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Aging is associated with progressive declines in both the vestibular and human

balance systems. While vestibular lesions certainly contribute to imbalance, the specific

contributions of age-related vestibular declines to age-related balance impairment is

poorly understood. This gap in knowledge results from the absence of a standardized

method for measuring age-related changes to the vestibular balance pathways. The

purpose of this manuscript is to provide an overview of the existing body of literature

as it pertains to the methods currently used to infer vestibular contributions to

age-related imbalance.
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INTRODUCTION

In the United States, 28–49% of older adults (≥65 years old) fall each year (1, 2). Falls are the most
common cause of accidental death in older adults (1), and in non-fatal cases, the costs to manage
fall-related sequelae are poised to exceed 55 billion dollars in 2020 (3, 4). Despite a great deal of
research in the area of fall prevention (5, 6), falls, and fall-related deaths continue to rise (1) and the
growing age of the United States population (4) is likely to perpetuate this trend. Although a fall
can result from a variety of environmental or physiological causes (7–9), a principal contributor
to falls among older adults is an age-related decline in balance (8–12). In this paper, we define
the “human balance system” as the sensorimotor system that permits us to stand upright (and
walk/run) even though the passive biomechanics are unstable, being comprised of interconnected
inverted pendulums that are each unstable. Balance reflects “. . . the ability to maintain equilibrium
in a gravitational field by keeping or returning the center of body mass over its base of support”
(13) and is the critical component for successful (a) quiet stance, (b) compensatory postural
reactions, and (c) anticipatory postural responses. It follows, then, that imbalance (i.e., the lack
of balance) be defined as the inability to maintain equilibrium during quiet stance and to anticipate
or respond appropriately to postural perturbations. Imbalance can be influenced by a myriad of
age-associated declines in sensorimotor function, including somatosensation (14–16), vestibular
function (17), vision (18), cognition (19), and strength (20, 21). Therefore, balance tests are often
used to indirectly quantify these different sensorimotor contributors with different balance tests
quantifying different balance elements. To develop targeted, personalized interventions to combat
this epidemic of falls, it is crucial that we develop methods that isolate the primary contributors to
an older adult’s imbalance and fall risk.
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Although deficits in any one of the aforementioned
physiologic systems could likely contribute to imbalance,
this review aims only to summarize studies that attempt to
quantify contributions of the vestibular system to age-related
balance impairment. The rationale for this decision is as
follows: (1) Recent estimates suggest that falls due to vestibular
impairment represent between the 3rd and the 10th leading
cause of death amongst older adults (22), (2) 35% of adults
over the age of 40 show evidence of vestibular dysfunction
(23) and amongst adults that report unsteadiness, one third
also report symptoms of dizziness (24), (3) increased noise
within the vestibular system (assayed by roll tilt perceptual
thresholds) has been shown to mediate 46% of age-related
balance impairment in asymptomatic adults above age 40 (17),
and (4) vestibular function has been shown to be modifiable
with rehabilitation (25–32). Thus, we embark on this effort
because despite the overabundance of evidence supporting both
age-related declines in vestibular function (22, 23, 33–36) and
a significant contribution of the vestibular system to postural
control (37, 38), an understanding of the specific contributions
of the vestibular system to age-related balance declines is
lacking; recent proceedings from a National Institutes of Health
workshop identified this as a critical gap in our understanding of
fall prevention (39).

In an effort to address this critical knowledge gap, this
manuscript aims to review the methods currently used
to quantify vestibular contributions to age-related balance
dysfunction including (I) measures of the peripheral vestibular
end organs (i.e., otoliths and semicircular canals) that correlate
with balance, (II) external stimulation of the descending
vestibular pathways, (III) objective balance assessments, and
(IV) measures of perceived vertical. We also highlight a recent
line of research relating vestibular perceptual thresholds to
age-related balance declines (V). We note that several areas
of vestibular function (e.g., spatial cognition, navigation, and
autonomic function) likely relevant to falls, but not directly
relevant to balance, were intentionally omitted from this
review given our focus on vestibular contributions to age-
related imbalance. An indirect goal of this review is to
motivate researchers and clinicians to develop novel methods for
quantifying specific contributions of the aging vestibular system
to balance impairment.

Tests of the Peripheral Vestibular Labyrinth
Semicircular Canals
Caloric irrigation is a gold standard for diagnosing a unilateral
impairment in the horizontal semicircular canal and superior
vestibular nerve (40), yet few studies have investigated its ability
to predict balance impairment in healthy (i.e., without vestibular
pathology) older adults. Jacobson et al. (41) compared the results
of caloric irrigation to performance on a Modified Romberg
Balance Test (MRBT) in a group of 45 asymptomatic adults
over the age of 40—the age at which balance and vestibular
function are thought to begin to decline (22, 23). Of the 20
subjects found to have an impaired caloric response, only 11
showed evidence of imbalance and of the 25 subjects found
to have a normal caloric response, nine subjects demonstrated

concurrent balance impairment (41). Similarly, in a sample of
adults with balance impairment, Whitney et al. (42) identified
an abnormal caloric response in only 13% (4/13) of recurrent
fallers, while 44% (23/52) of subjects without a positive fall
history demonstrated an abnormal caloric response. Collectively
these results suggest that impairments in the low frequency
vestibulo-ocular reflex (VOR) may not reflect impairment in the
descending balance pathways.

Rotational chair testing measures bilateral horizontal canal
function by quantifying the phase and gain of the mid to high
frequency yaw VOR (43). Peterka and Black (35) found that
although balance clearly declined with age, the incidence of
abnormal VOR gain (±3 SD from themean), was similar between
adults with and without evidence of balance dysfunction (36).
In a sample of healthy older adults, Baloh et al. (34) showed an
age dependent decline in the VOR over a 5-year period despite
stable balance performance. When these same participants were
reassessed after an 8–10-year period, a multivariate regression
model showed that although the VOR continued to decline
with age, MRI evidence of white matter hyperintensities, visual
acuity, and auditory function were the only variables significantly
associated with changes on the Tinetti Gait and Balance (TGB)
scale (a clinical measure of balance performance) (44). A
subsequent study by Kerber et al. (45) did however identify a
significant correlation between changes in the gain and phase
of the low-frequency (0.05Hz) VOR and TGB scores after a 9-
year period. While this correlation remained after correcting for
age (p < 0.001), the authors suggest that this relationship likely
represents a common age-related central pathology, potentially
white matter hyperintensities, that affect both balance and the
VOR, rather than a causal relationship between age-related
VOR declines and balance impairment (44–46). The aphysiologic
vestibular stimulus (i.e., lacking head motion) during caloric
irrigation (41) and the restricted frequency range of the vestibular
stimuli during both caloric irrigation (0.006Hz) and rotational
chair testing [0.01–1.0Hz (43)], relative to typical human motion
[∼0.8–3.2Hz (47, 48)], pose possible explanations for the limited
association between these standard assessments of canal function
and balance impairment among older adults.

