducing glutamate-induced excitotoxicity
(37, 40). The potential neuroprotective role of GDNF has
been supported in a rat ocular hypertension model, where
an intravitreal injection of GDNF-containing microspheres
was shown to increase RGC survival while reducing glia
cell activation (41). The neuroprotective effect of GDNF has
furthermore been associated with reduced activation of the L-
glutamate receptor, N-methyl-D-aspartate receptor (NMDAR)
(42), by receptor desensitization and downregulation in both
neocortical neurons and astrocytes through activation of
mitogen-activated protein kinase (MAPK) (43, 44). However,
there are conflicting results regarding the effect of GNDF on
glutamate homeostasis, with one study suggesting that GDNF
pre-treatment can increase neuronal cell death via upregulation
of glutamate transporters with a consequent increased excitotoxic
concentration of glutamate (45).
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FIGURE 1 | Cellular architecture of mammalian retina. Retina consists of 10 layers. Starting with layer furthest away from vitreous humor (VH), layers of retina are

retinal pigment epithelium (RPE), photoreceptor layer (PhL), outer limiting membrane (OLM), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer

(INL), inner plexiform layer (IPL), retinal ganglion cell layer (RGC), retinal nerve fiber layer (RGC axons) (NFL), and inner limiting membrane (ILM). Main types of glial cells

found in mammalian retina are macroglia [Müller glia (MG) and astrocytes (As), and microglia (Mi)]. Glial cells serve to maintain retinal homeostasis. As illustrated, Müller

glia traverses retina, providing structural support to neurons, mediating transport of molecules between retinal vessels and RGCs, and secreting neurotrophic factors,

such as BDNF, NT3, and NGF. Furthermore, processes of Müller glia comprise outer and inner limiting membranes of retina. Müller glia, end-feet of astrocytes and

vascular endothelial cells, and basal membrane constitute blood–retinal barrier. BM. basal membrane; Ch, choriocapilaris.

N-Methyl-D-Aspartate Receptor Activation
Is Crucial in Retinal Homeostasis
In general, safeguards against glutamate excitotoxicity have
been proposed to be important treatment targets to prevent
retinal neurodegeneration. In particular, NMDAR activation has
been extensively studied and found to be essential for retinal
homeostasis but, at the same time, to cause neurodegeneration
when overactivated (46). To activate NMDARs, D-serine, or
glycine along with glutamate are required. D-serine is a
physiological coagonist of the NMDA subtype of glutamate
receptor (47). The enzyme serine racemase has been shown to
catalyze the conversion of L-serine to D-serine in rats and mouse
Müller glia and in cortical astrocytes (46, 48). Furthermore, D-
serine has been shown to play an important regulatory role in
NMDAR response to light-evoked activity in retinal neurons
(49). D-serine and serine racemase are mainly localized in
Müller glia and retinal astrocytes (48), and in this regard, glia
dysregulation of D-serine metabolism has been associated with
retinal neurodegeneration, including glaucoma (47, 50).

Glycolysis Is the Energetic Support of
Müller Glia
Bioenergetic support is central to retinal homeostasis, as
the retina is one of the most metabolically active tissues

in the body (51). Although retinal neurons are highly
dependent on mitochondrial phosphorylation to produce
adenosine triphosphate (ATP), aerobic glycolysis has been shown
to be the major provider of ATP in Müller glia (52). It is still
unclear why glucose is not completely oxidized under aerobic
glycolysis conditions in Müller glia. Some studies have suggested
that the absence of the aspartate glutamate carrier (AGC) in
Müller glia may explain the predominance of glycolysis in these
cells (53, 54). Thus, AGC is a major component of the malate-
aspartate shuttle (MAS) that translocates electrons produced
during glycolysis to mitochondria to oxidize glucose (54).
Despite some studies claiming that oxidative phosphorylation
is less likely in Müller glia, we and others have observed
that Müller glia switch primarily to mitochondrial respiration
under glucose-deprived conditions (26, 55–58), whereas in
the presence of sufficient intracellular glucose levels, Müller
glia mainly rely on a combination of aerobic and anaerobic
glycolysis (59, 60).