The video head impulse test (vHIT) instead measures
canal function through the delivery of passive head rotations
(i.e., impulses) that reach accelerations [∼3,000◦/s/s (49)] and
frequencies [∼6Hz (50)] consistent with naturalistic human
motion (48, 51). Over the past decade vHIT has been used
to lateralize peripheral vestibular lesions (52–54) and to
differentiate peripheral from central causes of an acute vestibular
syndrome (55–57). However, the use of vHIT in healthy (i.e.,
without occult vestibular pathology) older adults has received
little attention by comparison. Anson et al. (15) showed that a
yaw vHIT VOR gain of <0.80 bilaterally (eye velocity < 80% of
head velocity) was associated with greater amounts of postural
sway in the eyes closed, compliant standing (i.e., foam) condition
of the MRBT. Anson and colleagues subsequently showed that
for every 0.1 decrease in VOR gain, the likelihood of failing
(i.e., falling prior to 40 s) this same test increased by 8% (58).
Compared to the low frequency range of calorics and rotational
chair testing, the high frequency content (1–6Hz) of impulsive
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testing provides a stimulus to the vestibular system that is more
representative of the demands of typical human locomotion [0.8–
3.2Hz (51)], providing a potential explanation for its superior
association with balance impairments among older adults (50).
Yet, in a group of 183 healthy older adults, Xie et al. (59) showed
that yaw vHIT VOR gain was not associated with one’s gait speed,
narrow base of support balance, or the ability to rise from a
chair. Thus, high frequency horizontal canal function, assayed
using vHIT, may be most relevant for maintaining quiet stance
in situations where visual and proprioceptive feedback are made
less reliable (e.g., standing in a hallway at night on a thick rug
while feeling for a light switch).

Whereas vHIT provides an objective measure of VOR gain,
a bedside version of the HIT (bHIT) provides a less sensitive
(53), but still clinically useful indicator of normal vs. abnormal
(overt refixation saccade = abnormal function) horizontal canal
function (60). Agrawal et al. (61) showed that after controlling
for age, older adults with a positive bHIT walked 0.23 m/s slower,
had 0.44 additional falls in the past year, and were 5 times more
likely to have fallen in the previous 5 years. Davalos-Bichara and
Agrawal (62) went on to show that 100% of older adults (n= 15)
with an abnormal bilateral bHIT were unable to sustain balance
in condition 4 of the MRBT [similar to the results of Anson
et al. (15) when using vHIT] (62). Also since bHIT is dependent
upon observation of an overt re-fixation saccade, rather than
a continuous measure of VOR gain, these correlations may be
representative of a more severe loss of horizontal canal function.
However, despite the diagnostic utility of VOR assessments, the
VOR is rarely used during daily life without an accompanying
input from the visual system; thus, measures of dynamic visual
acuity have been developed as complementary measures of
the “real world” function of the VOR, and by extension, the
horizontal canals.

The Dynamic Visual Acuity Test (DVAT) (63) is a common
method for measuring the functional (or real world) status of the
VOR. The DVAT requires a subject to interpret the orientation
of a letter whilst the head is rotated about an earth vertical axis
at a constant velocity of 120–180◦/s (64). DVAT has been shown
to degrade with age (63, 65) and with peripheral vestibular loss
(28, 29, 63), yet few studies have investigated the relationship
between DVAT and imbalance among older adults without a
known vestibular diagnosis. Hall et al. (25) observed that by
performing exercises which target improvements in dynamic
visual acuity (i.e., gaze stabilization exercises) both fall risk and
dynamic balance were improved in a sample of older adults with
non-specific, presumably age-related, dizziness. Using a similar
test that measured visual acuity while walking on a treadmill,
Lord and colleagues however found no relationship between
dynamic visual acuity and measures of balance, falls, or gait
among older adults (14, 66–69).

The Gaze Stabilization Test (GST) is a methodologically
distinct, yet conceptually similar test of dynamic visual acuity that
measures the maximum speed at which a subject can rotate their
head while retaining the ability to perceive the correct orientation
of a stable (i.e., fixed size) visual target (70). In a group of 86
healthy older adults, Ward et al. (71) showed that after correcting
for age, deficits on the GST (performed in yaw) were associated

with poorer performance on a series of eyes closed balance tasks.
Honaker et al. (72) similarly showed that in a sample of older
adults the GST was significantly correlated with the Dynamic
Gait Index (DGI), a measure of dynamic, ambulatory balance
(r = 0.65, p = 0.00009). Honaker et al. (72) also showed that
the GST (using a cutoff velocity of 100.5◦/s) was able to identify
participants with a positive fall history and participants who were
deemed to be at a heightened risk for falls based upon their
DGI scores (Sensitivity: 0.80 and 0.79, Specificity: 0.87 and 0.81,
respectively).Whitney et al. (73) however showed no relationship
between the GST and scores on either the DGI or the timed
up and go (TUG) in a control group consisting of 20 healthy
older adults.

Otolith Organs
Cervical vestibular evoked myogenic potentials (cVEMPs) use
an auditory tone burst to probe the portion of the descending
vestibulospinal pathway between the saccule and the motor
neurons in the cervical spinal cord (74, 75). McCaslin et al.
(76) showed that increased cVEMP asymmetry was associated
with greater postural sway on the sensory organization test
(SOT); however, this finding was made in young adults (<65
years of age) with symptoms suggestive of vestibular pathology,
limiting extension to the healthy aging population. In a sample
of healthy (i.e., asymptomatic) older adults, Layman et al. (77)
showed a significant relationship between gait speed, an indirect
measure of postural stability (78), and the latency of cVEMPs.
In the only study to our knowledge to compare balance and
cVEMPs in healthy older adults, Anson et al. (15) showed that a
bilateral absence of cVEMP responses was associated with a mild
decrease in total sway area. The interpretation of this finding is
unclear since the observed effect was opposite to what would be
expected (i.e., increased sway area) if abnormal cVEMPs were
indeed representative of the influence of otolith dysfunction on
age-related imbalance; such findings may represent a guarded
postural control strategy. The effect of cVEMP loss on postural
sway was also substantially smaller than that of proprioception
and was only significant when sway was measured during quiet
stance on a firm surface with the eyes open (15), a condition
where vestibular function is least likely to be required.

The proximal location of the measured myogenic response
(the sternocleidomastoid) limits the interpretation of cVEMP
abnormalities as evidence of age-related decline in the distal
vestibulospinal pathways that mediate balance; this provides
one potential explanation for the limited correlation observed
between balance and cVEMPs. To address this limitation, Rudisill
and Hain (79) investigated a novel variant of cVEMPs, the
aptly named “leg-VEMP,” to probe the integrity of the more
distal vestibulospinal pathways by recording EMG responses
from the medial gastrocnemius. The primary limitation to
measuring vestibular evoked myogenic potentials distally in a
muscle that controls upright stance is the increased distance
between the saccule and the targeted motor neurons. The
added distance results in a lower amplitude and more variable
EMG signal which limits any meaningful interpretation (79).
Use of an intermediary muscle group, proximal to the MG
but distal to the SCM (i.e., triceps brachii) (80, 81) has
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been found to produce a more robust response but yields
little added benefit compared to traditional cVEMPs when the
goal is to investigate the influence of saccular dysfunction on
postural control.

Electrical Stimulation of the Descending
Vestibular Pathways
One limitation of cVEMPs is that auditory stimuli provide
a rather weak stimulus to the vestibular labyrinth, with the
intensity being limited by a risk of noise-induced damage to
the middle ear. Galvanic vestibular stimulation (GVS) uses a
direct electrical current applied to the skin overlying the mastoid
processes to stimulate the vestibular afferents [predominantly
irregular (82, 83)] that innervate both the otolith organs and
semicircular canals (82, 84). In healthy adults, GVS causes a
stereotyped response including postural sway toward the anode
(i.e., away from the cathode) (85–87), ocular torsion (88–90),
head and/or body tilt (91), an illusory sense of rotation (92, 93)
or tilt (88), and an increase in EMG activity specifically in the
muscles actively engaged in a postural task (e.g., soleus during
upright stance) (94–96) [see (97, 98) for comprehensive reviews
on GVS]. Studies that use GVS to probe descending vestibular
control of balance typically measure either lower extremity
EMG responses or the magnitude of GVS-induced postural sway
(97). While well-characterized in healthy young adults (94) and
subjects with vestibular pathology (85, 86), relatively few studies
have investigated the responses to GVS in healthy older adults.

Welgampola and Colebatch (99) found a selective age-related
change in the short latency GVS induced EMG responses in
the soleus, such that the short latency responses in older adults
were more delayed, more asymmetric, and lower in amplitude
when compared to young adults. Dalton et al. (100) similarly
found evidence of a selective decrease in the amplitude of short
latency EMG signals in the soleus and medial gastrocnemius
of older adults. Dalton et al. (100) also found a compensatory
increase in tibialis anterior EMG responses to GVS, leading the
authors to suggest a potential vestibular initiated compensation
for age-related balance declines. Deshpande et al. (101) studied
the influence of a combined stimulus including both GVS and a
vibratory stimulus applied unilaterally to the dorsal aspect of the
neck. They found that when walking with vision occluded, the
young adult and older adult groups showed a similar increase
in trunk velocity in the frontal plane. However, compared to
young adults, the amount of lateral path deviation caused by the
stimulus was attenuated in the older adult group, but this was
only in regard to the response to the vibratory stimulus, not GVS
(101). Tax et al. (86) however found that older adults showed a
decrease in GVS induced postural sway during quiet stance. Yet,
when compared to patients with bilateral vestibular hypofunction
(86, 100), the reduction in GVS induced sway was minimal,
potentially reflecting a more subtle decline in the descending
vestibular pathways in older adults relative to patients with
bilateral vestibular loss. Additional studies are needed determine
if postural and EMG responses to GVS are predictive of balance
impairment and fall risk in older adults.

Balance Assessments
Measuring Sensory Contributions to Balance
The Romberg (RBT) and Sharpened Romberg (SRBT) balance
tests determine an individual’s ability to stand with a narrow base
of support (RBT, feet together; SRBT, heel to toe) when vision
is removed. Performance is determined by the subject’s ability
to maintain balance for a predetermined time interval (typically
between 15 and 60 s) and is graded as success (able to remain
upright) or failure (unable to remain upright). The insensitivity of
the RBT to vestibular dysfunction prompted Fregly and Graybiel
(102) to investigate the SRBT (and heel to toe walking) as a
method to screen for vestibular disorders. Fregly and Graybiel
(102) showed that individuals with the lowest caloric responses
showed the greatest deficits in both the SRBT and heel to toe
walking when the eyes were closed. However, more recently, in
an older adult population, Longridge et al. (103) showed that
the SRBT was unable to separate healthy older adults from those
with known vestibulopathy, with most subjects falling regardless
of the presence of vestibular pathology; such differences from
the original findings of Fregly and Graybiel (102) are likely
explained by an age-associated floor effect of the SRBT due to
the high degree of challenge. Such limitations provide support for
the use of more comprehensive tests when attempting to detect
vestibular contributions to imbalance.

One of the most frequently used methods is computerized
dynamic posturography (CDP), and more specifically the
sensory organization test (SOT) (36, 104–106). The SOT uses a
sophisticated motion platform to quantify changes in a patient’s
postural sway (i.e., movement of the center of pressure, CoP)
when the fidelity of visual and/or somatosensory cues is altered
(105, 106). Pairing movement of either the visual surround
and/or the surface with the participant’s postural sway (i.e., sway
referencing) diminishes one’s ability to use proprioceptive and/or
visual feedback for postural control. Therefore, the magnitude
of postural sway is dependent upon the individual’s ability to
suppress any conflicting visual and/or proprioceptive cues and
weight the remaining veridical cues (107). The vestibular system
is the only unperturbed sensory modality controlling upright
stance in conditions five and six of the SOT (SOT-5, SOT-6;
Table 1), where proprioception is unreliable, and vision is either
unreliable (SOT-6) or removed (SOT-5). As a result, patients
with an acute vestibular lesion demonstrate marked instability in
these conditions (111–115) and performance on SOT-5 and SOT-
6 (relative unperturbed quiet stance, SOT-1) has been adopted as
a surrogate measure of vestibulospinal function.

Evidence supporting use of SOT to detect age-related
vestibular declines is not as straight forward. The output of
the SOT, postural sway, is a complex sensorimotor response
that requires the integration and weighting of multiple sensory
cues and a sensorimotor transformation that ultimately
produces a response using the distal musculature (116).
Older adults experience an increase in reaction times (117),
a decline in lower extremity strength (20), and reduced
distal somatosensation (14, 16, 118); each of which can
potentially influence balance (118). As a result, postural sway
in SOT-5 and SOT-6 cannot with certainty be attributed
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TABLE 1 | Table consists of conditions for the SOT, including parameters for head-shake variations established by both Mishra et al. (108) and Honaker et al. (109),

respectively.

Condition Vision Platform Unperturbed sensory systems Head shake variation

SOT-1 Eyes Open + Stationary Surround Stationary Visual; Somatosensory; Vestibular

SOT-2 Eyes CLOSED Stationary Somatosensory; Vestibular 60◦/s (108)

120◦/s (109)

SOT-3 Eyes Open + Sway Referenced Stationary Somatosensory; Vestibular

SOT-4 Eyes Open + Stationary Surround Sway-Referenced Visual; Vestibular

SOT-5 Eyes Closed + Stationary Surround Sway-Referenced Vestibular 15◦/s (109)

60◦/s (108)

SOT-6 Eyes Open + Sway Referenced Sway-Referenced Vestibular

Graphical depictions for each condition can be found at (108–110).

solely to an age-related decline in vestibular function. This
is highlighted by impaired performance in SOT-5 and
SOT-6 (i.e., the “vestibular conditions”), in both healthy
adults (119, 120) and in patients with various central
nervous system pathologies (121), two populations without
vestibular impairment.