Lactate Can Act as a Primary Energy
Source
The predominant glycolysis during normal conditions results
in the aerobic conversion of glucose into lactate, which is
thought to be shuttled to the RGCs. The shuttling of lactate
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FIGURE 2 | Glial cell and neuronal interactions in human retina. Müller glia and astrocytes take up excess extracellular glutamate to prevent glutamate-induced

excitotoxic damage of retinal ganglion cells (RGC). Once glutamate is transported into glial cells, it is converted into glutamine by glutamine synthetase (GS). Glutamine

can then be released by glial cells, taken up by neurons, converted into glutamate by glutaminase (GLS), and reused in synaptic neurotransmission. Glutamate can

also be converted into α-ketoglutarate by glutamate dehydrogenase (GD) and used as an energy substrate. Müller glia supply bipolar cells and RGCs with energy

substrates in form of lactate. Additionally, lactate released by Müller glia may function as a signaling molecule for G-protein coupled receptor 81 (GPR81) to inhibit

glutamate release. EAAT, excitatory amino acid transporter; GLUT, glucose transporter; MCTs, monocarboxylate transporters; NMDAR, N-methyl-D-aspartate receptor.

from glia to retinal neurons was originally hypothesized by
Pellerin et al. (61). Their hypothesis predicted that uptake
of glutamate would trigger glycolytic production of lactate,
which in turn would be released and taken up by the
surrounding neurons to fuel oxidative metabolism (62). It
is clear that the lactate shuttle alone cannot explain the
complex partnership between Müller glia and RGCs. Although
lactate is highly produced in Müller glia, the overall role

of lactate is likely to be greater in the retina compared
with other tissues. Hence, the content of lactate is much
higher in the retina compared with other tissues (16), and
studies have reported a preference for lactate as a primary
energy source in both Müller glia and RGCs compared with
glucose (58, 63, 64).

It is clear that lactate is at the crossroads between glycolytic
and oxidative energy metabolism and that more studies are
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necessary to understand further the roles of lactate in retinal
homeostasis and pathology (65).

Mitochondrial Dysfunction Is Associated
With Glaucoma
Nevertheless, lactate metabolism is tightly associated with
mitochondrial function, and disturbances in such have
been identified as important to numerous retinal and optic
nerve diseases, including glaucoma (52, 66, 67). Thus,
age-related impairments of mitochondrial function may
exacerbate these diseases (67–70). Mitochondrial genetic
variations have been associated with primary open-angle
glaucoma (POAG) in large genetic studies (71). In particular,
genes involved in mitochondrial lipid and carbohydrate
metabolism pathways have been implicated in the pathogenesis
of POAG and normal-tension glaucoma (72). In line with
these findings, metabolomic studies have also identified
dysfunctional carbohydrate metabolism in POAG (73).
In parallel, Müller glia seems to be vulnerable to the
effects of metabolic stress and mitochondrial dysfunction
(52, 54, 59, 74, 75). Because many of the essential functions of
Müller glia are energy-dependent, mitochondrial dysfunction
leaves these cells vulnerable during glucose restriction
(52, 59).

Retinal Diseases Cause Müller Gliosis and
Nitric Oxide Production
As Müller glia span the entire depth of the neural retina, they
are vulnerable to most forms of retinal injury. Accordingly,
Müller gliosis, characterized by increased expression of the
glial fibrillary acidic protein and activation of extracellular
signal-regulated kinases, occurs in a wide range of retinal
diseases (23, 76–78). Immediately after injury, Müller gliosis
may be neuroprotective due to the production and release of
antioxidants and trophic factors, including expression of ciliary
body-derived neurotrophic factor (CNTF) (79). In contrast,
later-stage gliosis has been associated with cell death and the
establishment of a glial scar that inhibits neuronal regeneration
(15, 80, 81). A particular pathological event during gliosis is the
accumulation of nitric oxide (NO). Thus, NO has been shown to
cause intracellular damage by inhibiting mitochondrial function,
lowering ATP, and via direct damage to DNA. Furthermore,
in a rat experimental glaucoma model, NO synthase (NOS)
levels were found to be increased at the optic nerve head in
response to IOP increase, resulting in increased NO levels (82).
Despite the substantial literature on the neurotoxic effects of
NO, NO also plays an important role in regulating retinal
vascular tone to match neuronal activity (83). Thus, although NO
contributes to neurovascular coupling and retinal homeostasis,
it may become injurious in excess and in the context of
retinal injury.

Overall, there is a growing body of evidence indicating that
Müller glia is essential for RGC survival and that Müller glial
dysfunction and stress are important factors in the pathogenesis
of glaucoma (26, 80).