Consistent with this notion, studies using SOT-5 and SOT-
6 to probe vestibular contributions to age-related imbalance
have produced conflicting results over the past 30 years (122).
Woollacott et al. (123) showed that older adults were more
likely to fall during SOT-5 rather than SOT-6, prompting the
authors to propose a pattern of imbalance consistent with
dysfunction in the vestibular periphery. Similarly, Ledin et al.
(124) showed that sway was significantly increased in SOT
5, but not SOT-6, when comparing participants 70–75 years
of age to participants 60–69 years of age. However, several
authors have since identified a different pattern of imbalance
among older adults, consistent with an age-related deficiency
in the ability to resolve sensory conflict (46, 119, 122, 125–
128), rather than a loss of peripheral vestibular inputs. Whipple
et al. (122) and Wolfson et al. (126) each showed that when
compared to young adults, older adults showed a larger increase
in sway and a greater prevalence of falls, in conditions with
inaccurate (SOT-6), rather than absent (SOT-5), visual feedback.
Peterka and Black (36), observed that older adults fell most
often when experiencing conflicting visual and proprioceptive
cues (SOT-6), and when a fall did not occur, sway was increased
in SOT-6 relative to SOT-5. Interestingly, the older adults in
Peterka and Black’s study that were able to remain upright
for SOT-5 showed similar amounts of sway to the young
adult control group (125). More recently, Pedalini et al. (127)
showed that while older adults with symptoms of vestibular
impairment performed worse on SOT-4–6 than asymptomatic
older adults, asymptomatic adults also performed significantly
worse than young adults in each of these same conditions.
Thus, instability in SOT conditions 4–6 may be sensitive to
aging, independent of vestibular decline. These findings lend
support to the general conclusion that the instability observed
in the vestibular conditions of the SOT may be indicative of an
age-related inability to suppress conflicting sensory cues (107),
suggesting a breakdown in the central integration (36, 122,

126) or reweighting of multiple sensory cues, both vestibular
and extra-vestibular, rather than direct evidence of impaired
descending vestibular function.

Furthermore, even in subjects with a known vestibular lesion,
the sensitivity of the SOT to vestibular loss has been shown to
be only around 50% (109, 121, 129). In an effort to improve
sensitivity, Mishra et al. (108) studied the effect of adding active
yaw head rotations to SOT-2 and SOT-5 (Table 1). Yet, the aptly
named head shake SOT (HS-SOT) was found to offer little benefit
over the traditional SOT secondary to a ceiling effect in HS-
SOT-2 and a floor effect in HS-SOT-5 (108). Park et al. (130)
tested the HS-SOT in a sample of 102 healthy older adults.
The ratio between SOT-5 and HS-SOT-5 was found to be 54%
higher in older adults compared to young adults; the authors
concluded that the increase in sway with the addition of the head
shake stimulus was indicative of impaired vestibular function in
the older adult group (130). However, as stated in the original
study by Mishra et al. (108), the HS-SOT-5 is exceptionally
challenging, such that subjects with a known history of vestibular
hypofunction could not be differentiated from healthy adults due
to universally poor performance. Thus, the increased instability
in HS-SOT-5 compared to SOT-5 seen by Park et al. (130) may
simply reflect the added challenge, rather than the presence of
vestibular impairment. Honaker et al. (131) has since addressed
this floor effect by decreasing the rate of head rotation in SOT-
5 (Table 1), improving upon the sensitivity (70%) of HS-SOT
for unilateral vestibular loss (109); future studies should consider
investigating this paradigm in an older adult population.

The clinical test of sensory interaction and balance (CTSIB)
is a simplified version of the SOT, developed specifically for use
in a clinical setting (13, 132). Subjects perform tasks analogous
to the six conditions of the SOT, with the exception that sway
referenced supports are replaced by foam and sway referenced
visual surrounds are replaced by an opaque globe, meant to
distort but not remove visual inputs (132). CTSIB conditions are
scored based on the amount of time one can maintain upright
stance, up to a maximum of 30 s, in each condition (132). Cohen
et al. (133) investigated the use of the CTSIB in patients with
vestibular disorders compared to older adults. Cohen et al. (133)
showed that conditions 4 and 6, but not condition 5, of the CTSIB
were more affected by vestibular dysfunction than by healthy
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aging, suggesting a potential role for conditions 4 (globe plus
firm surface) and 6 (globe plus foam surface) as a screening tool
for vestibular dysfunction in older adults. Many clinicians and
researchers have however opted for the use of a further simplified
test, the modified CTSIB (mCTSIB), which consists only of static
stance on both firm and foam surfaces, with the eyes open or
closed (134, 135).

Condition 4 of the mCTSIB (i.e., condition 5 of the CTSIB)
requires the participant to stand with the eyes closed, atop a foam
pad meant to degrade somatosensory feedback from the distal
lower extremity, similar to the sway referenced conditions of the
SOT. Hong et al. (136) showed that although the full mCTSIB
was a poor predictor of performance on the SOT, condition 4
of the mCTSIB correlated with SOT-5, demonstrating validity of
this relatively simple test as an appropriate method for degrading
somatosensory feedback. Since closing the eyes also removes
visual input, leaving the vestibular system as the only undisturbed
contributor to upright stance, an inability to maintain balance in
condition 4 of the mCTSIB has been proposed as an indicator of
impaired vestibulospinal function. An analogous test [a modified
Romberg Balance Test (MRBT)], was recently used in a nationally
representative sample of older adults, the National Health and
Nutrition Evaluation Survey (NHANES), as a screening tool to
estimate vestibular impairment (23). Agrawal et al. (23) reported
that 34.5% of adults over the age of 40 and more than half of
adults over age 60 failed condition 4 of the MRBT (i.e., could
not stand 20 s on foam with eyes closed) with failure being
associated with over a 6-fold increase in the odds of having
experienced a fall in the previous year (23). The authors suggested
that such findings represent the burden of vestibular dysfunction
among older Americans (23). This suggestion has however been
subsequently challenged. As described above, Jacobson et al. (41)
found weak correlations between vestibular function tests and
failure on the MRBT in a sample of adults over the age of 40,
drawing the conclusion that the MRBT may be inappropriate
as a screening tool for vestibular impairment in older adults.
However, poor agreement between posturography and vestibular
function tests need not discredit the applicability of such
assessments, as one should expect dissimilar findings when using
tests which probe different vestibular function contributions.

Static Posturography and Computational Approaches
As an alternative to the SOT assessment and the simpler RBT,
sRBT, andmCTSIB assessments, a potential middle ground exists
using digitized posturography tools, such as force plates, pressure
sensors, and inertial measurement units, to track movement
of the CoP during quiet stance. Such an approach improves
upon the sensitivity of the time to failure scoring of traditional
clinical balance tests (137) and takes less time to administer than
the complete set of conditions performed in the SOT. Baloh
et al. (138) used force plates to measure the velocity of postural
sway in conditions analogous to the mCTSIB. Baloh found
that older adults with a history of imbalance demonstrated an
increase in sway velocity, regardless of the presence of vestibular
hypofunction, when standing on foam with the eyes closed (138).
Therefore, a critical consideration to making posturography
during quiet stance valuable as a vestibular assessment is whether

computational approaches can extract characteristics of the
CoP motion that discriminate between those with vestibular
hypofunction and those with normal vestibular function.

Recently, Gilfriche et al. (139) analyzed CoP data using
a modified version of detrended fluctuation analysis (140),
Frequency Specific Fractal Analysis (FsFA), which converts time
scales (N) to frequency spectra (Fc) (Fc = Sample Frequency/N)
(141). Gilfriche found that performing a fatiguing lower body
exercise influenced the scaling exponent that described CoP
fluctuations at higher frequencies (2–20Hz), a frequency range
thought to be dominated by somatosensory control, with no
change in the lower frequency scaling exponent (<0.5Hz), a
frequency range suggested by Gilfriche to reflect visuo-vestibular
control (139). Yet, such assumptions are in opposition to
the preferential sensitivity of the vestibular afferents to high,
rather than low, frequency stimuli (141). Consistent with this
opposing view, using empirical mode decomposition, Yeh et al.
(142) showed that young adults with vestibular disorders could
be differentiated from healthy older adults by a characteristic
increase in power within the high frequency range of the CoP
time series. Thus, while these computationally driven analyses of
quiet stance appear to be sensitive to both physiologic changes
(i.e., somatosensory loss) and the effects of aging, the capacity
to use these methods to detect alterations in postural sway
that result specifically from age-related vestibular decline is still
largely unknown. Future analysis of CoP complexity may benefit
from 1) analyzing the dynamics of postural sway using SOT-5,
condition 4 of themCTSIB/MRBT (see above), or pseudorandom
perturbations (see below), rather than unperturbed quiet stance
and 2) by determining the association between the CoP frequency
spectra and objective measures of sensory precision (e.g.,
perceptual thresholds).

Pseudorandom Perturbations
Peterka (37) developed a closed loop model of postural control
to describe sagittal plane control of the center of mass when
presented with ambiguous or unreliable sensory cues. In the
model, postural sway results from an active corrective torque
at the ankle proportional to the relative weighting of visual,
proprioceptive, and vestibular cues (37). To empirically test
the validity of this closed loop model, subjects were exposed
to continuous rotations of the support platform or visual
surround using a pseudorandom sequence of summed sinusoids
while in upright stance. The perturbations were delivered
under various sensory conditions (Table 2), including a sway-
referenced platform or visual surround (as is done in the SOT).
The use of external perturbations allows for the calculation of
transfer functions that quantify the response of the postural
control system as a function of the frequency spectra and
amplitude of the imposed platform perturbation (37, 143).
Peterka compared the gain and phase (i.e., the magnitude and
timing of sway relative to the platform, respectively) of postural
sway derived from these transfer functions to compare the
behavior of healthy young adults to those with compensated
bilateral vestibular loss (37). Peterka showed that when only
vestibular and proprioceptive cues were available (i.e., with eyes
closed) patients with compensated unilateral (UVL) or bilateral
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vestibular loss (BVL) adopted a distinct pattern of sway in
response to anteroposterior tilts of the platform (37, 144). At
large amplitudes of tilt, it becomes advantageous to realign the
body with gravitational vertical, rather than the platform; these
participants however showed a monotonic increase in postural
sway at increasing angles of platform tilt, reflecting a tendency
to continue to align the center of mass with the support surface
(37, 144). In the context of the closed loop model of postural
control, this pattern can be interpreted as a persistent reliance
upon proprioceptive feedback or a deficiency in the reweighting
of the absent (BVL) or impaired (UVL) vestibular cues; this is
highlighted by the comparison to healthy adults who instead
readily reweight the intact vestibular cue, aligning the body
with gravitational vertical rather than the platform during larger
amplitude perturbations (37, 144).

The aforementioned studies (37, 144) included only patients
who were more than a year removed from their injury and
therefore were believed to be well-compensated (145); this
highlights the sensitivity of this method to subtle vestibular
declines, such as occur with aging (34). Cenciarini et al. (146)
used pseudorandom platform tilts in a sample of healthy older
adult subjects and showed that, relative to young adults, older
adults showed a compensatory increase in stiffness and damping
parameters, interpreted by the authors as evidence that older
adults adopt a unique compensatory strategy to maintain balance
(146). Unfortunately investigating the weighting of vestibular
and proprioceptive cues was not a goal of their experiment.
Wiesmeir et al. (147) showed that unlike patients with vestibular
loss, healthy older adults showed a retained capacity to increase
the use of vestibular cues at higher amplitudes of platform tilt.
Yet, they also found that relative to young adults, older adults
displayed a consistently increased weighting of proprioceptive
cues. Since the group of older adults were asymptomatic and
had normal VOR function on rotational testing, the observed
age-related changes in sensory reweighting mechanisms may be
related to subclinical declines in vestibular pathways distinct
from those mediating the VOR. Yet, the relevant vestibular
structure (i.e., otolith, canal, or central) underlying the ability
to orient one’s self with gravitational vertical during dynamic
pseudorandom perturbations remains unknown.

Standardized Measures of Functional Mobility
The Fukuda (i.e., Unterburger) Stepping Test is a classic bedside
test designed to assess descending vestibulospinal control by
measuring the degree of rotation that occurs while stepping
in place with the eyes closed (148). Studies showing poor
sensitivity and specificity of the Fukuda Stepping Test for
vestibular dysfunction (131, 149) have led many to adopt
use of more comprehensive functional assessments. Several
standardized tests incorporate elements meant explicitly to
perturb the vestibular system (e.g., rotating the head and/or
body) to determine a vestibular cause to postural instability. The
timed up and go (TUG), DGI, and functional gait assessment
(FGA) measure dynamic ambulatory balance and are capable of
predicting fall risk among older adults (150–152) and patients
with vestibular loss (153, 154). The DGI and FGA require
subjects to ambulate while rotating their head in either pitch

or yaw (151, 155), whereas the TUG requires subjects to
walk a distance and then turn the body 180 degrees while
walking (154). Although individuals with vestibular impairment
struggle with the aforementioned tasks (154, 156, 157), it
is worth emphasizing that the vestibular system is not the
sole respondent to the imposed stimuli. Chang and Schubert
(158) showed that DGI scores improved independent of VOR
gain improvement in a sample of patients recovering from
unilateral vestibular deafferentation surgery. Actively rotating
the head involves vestibular, cervical proprioceptive, motor
efferent, and visual cues; a compensatory change to any of
these extra-vestibular systems could therefore improve balance
performance independent of vestibular loss or recovery. Thus,
imbalance provoked by movement of the head, while certainly a
symptom of suboptimal vestibular function, cannot definitively
indicate vestibular loss. Cohen et al. (134) did however find
that the addition of yaw and pitch head movements improved
the sensitivity of eyes closed heel to toe walking and the
mCTSIB to vestibular pathology (e.g., Meniere’s disease, BPPV)
in older adults aged 40–79; whether this finding is generalizable
specifically to sub-clinical vestibular declines, rather than the
identification of vestibular pathology, remains to be seen.