ASTROCYTES AND THEIR ROLE IN
RETINAL GANGLION CELL HOMEOSTASIS
AND GLAUCOMA

Retinal astrocytes, also called astroglia, link neurons to blood
vessels and are located almost exclusively in the retinal
nerve fiber layer (84). They have been found to provide
structural and physiological support to optic nerve head
axons (85) and modulate remodeling of the extracellular
matrix in response to IOP elevation (86, 87). During
retinal injury or in response to elevated IOP, astrocytes
are activated, followed by morphological changes, such as
cell body hypertrophy and loss of thick processes (17, 87).
In addition, astrocyte processes have been shown to lose
their parallel orientation and distribution once axons are
lost (88).

Astrocytes Have Several and Different
Functions in the Retina
Retinal astrocytes supply bioenergetic substrates to RGCs
via the glutamate/glutamine cycle and via the transport of
lactate and pyruvate (88, 89). It is thought that astrocytes
account for more than 70% of the mitochondria in the
optic nerve head (90, 91). In this context, astrocytes have
been shown to engulf and degrade dysfunctional axonal
mitochondria, a process known as transmitophagy (92, 93).
Moreover, astrocytes have been shown to remove ions and
recycle neurotransmitters from the extracellular space (28).
During various pathological events, including elevated IOP
or simply during aging, astrocytes undergo gliosis, a process
of neurochemical and morphological remodeling (90, 94).
Astroglial activation in glaucoma has been shown to increase
the expression of many factors, including endothelin-1 (ET-
1), tumor necrosis factor-α (TNF-α), oxidative stress molecules,
and trophic factors, e.g., CNTF, with varied neuroprotective and
harmful properties (17, 25, 32, 95, 96).

Activated Astrocytes Play a Role in
Glaucoma
In the course of progressive glaucoma, reactive gliosis and
inflammation may potentially promote regeneration and
remodeling in the optic nerve (90, 94). Within this era, IOP-
induced mechanical stress has been shown to upregulate
epidermal growth factor receptor after activation of astrocytes
and finally leading to a neurodegenerative response with the
upregulation of TNF-α, matrix metalloproteinases (MMPs),
and endothelin and nitric oxide synthase-2 (NOS-2) (97–
100). Upregulated expression of the phagocytosis-related
gene Mac-2 (101) and ET-1 have also been described in
experimental glaucoma as well as in the plasma and aqueous
humor of glaucoma patients, indicating an association between
these molecules and phagocytic degeneration of myelin in
the optic nerve head transition zone in glaucoma patients
(14, 92).
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Astrocytes Are Involved in Retinal
Homeostasis
Overall, there is considerable evidence that astrocytes are
essential for the maintenance of retinal homeostasis by clearing
debris fromRGC axons, supporting RGCswith energy substrates,
and finally by removing excess neurotransmitters from the
synaptic cleft (89, 95, 102). In contrast, activated astrocytes
may have detrimental properties such as secretion of neurotoxic
molecules and induction of inflammatory responses (14, 17, 95,
103, 104). Despite the lower abundance of astrocytes compared
with Müller glia in the retina, the two macroglia subtypes have
multiple overlapping functions but also separate properties that,
in most cases, remain unknown. Future studies are highly needed
to investigate the individual and the similar functions of both
astrocytes and Müller glia. Moreover, their potential partnership
is also important to understand. Current knowledge of such a
partnership is discussed later.

OLIGODENDROCYTE AND THEIR
ESSENTIAL SUPPORT OF RETINAL
GANGLION CELL AXONS

Oligodendrocytes myelinate axons in the CNS (31), significantly
reducing the energy requirements for the propagation of action
potential and further protecting against various cytotoxic
and excitotoxic factors (105, 106). A single oligodendrocyte
can produce numerous myelin segments on multiple axons
(107). Myelinating oligodendrocytes express neurotransmitter
receptors, ion channels, transporters, and gap junctions
(108). RGC axons remain unmyelinated until they reach the
retrolaminar portion of the optic nerve. At this point, the axons
are ensheathed by and supported by oligodendrocytes (31).

Oligodendrocytes Support Metabolic
Transport
Oligodendrocytes are great examples of metabolic coupling
between glia, which furnishes essential metabolic substrates to
RGC axons (108, 109). Thus, oligodendrocytes have been shown
to shuttle lactate to axons, thereby promoting axonal function
and survival (107, 110). Both lactate and pyruvate are transported
via monocarboxylate transporters (MCTs). MCT-1 transports
lactate out of the oligodendrocyte membrane, whereas MCT-2
transporters are located on the RGC-axons and transport lactate
into the RGC-axon (111). Astrocytes are also involved in lactate
transport, as glucose is taken up in astrocyte processes from
the blood vessels and metabolized to lactate/pyruvate, which is
then transported to the oligodendroctyes via gap junctions and
subsequently to the axons (107).