Overall, functional outcome measures allow clinicians to
efficiently predict fall risk and are often used to guide
rehabilitative efforts (152, 155, 159). The capacity to mimic
real world balance perturbations (e.g., stepping over an object)
likely explains their predictive abilities. However, this functional
emphasis conversely prevents such tests from isolating the
culpable system causing the balance disturbance and this is
particularly true in the evaluation of the older adult patient, as
imbalance on clinical balance tests can be caused by a number
of extra-vestibular age-related changes in sensorimotor function
(e.g., kinesthesia, strength) (160).

Perception of Subjective Vertical
Subjective Visual Vertical
Tests of subjective visual vertical (SVV) quantify the relative
contributions of otolith (predominantly utricle), visual, and
somatosensory cues by estimating an individual’s perception of
gravitational vertical [See (161) for a review]. While methods
vary, SVV generally requires an individual to orient an
illuminated bar with what they perceive to be true vertical; testing
can take place either in the dark (i.e., no veridical visual cues)
or in the presence of a moving (dynamic SVV) or inaccurate
(rod-and-frame SVV) visual cue. Tobis et al. (162) found that
older adult fallers showed a significant bias in SVV in the
direction of a tilted frame that surrounded the vertical bar
(i.e., rod-and-frame SVV), suggesting an increased weighting of
visual, relative to otolith cues, presumably as a compensation
for vestibular declines (161). Lord and Webster (163) showed
that when compared to healthy older adults, older adults with
a positive fall history displayed greater errors (deviation from
true vertical) in both static (fixed background) and dynamic
(rotating background) SVV tasks. Barr et al. (164) showed that
when in the presence of a rotating visual surround, a deviation
in SVV of at least 6.5◦ was associated with greater fall risk
and a significant decrease in postural sway when standing with
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TABLE 2 | Conditions of the protocol developd by Peterka (37) using pseudorandom perturbations to model postural sway.

Condition Vision Platform Sensory information

Vision Proprioception Vestibular

1 PRTS stimulus Fixed Accurate Veridical Veridical

2 PRTS stimulus Sway-referenced Accurate Inaccurate Veridical

3 Fixed PRTS stimulus Veridical Accurate Veridical

4 Eyes closed PRTS stimulus Absent Accurate Veridical

5 Sway-referenced PRTS stimulus Inaccurate Accurate Veridical

6 PRTS stimulus PRTS stimulus Accurate Accurate Veridical

Recreated from Peterka (37). PRTS, pseudorandom ternary sequence.

the eyes open or closed, and when standing in the presence
of a moving visual field; such patterns suggest the adoption
of a maladaptive stiffening of one’s postural control strategy.
Together, these results suggest that changes in the weighting of
otolith relative to visual cues may predict altered postural control
strategies and fall risk in older adults.

The presence of a stereotyped bias in SVV toward the side
of an acute unilateral vestibular lesion suggests that the otolith
organs are at least one of the principle contributors to one’s
estimate of subjective vertical (165). Yet, SVV is restored within
weeks to months after a vestibular lesion (166, 167). This suggests
that an individual with persistent vestibular loss can restore SVV
by appropriately weighting residual vestibuar cues with intact
visual, somatosensory (168) and/or somatic graviceptive (e.g.,
vascular receptors signaling a shift in blood volume within the
trunk) cues (169). Also, it appears that a maladaptive reweighting
of verticality cues, rather than isolated vestibular loss, may
explain the correlations observed between SVV, fall risk, and
postural sway in older adults, as such relationships are observed
when SVV is measured in the presence of a spurious visual
reference (i.e., tilted frame or rotating background) (162–164).

Subjective Postural Vertical
SPV is typically measured by having an individual report when
they perceive their body to be aligned with gravitational vertical.
SPV can be quantified both by the accuracy (deviation relative
to upright) and precision (variability around the perception
of upright) of their estimate of vertical (161). Barbierri et al.
(170) showed that SPV gradually tilts backward with age, with
nearly a doubling of backward inclination in healthy adults
over 50 (−1.15◦ ± 1.40) when compared to adults 18–49
years of age (−0.45◦ ± 0.97, p < 0.01). Manckoundia et al.
(171) found that this age-associated posterior displacement of
the SPV was highly correlated (r = 0.95, p < 0.000001) with
the extent of backward instability during a series of balance
and mobility tasks (e.g., sitting, standing with and without
vision and transitioning between sitting and standing). This
deviation of SPV among older adults has been posited as a
potential explanation for an asymmetrical pattern of postural
instability experienced by older adults referred to as “backward
disequilibrium” (170–172). Menant et al. (173) showed that both
the precision and accuracy of SPV in the mediolateral direction
was also significantly correlated with lateral sway (r = 0.20

and 0.16, respectively) measured during stance in a foam, eyes
closed condition. This relationship persisted after correcting for
age, gender, and other general indicators of mobility (i.e., the
physiological profile assessment); considering the large sample
size (N = 195), this finding provides convincing evidence that
perceived vertical may be a potentially useful indicator of age-
related balance dysfunction.

Yet, Bisdorf et al. (165) showed that neither chronic nor
acute vestibular lesions were sufficient to induce a bias in SPV.
Anastopolous similarly showed that SPV remained veridical
following an acute vestibular lesion, despite a consistent tilt of
SVV toward the side of the vestibular lesion (174). Ito and Gresty
(175) showed that even in individuals with a total surgical loss of
vestibular function (due to surgery to correct Neurofibromatosis
Type II), the accuracy of SPV remained similar to healthy adults.
These studies suggest that unlike SVV, otolith dysfunction has
minimal impact on the accuracy (i.e., bias) of SPV. Instead, the
increased variability of SPV in patients with bilateral vestibular
loss and acute unilateral lesions suggests that graviceptive otolith
cues may instead be more relevant for reducing the variability in
one’s estimate of postural vertical (161, 165). A clear bias in SPV
has however been observed in individuals with somatosensory
loss affecting the trunk (176, 177). Thus, the association between
imbalance and the observed age-related shift in SPV, may be
indicative of the impact of age-related somatosensory declines
or alterations in the central integration of somatic graviceptive,
somatosensory, and vestibular cues.

Vestibular Noise
Vestibular Perceptual Thresholds
Neural noise (referred to herein as “noise”) is the random
fluctuation in neural activity that occurs within each sensory
system (178, 179). While low levels of external noise can
enhance sensory signals [i.e., stochastic resonance (180)], excess
internal noise impairs the communication between neurons, and
has been posited as a potential cause of age-related cognitive
decline (178, 181, 182). Neurophysiologic studies have provided
evidence for age-related increases in neural noise, showing a
relationship between electroencephalogram (EEG) 1/f power
spectral density and both language and visual working memory
in older adults (182). Behavioral studies have similarly shown
that background sensory noise impairs the perception of visual
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images in older adults (178). Psychophysical assessments of self-
motion perception (“vestibular perceptual thresholds”) provide
evidence that neural noise may also affect the aging vestibular
system (22, 183, 184).

Consistent with classic signal detection theory (185), a
vestibular threshold represents the minimum stimulus value
at which a subject can accurately (at a pre-defined accuracy
level) perceive the direction of passive self-motion while using
predominantly vestibular cues (186). In other words, a perceptual
threshold is the magnitude of a vestibular stimulus required
to overcome the level of internal noise within an individual’s
vestibular system, thereby allowing the self-motion signal to
be reliably perceived by the subject (e.g., “I moved right”);
thus, vestibular thresholds are an assay of vestibular noise (186).
Although methods may vary, one-interval direction recognition
tasks (e.g., “did I move right or left?”) are the most common
psychophysical technique for quantifying vestibular perceptual
thresholds (186). By quantifying vestibular noise during self-
motion, vestibular thresholds can independently assess each
vestibular modality (tilt, rotation, and translation). While a
comprehensive review of vestibular perceptual testing is beyond
the scope of this review, we refer the interested reader to several
reviews on the topics of signal detection theory and vestibular
perceptual thresholds (185–189).

Vestibular Thresholds and Age-Related Imbalance
Vestibular thresholds have been shown to increase after age 40
in all planes of motion including supero-inferior translations,
interaural translations, roll tilt, and yaw rotation (22). Despite
thresholds being moderately correlated with one another, only
low frequency (0.2Hz or 5 s per motion) roll tilt perceptual
thresholds show a significant association with age-related
imbalance (190). Elevated roll tilt thresholds were found to be
associated with an increase in the likelihood of failing (i.e., falling
prior to the end of the 30 s trial) the “eyes closed, standing on
a compliant surface” test condition of the MRBT in a sample
of healthy adults over the age of 40 (190); this statistically
significant relationship remained even after accounting for age.
In a subsequent mediation analysis of these data, Beylergil
et al. (17) showed that roll-tilt thresholds significantly mediated
the relationship between age and balance impairment. Despite
the multitude of factors that contribute to age-related balance
impairment (e.g., vision, cognition, kinesthesia), this analysis
showed that age-related increases in roll tilt thresholds accounted
for nearly half (46%) of the relationship between age and balance
impairment (17). We posit three possible explanations for this
admittedly surprising finding, (1) roll tilt perceptual thresholds
may represent a physiologically relevant vestibular cue (190) due
to the inherent need for human beings to respond to changes
in head position relative to gravity (i.e., tilt) in order to remain
upright, (2) roll tilt perceptual thresholds may reflect a more
global measure of central vestibular function, as the precision
of roll tilt perception is dependent upon the ability of the aging
brain to perform (191–197) complex neural computations to
resolve ambiguous gravitoinertial cues from the otolith organs,
and (3) canal and otolith cues are integrated during most, if not
all, naturalistic human motions (198), and thus impaired roll tilt
perception may specifically reflect imperfections associated with

canal-otolith integration. Yet, similar to vHIT, such comparisons
have been restricted to balance performance in quiet stance on
a foam pad with the eyes closed, and thus one must be cautious
with the extrapolation of these findings to alternative aspects of
human balance.

Noise, Aging, and Velocity Storage
Recent empirical and modeling efforts have further implicated
noise as an explanation for age-related changes in the temporal
characteristics of the VOR (199) and in age-related changes in
postural control (200). During a sustained, constant velocity yaw
rotation about an earth vertical axis, activity in the peripheral
vestibular afferents degrades quickly, with a time constant of
around 4–6 s (141, 201, 202). However, compensatory nystagmus
and the subjective perception of rotation persist up to 30 s
(34, 43, 203); this propagation of behavioral vestibular activity
is accomplished through a mechanism called velocity storage
[see (204) for a review on this topic but also see (205,
206) for differing perspectives]. A reduced time constant (i.e.,
faster decay of nystagmus) has been identified in subjects with
unilateral and bilateral vestibular loss (207), in those with central
vestibular dysfunction (208), and in asymptomatic older adults
(34, 35, 203, 209).

Karmali proposed an explanation for the observed effect of
aging on the vestibular time constant (Tc) using a Bayesian
framework (199, 210–212). Extending the Tc beyond the
time constant of peripheral vestibular afferents requires the
repeated integration of canal signals (213) which amplifies the
accompanying noise (199). Thus, while prolonging the Tc results
in a more accurate estimate of rotation, it comes at the cost
of an accumulation of noise (i.e., reducing precision) (212).
Using a Bayesian optimal Kalman filter model, Karmali et al.
(199) showed that the age-related shortening of the Tc may be
proportional to published data describing the rate of age-related
decline in the vestibular hair cells (214). Karmali suggested that
in order to compensate for this decline in the vestibular signal to
noise ratio, the CNS may dynamically shorten the Tc to achieve
an optimal balance between accuracy and precision (199, 212).

While vestibular noise, assayed by roll tilt perceptual
thresholds, has been found to be associated with age-related
balance impairment, similar work comparing the Tc to measures
of balance is sparse. In the only study to our knowledge to
empirically compare the Tc and balance, Jacobson et al. (215)
showed that a lower Tc, even in the presence of normal VOR gain,
was associated with greater postural instability among otherwise
healthy older adults. It is worth noting that concomitant ischemic
pontine lesions were also identified in ∼80% of the older
adults with a balance impairment and shortened Tc, suggesting
that velocity storage may be reflective of central vestibular
dysfunction in older adults (215). Additional work is needed
to determine if the Tc represents the contribution of central
vestibular pathways to age-related balance declines.

DISCUSSION

Measures of low frequency horizontal canal function (i.e., caloric
irrigation and rotational chair testing) appear to provide minimal
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benefit when attempting to identify a vestibular cause to age-
related imbalance. Alternative measures of canal function that
include the integration of visual cues (i.e., GST) or a high
frequency stimulus (i.e., vHIT), have instead demonstrated a
capacity to predict postural instability and fall risk in older
adults (71, 216). Given that correlations remained even after
correcting for age, these findings indicate that vHIT and GST
may be suitable measures to quantify specific contributions of
the horizontal canal to age-related imbalance. However, onemust
consider several limitations when relying on assessments of the
VOR to quantify the influence of impaired canal function on
age-related imbalance.