Poor Myelination Is Involved in
Neurodegeneration
An experimental link to the potential importance of impaired
bioenergetic supply to axons in glaucoma has been provided.
Thus, Rindholm et al. performed a study on mutant and
transgenic mice with deficient proteolipid protein, a principal
component of myelin, and showed that these mice had axonal

degeneration, whereas the action potential propagation remained
intact. Rindholm et al. further investigated the impact of myelin
basic protein deficiency and reported that these mice lacked
both compacted myelin and action potential propagation in the
absence of axonal degeneration (112–114). Overall, these studies
indicated that oligodendrocytes provide axons with support for
survival and action potential propagation and that a dysbalance
in oligodendrocyte myelination can be detrimental for RGC axon
function and survival (112).

Mitochondrial Dysfunction Is Associated
With Glaucoma
Mitochondrial dysfunction has also been shown to play crucial
roles in the homeostasis of oligodendrocytes. Thus, mitochondria
are essential for the development of myelin sheaths and the
development of carbon skeletons and lipid metabolism (115).
Oxygen starvation and glucose deprivation have furthermore
been shown to inhibit myelin development, and added together,
multiple stressors have been found to have a detrimental
impact on oligodendrocytes and thus associated with retinal
neurodegeneration, such as seen in glaucoma (116).

In humans, optic nerve oligodendrocytes from glaucoma
patients have been found to have smaller mitochondria compared
with age-matched controls (116), supporting findings in the
DBA/2J mouse model of glaucoma in which bioenergetic
impairment was associated with axonal degeneration (114).
Overall, there is some evidence for the involvement of
oligodendrocytes in the pathogenesis of axonal dysfunction and
loss. However, future studies are needed to investigate further
how these glial cells predispose to axonal metabolic compromise
and loss in glaucoma (117).

MICROGLIA AND THEIR IMPACT ON
RETINAL GANGLION CELL SURVIVAL AND
FUNCTION

Microglia are innate immune cells of the CNS. Activation of
microglia may be triggered by multiple events (20), such as
ATP release from nerve terminals, activated immune cells or
damaged cells (118), neurotransmitter accumulation (119), the
release of growth factors or cytokines (120), and changes in ion
homeostasis (121). Activation of microglia is highly regulated.
Hence, beneficial activation of microglia leads to the secretion
of anti-inflammatory cytokines, such as interleukin (IL)-10 vs
interleukin-10 (IL-10) that inhibits the production of pro-
inflammatory cytokines by microglia (122–124). In contrast,
marked activation of microglia in the setting of major insults
results in the release of pro-inflammatory cytokines and cytotoxic
agents, such as TNF-α, IL-1β, IL-6, inducible NOS, and NO,
which in turn kill potential pathogens (125, 126) (Table 1).

Activated microglia migrate toward sites of injury due to the
expression of β-integrin CD11α (126) in a process mediated
by the transcription factor nuclear factor-kappa-light-chain-
enhancer of activated B cells (2). In addition, microglia support
myelination, oligodendrogenesis, and neurogenesis, as well as
stimulate synaptic formation and maturation (144).
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TABLE 1 | Effector molecules of activated microglia.

Growth factors References

Basic fibroblast growth factor (127, 128)

Transforming growth factor α (129, 130)

Transforming growth factor β (129)

Cytokines

Interleukin-1α (129, 131)

Interleukin-1β (132, 133)

Interleukin-3 (130)

Interleukin-6 (134, 135)

Interleukin-10 (136, 137)

Tumor necrosis factor α (132, 138)

Complement factors

C1, C2, C4 (129, 139)

Free radicals

Superoxide anions (138, 140)

Nitrix oxide (141, 142)

Adapted from Minghetti et al. (143).

Activated Microglia and Glaucoma
Substantial evidence has shownmicroglial involvement in several
eye diseases, including glaucoma (34, 145–148). In glaucoma,
activated microglia have been described in clusters around
blood vessels in the injured optic nerve and choriocapillaris,
indicating an innate immune activation (149, 150). Dual roles
for activated microglia have been proposed in glaucoma. On
the one hand, activated microglia can phagocytose degenerated
or dying RGCs, thereby maintaining a retinal environment
free of toxic molecules (33), as well as the ability to secrete
neurotrophic factors, such as brain-derived neurotrophic factor
(BDNF) and CNTF (151), which provide neuroprotection and
possibly promote neuroregeneration (95). On the other hand,
chronic microglial activation leads to the release of neurotoxic
and pro-inflammatory molecules, as mentioned earlier (28).
In rodent glaucoma models, where mice were exposed to
either hypoxic damage or ocular hypertension, a release of
TNF-α and IL-1β from activated microglia accompanied by
apoptosis of RGCs was found, supporting the involvement
of microglia in glaucomatous neurodegeneration (152, 153).
In addition, in an experimental rat model of glaucoma,
microglial activation was shown to increase inducible NOS
expression, NO production, and RGC injury (154). Activated
microglia have furthermore been shown to release reactive
oxygen species and prostaglandin E2, which predispose to
RGC apoptosis (155). In glaucoma, microglial cell activation
at the optic nerve head has been shown to be associated with
altered cellular morphology, protein expression, and antigen-
presentation (149, 156). Moreover, damage-associated molecular
patterns (DAMPs), released by RGCs or by astroglia in the optic
nerve head, which can trigger an inflammatory response, have
been shown in response to elevated IOP (32). Finally, microglial
activation has been correlated with axonal degeneration in an
experimental glaucoma model (33).

Microglia, Friend, or Foe?
As with macroglia, significant research has suggested that
microglia can be considered either friend and foe depending
on the degree of activation and context (21, 77, 143, 157, 158).
One mechanism by which microglial activation is controlled is
via a series of cell surface receptors (33). Thus, microglia are
usually activated only when necessary to minimize safety damage
to neighboring cells (159). Consequently, damage to RGCs may
occur as observed in glaucoma when microglial homeostasis
is disrupted. The expression of several inhibitory receptors
decreases with age. Examples of such receptors are CX3CR1 and
CD200. Ligand binding to CX3CR1 is crucial for the elimination
of damaged or dying cells, whereas ligand binding to CD200
receptors leads to modulation of activated microglia during
chronic as well as acute inflammation (138, 159). Other receptors
vary with sex and age, such as the purinergic receptors P2 that
bind to ATP to mediate intercellular communication (159). In
a mice model of glaucoma, it has been demonstrated that a
deficient activation of CX3CR1 enhances microglia activation
and leads to neurotoxic loss of RGCs (34).

Emerging evidence exists on the impact of autophagy in
microglia activation (160). In this context, autophagymodulation
is thought to regulate microglia phagocytosis and inflammatory
response (160, 161). Autophagy can either be considered
as pro-inflammatory or anti-inflammatory depending on the
acute or chronic stage of the injury (161). Potentially, the
balance between autophagy and microglia can be regulated by
pharmacological inhibition of, e.g., 3-methyladenine. Finally,
studies indicate that some humans are genetically impaired
of basal autophagy, which can impact retinal homeostasis
and potentially promote retinal neurodegeneration, hereunder
glaucoma (162–164). Future studies are needed to investigate
further the partnership between autophagy and microglia as well
as to elucidate further the interaction between microglia as well
as other glia subtypes and RGCs.

RETINAL GLIAL INTERACTIONS

Emerging evidence has identified the importance of cross talk
between retinal glial cells in health and disease (14, 165–167)
(Figure 3). In general, glia interactions attempt to maintain
retinal homeostasis and regulate each other’s activity. However,
glia interactions can also create imbalance and thus contribute to
retinal neurodegeneration.

An example of a glia interaction is the modulation of T cell
response due to microglia antigen presentation (165), which
in turn regulate the inflammatory cytokine levels, including
TNF-α and IL-1β, followed by astrocyte activation (28, 168).
Furthermore, microglial migration and immune cell recruitment
have been correlated with Müller glial activation (14), indicating
tight coordination of retinal immune responses (169). In line
with this, activated microglia secrete TNF-α, CCL2 (MCP-1),
MCP-3, MIP-1α, MIP-1β, and CCL5 (RANTES), which mediate
activation and recruitment of additional microglia, amplifying
the inflammatory response (84, 165, 170). In addition, microglia-
derived IL-1β has been shown to upregulate the expression of
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FIGURE 3 | Glial interactions in retina and optic nerve. In retina, astrocytes, Müller glia, oligodendrocytes, and microglia widely interact to maintain retinal homeostasis

by release of trophic factors and cytokines, ATP-exchange, phagocytosis of neuronal debris, antigen presentation, and by promoting activity of each other.

Furthermore, retinal glia cells are interactively involved in maintaining retinal vessels as well as blood–retinal barrier, for example, through interactions between microglia

and astrocytes. Some glial interactions also impair function of other glial cells. In particular, microglia via release of cytokines (IL-1β and TNF-alpha) affect function of

oligodendrocytes, which myelinate axons of retinal ganglion cells in optic nerve. However, microglia can also contribute to oligodendrogenesis. Although glial

interactions attempt to maintain retinal homeostasis, they can also promote retinal neurodegeneration. Prodegenerative factors released from glial cells to interact with

one another are highlighted in red.

Ccl2, Cxcl1, and Cxcl10 in Müller glia, which has been associated
with retinal neurodegeneration (171). Another example of
microglia and Müller glia interaction is the secretion of
microglia-derived nerve growth factor (NGF), BDNF, and CNTF
from microglia that in themselves protect RGCs (172) but also
modulate the production of basic fibroblast growth factor and
GDNF in Müller glia, conferring neuroprotection (167, 173).
Both astrocytes, microglia, oligodendrocytes, and neurons secrete
MMPs (174). Under normal conditions, astrocytes and microglia

express MMP-2 (gelatinase A) in the foot processes near blood
vessels (175). Upon astrocyte and microglial activation, MMP-
2 is, however, increased, thereby causing increased permeability
of the blood–retinal barrier (176), angiogenesis, and glial
scar formation (177). Activated microglia also express MMP-3
(stromelysin-1), which in turn activates proMMP-9 (178). MMP-
9 has been found to be elevated when there is an increase in the
blood–retinal barrier permeability. In line with this, an MMP-
9 increase has been shown in diabetic rat retinas when glucose
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levels rise (176). MMP-9 has also been implicated in myelin basic
protein degradation, and it has therefore been suggested that
MMP-9 is associated with demyelination and axonal injury (178–
180). Finally, both the effects of MMP-9 and MMP-3 have been
shown to be enhanced by TNF-α and IL-1, further indicating
complex interactions between molecules secreted by different
retinal glia (181–183).

Glia–glia interactions have also been shown between
oligodendrocytes and microglia as well as astrocytes. In this
context, studies have shown that microglial activation can cause
astrogliosis and apoptosis of oligodendrocytes via TNF-α and
IL-1β, causing an increase in MMP production in astrocytes
and microglia as well as a possible induction of oxidative stress,
inflammation, and glutamate toxicity (183–185).

Although there is currently relatively sparse literature on
glia–glia interactions, it can be expected that this interaction
will prove to be very relevant for both the understanding of
retinal homeostasis and for neurodegenerative diseases such as
glaucoma (186).

THERAPEUTIC APPROACHES

Targeting Retinal and Optic Nerve Glial
Cells to Treat Glaucoma
Glial cells in the retina and the optic nerve play an important
role in supporting RGCs and their axons, and because glial cell
dysfunction has been implicated in glaucoma, it is conceivable
that future treatments for glaucoma may target glial cells.

Targeting Müller Glia and Astrocytes
Modulation of Glutamate via N-Methyl-D-Aspartate

Receptors
RGC damage leads to elevated glutamate levels, causing
NMDARs to be overstimulated with a consequent increase
in Ca2+ influx and excitotoxicity (187). Impaired clearance
of glutamate by Müller glia is involved in the pathogenesis
of both glaucoma and diabetic retinopathy (37, 188, 189).
Amidation and oxidation are the two routes of glutamate
disposal. In a cultured rat retinal Müller cell line, treatment
with hydrocortisone was shown to increase the amidation of
glutamate to glutamine, whereas the addition of branched-
chain keto acids was found to enhance oxidation of glutamate,
suggesting that intracellular levels of glutamate play a role in
the removal of extracellular glutamate (35). In a rodent model
of ocular hypertension, the use of memantine nanoparticles,
a non-competitive NMDAR antagonist, conferred RGCs
neuroprotection (190). Unfortunately, oral memantine did not
show any significant prevention of glaucoma progression when
tested in a clinical trial (191). Another modulator of glutamate-
induced toxicity, brimonidine, has been proposed to slow the
rate of glaucoma progression in glaucoma patients in an additive
manner other than its IOP-lowering effect (192). In a rodent
model, brimonidine was shown to modulate glutamate uptake
by glial cells after induction of ocular hypertension, suggesting
neuroprotection through modulation of macroglia (193).

Neurotrophin Administration
Neurotrophins are important in the development, differentiation,
and survival of RGCs. Many of these neurotrophins are produced
by glial cells during normal conditions. In this context, BDNF has
been shown to protect RGCs in mice with ocular hypertension
(194). Furthermore, it has been shown that GDNF combined
with BDNF convey synergic protective effects (195). Finally,
glial cells are important producers of neurotrophins, including
NGF, BDNF, CNTF, neurotrophin-3, and neurotrophin-4/5, all
having potential as neuroprotective properties (196). Among
the mentioned neurotrophins, more have already been tested
in preclinical settings. An example is mature BDNF, which
has been targeted to secretory vesicles within RGCs by adeno-
associated virus gene therapy, increasing BDNF production
and long-term BDNF receptor expression in a mouse model
of optic nerve damage and in a rat model of chronic IOP,
which provides neuroprotection against RGCs (197). In addition,
increased release of CNTF by Müller glia has been shown
to provide endogenous neuroprotection of RGCs after both
ischemias and in response to the induced ocular hypertension
(194). Recently, an encapsulated cell technology has allowed a
controlled, continuous, and prolonged administration of CNTF
in animal models that provide photoreceptor protection (198).
In general, the administration of exogenous neurotrophins or
the augmentation of endogenous production has been shown to
have a protective effect on RGCs in several experimental models,
highlighting this as a potential therapeutic strategy for glaucoma
(199). The efficacy of such treatments may, however, decrease
over time as treatment with chronic neurotrophin administration
can lead to downregulation of the relevant receptors (197).

Targeting Astrocytes and Astrocyte Activation
Astrocyte activation may be an important factor in the
pathogenesis of glaucoma. In this context, inhibition of astrocyte
activation has been shown to increase neuronal survival in
experimental glaucoma models via modulation of a tyrosine
kinase inhibitor of epidermal growth factor receptor (200) or
blocking of endothelin-1 (201). Similarly, the neuroprotective
effects of calcium channel blockers and endothelin blockers
in humans with glaucoma are thought to act via this
mechanism (202).

In addition to the previously mentioned involvement of TNF-
α in microglia activation, TNF-α has also been shown to mediate
both astrocyte, Müller glia, and oligodendrocyte activation
followed by RGC death (203–205). In a rodent glaucoma
model, this detrimental effect of TNF-α was demonstrated
after intravitreal TNF-α injections and reversed by an antibody
neutralizing TNF-α activity or by deleting the genes encoding
TNF-α or its receptor, TNF-R2 (204). Future studies are needed
to define further the potential role of TNF-α inhibitors as a
treatment target for neuroprotection (206).

Nutrition may affect retinal homeostasis and, in particular,
mitochondrial function. Hence, a ketogenic diet was shown
to increase mitochondrial respiration, hereunder mitochondrial
respiration in astrocytes (207, 208). In addition, the ketogenic
diet has been reported to restoremonocarboxylate transporters to
boost the antioxidant response followed by preservation of RGC
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function and structure without affecting glycogen stores (117).
Finally, a low-carbohydrate diet has been shown to reduce the
risk of POAG in a US cohort (209). In summary, nutrition and
ketogenic diets may increase the resistance toward glaucomatous
neurodegeneration. Future studies are, however, necessary to
further investigate such potential.

Targeting Oligodendrocytes
Inhibition of Inflammatory Mediators
Oligodendrocyte degeneration has been correlated to TNF-α
release followed by increased IOP and optic nerve damage. In
this context, suppression of TNF-α, with an anti-TNF-α blocking
antibody or the deletion of the gene encoding TNF-α, was shown
to elicit neuroprotective effects in the optic nerve and RGCs in a
mouse model of glaucoma (204).

Inhibiting Lingo-1
LINGO-1 is a leucine-rich repeat, expressed on oligodendrocytes
and neurons. It negatively regulates differentiation and
myelination, neuronal survival, and axonal regeneration.
In glaucoma models and human CNS diseases, LINGO-1
expression has been found to be upregulated (210). LINGO-1 has
furthermore been shown to have negative regulatory functions
in axonal regeneration, neuronal survival, and oligodendrocyte
differentiation as well as myelination. In addition, LINGO-1
was found to be increased in models of spinal cord injury and
glaucoma (211). The LINGO-1 monoclonal antibody, BIIB033,
has shown promise as a neuroprotective and neuroregenerative
strategy in clinical studies, but continued evaluations are needed
to confirm this promising effect in glaucoma patients (211).

Targeting Microglia
Inhibition of Microglial Activation
Microglia have increasingly been identified as targets in glaucoma
neuroprotection and neuroregeneration (22, 28, 212, 213). The
blockade of the microglial adenosine A2A receptor has been
shown to protect RGCs from elevated IOP in murine glaucoma
models by controlling the microglial activation and inhibiting
reactive oxygen species (214). Minocycline has also been shown
to inhibit microglial activation and upregulate pro-survival genes
in experimental glaucoma (215, 216). Although minocycline has
proven oral safety and has been found to cross the blood–brain
barrier, long-term randomized control trials with the necessary
high doses of minocycline are needed (217).

Modulation of Microglial Activation
In addition to the harmful effects of microglia, the activation of
these cells can also benefit the healthy eye, where such activation,
e.g., acute inflammation, has been shown to protect against
neuronal damage (22). Microglia activation is regulated by
several inhibitory pathways, such as the ligand fractalkine (FXN
or Cx3cl1) in neurons and the receptors Cx3cr1 and CD200R
in microglia (218). The loss of Cx3xl1 signaling has been shown
to exacerbate dysfunctional axon transport in RGCs, increased
CCR2+ macrophages infiltration (219), and upregulation of
NOS-2 in myeloid cells from DBA/2J mice (219).

CD200 is expressed in the vascular endothelium of
the retina, photoreceptors, and RGCs (34) and interacts
with CD200R to modulate microglial activation (220).
Breakdown of CD200-CD200R is involved in RGC loss
in experimental glaucoma (221). Thus, in a rat model
with optic nerve crush, the agonist of CD200R known
as CD200Fc was shown to increase CD200R expression
and inhibit CD200 expression, thereby assisting in the
neuroprotection of RGCs (222, 223). Overall, microglial
activation may be beneficial for RGC function and survival,
and numerous studies emphasize the dual roles of microglia
activation. However, more studies are needed to further
understand such potential beneficial functions of microglia
in glaucoma.

Inhibition of Inflammatory Mediators
In advanced glaucoma, inflammatory mediators, including TNF-
α, are increased. Inhibition or genetic deletion of TNF-α reduces
the activation of microglia (32, 224), and the blockade of TNF-
α signaling has been shown to protect RGCs in an experimental
glaucoma mouse model (204, 225).

The Fas ligand (FasL), a member of the TNF protein
family, links microglia activation and the induction of apoptosis
of RGCs through the Fas receptor. In the eye, FasL can
be expressed as the membrane-bound pro-apoptotic and
pro-inflammatory protein (mFasL) or as the soluble, non-
apoptotic, and non-inflammatory form sFasL (226). Previous
studies have shown that FasL is constitutively expressed in
ocular tissue, where the ligand helps maintain the immune-
privileged state of the eye and helps prevent neoangiogenesis.
However, FasL has also been shown to play an important
role in retinal neurotoxicity. In this context, FasL has been
shown to accelerate RGC death in an experimental glaucoma
model (227). In line with this, the peptide inhibitor of
the Fas receptor, ONL1204, has been found to halt mFasL
activation by inhibition of microglial activation, inflammation,
and apoptosis of RGCs in a mice model (228). In contrast to
the neurotoxic effects of FasL, FasL administration has been
shown to protect RGCs from cell death (227). Overall, the
contradictive roles of FasL and mFasL require more studies
to investigate the potential roles of FasL/mFasL modulation in
future neuroprotective treatments.

Reducing Oxidative Stress
Orally administered docosahexaenoic acid and intravitreal
injection of polysialic acid has been shown to reduce microglial
activation by decreasing oxidative stress and inflammation in
rodent models of glaucoma and experimental glaucoma models
(146). Moreover, the natural resin mixture, propolis, produced
by honeybees, has been shown to reduce neuroinflammatory
responses and reduce oxidative stress in microglia cell cultures
by inhibiting nuclear factor-κB when cultures were exposed to
hypoxia (229).

Macrophage Pro-Inflammatory Cytokines
Glial cell activation triggers macrophage infiltration and
the release of pro-inflammatory cytokines that further
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activate glial cells. Such pro-inflammatory cytokines
have been found to be upregulated in both the blood
and in the aqueous humor of patients with POAG
(133, 230). Accordingly, treatments targeting macrophage-
derived pro-inflammatory cytokines, such as IL-1β,
may be used in the future treatment of glaucoma
(133, 194).

CONCLUSION

Glial cells play complex and multifactorial roles in glaucoma.
Advances in our understanding of the nature and regulation
of these various roles in health and disease have enabled the
identification of novel therapeutic strategies to protect RGCs in
glaucoma. Therapies targeting glial cells or those emulating the
protective effects of these cells on RGCs will likely go hand-
in-hand with conventional therapies to lower IOP and with
emerging approaches that aim to augment neuronal bioenergetic
resilience and promote axonal repair.
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