Measures of the VOR are not solely measures of canal
function, but instead reflect the integrity of the motor limb
of the reflex (e.g., oculomotor plant) and can be influenced
by extra-vestibular oculomotor strategies (e.g., compensatory
saccades) (64, 217, 218). This point is highlighted by the
typical course of recovery following unilateral vestibular loss
(UVD). Dynamic visual acuity improves independent of any
restoration in peripheral vestibular function (26, 27, 145,
219) secondary to the recruitment of compensatory saccades
(220), the unmasking of cervical proprioceptive inputs (221–
224) and the integration of motor efferent signals (64, 217,
218). Also, while the horizontal canals feed into both the
ascending and descending vestibular pathways, VOR pathways
are anatomically distinct from the vestibulospinal pathways
(222, 223), diverging at the level of second order neurons
in the vestibular nuclei [VOR via position vestibular pause
(PVP) and vestibulospinal via vestibular only (VO) neurons,
respectively; see (225) for a review on this topic]. Thus, the
association between VOR measures and imbalance may be
representative of imbalance that results from unstable gaze (the
function of the VOR), rather than as an indication that such
measures directly assay the pathway connecting the horizontal
canals to the descending vestibular pathways. Nevertheless, VOR
assessments irrefutably remain vital to lateralize vestibular loss
(226, 227).

Since balance assessments, namely the SOT, directly measure
balance performance, in principle, they are likely considered
better suited to identify imbalance that results from vestibular
impairment. The vestibular conditions of the SOT (i.e., SOT-
5 and 6) have however shown limited sensitivity (109, 121,
129) and specificity (119–121) when used as a diagnostic
site of lesion test. This is likely a result of the inability to
differentiate a patient with restored vestibular function from a
patient who has successfully re-weighted extra-vestibular cues
and the analytical consideration of the “vestibular sense” as
a single sense, when, in fact, it includes at least 3 sensory
modalities (rotation, translation, tilt) (228, 229). These issues
are accentuated when examining older adults due to (1) the
inability to separate dysfunction of the descending vestibular
pathways from alternative age-associated sensorimotor declines,
(2) the relative insensitivity to subtle changes in vestibular
function, and (3) the fact that all vestibular modalities, that
may decline at different rates with aging, are lumped into
a single entity. This is not meant to dissuade clinicians and
researchers from using the SOT when vestibular decline is

suspected, but rather to suggest that it be used as a vestibular
screening tool and/or be paired with more direct assays of
vestibular function. Asai et al. (230) showed that sensitivity
of the SOT was improved when considered in conjunction
with positive findings on a standard vestibular test battery.
Cohen et al., recently showed that combining SOT-5 with a
clinical balance test [e.g., the functional mobility test (FMT),
Timed Up and Go (TUG), or Dynamic Gait Index (DGI)]
improved sensitivity to vestibular impairment in a group of
young adults (231).

Some of these limitations of the SOT may be addressable by
treating postural sway as the output of a closed loop system,
rather than directly as evidence of instability. In the SOT, as is
true in nearly all balance tests, increased movement of the CoP
is interpreted as evidence of instability. However, considering
the magnitude of postural sway in isolation does not in of
itself indicate instability, and may instead represent exploratory
behavior (232) or could be the result of a compensatory re-
weighting of sensory cues (37). By measuring sway evoked
by continuous pseudorandom perturbations, one can compute
transfer functions which determine if the center of mass
orients relative to the stimulus (i.e., tilting platform), suggesting
persistent weighting of proprioceptive cues, or with gravitational
vertical, suggesting an amplitude dependent reweighting of
vestibular cues (37, 233); this approach provides a quantitative
explanation for the observed postural sway (37). Thus, in
experimental conditions that alter the reliability of sensory cues
(i.e., eyes closed or sway referencing) such an approach may
offer improvements on the SOT by determining the postural
control strategy being used to respond to the externally imposed
perturbations and the relative weights assigned to each sensory
channel. Pseudorandom stimuli also have the advantage of
providing a less predictable perturbation to the vestibular system,
an approach previously shown to be more discriminatory for
identifying vestibular pathology (217).

Yet, an inherent limitation to the use of any complex
sensorimotor task, including the SOT or pseudorandom
perturbations, is that the output (i.e., sway as measured using
CoP or CoM) is the only quantifiable indicator of performance.
As a result, if one is attempting to determine if vestibular
sensory function is the cause of a patient’s imbalance or falls,
this can only be indirectly inferred from the pattern of motor
outputs. Similar to compensatory adjustments of the VOR by
the oculomotor limb of the VOR, the results of posturographic
assessments must be considered in light of potential downstream
alterations in the motor limb of the vestibulospinal reflexes.
In an oversimplified example, consider for a moment the
optimal output of the vestibulospinal reflex in response to a
perturbation, such as a sudden translation of the head. If the
vestibular afferents, due to an age-related loss of hair cells
(214), trigger a motor response that compensates for only 80%
of the perturbation, the descending motor system could (in
theory) simply boost its gain to 120% and the net output
of postural sway will mirror a system with normal vestibular
function. Redundancies and compensatory mechanisms, while
beneficial to maintain mobility and prevent falls, can make
isolating the cause of balance disturbance a daunting task;
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such limitations motivate attempts to directly stimulate the
vestibular labyrinth.

Beyond head motion, GVS may provide the most direct
method for measuring the descending vestibular reflexes. The
interpretation of GVS is however bounded by the dependence
of the motor outputs on the context of the experimental task
(234). Width of the base of support (91, 235), upper extremity
support (96), availability of vision (96, 235, 236), reliability of
proprioceptive feedback (234, 235), and testing posture (sitting
vs. standing) (91, 96) have each been shown to modulate the
magnitude of GVS induced EMG and/or postural responses,
and thus can result in attenuated or enhanced responses to
GVS, independent of the integrity of the descending vestibular
pathways. The use of GVS paradigms in older adults can
therefore only be interpreted relative to the reliability of extra-
vestibular sensory cues [somatosensory (236, 237) and visual
(234)] which are known to also decline with age (14, 118, 238,
239). Comparing responses to GVS in healthy older adults to
older adults with vestibular decline, using tightly controlled
experimental conditions that control for age-related visual and
somatosensory loss, could however yield an interesting avenue
for future research.

The limitations of existing assessments have motivated our
recent study of vestibular perceptual thresholds as an assay of
vestibular noise (17, 22, 190). As mentioned above, research out
of our lab identified a significant association between 0.2Hz
roll tilt perceptual thresholds and age-related imbalance, yet,
we emphasize that we are not suggesting that an inability to
perceive roll-tilt is the cause of age-related balance impairment.
We instead put forward the hypothesis that age-related changes
in roll tilt vestibular thresholds reflect central vestibular noise
that affects both perception and balance and thus may provide a
method to quantify contributions of the central vestibular system
to age-related balance impairment. The significant mediating
effect of roll tilt thresholds and balance may therefore implicate
central vestibular noise as a principle contributor to age-
related imbalance. Considering that the participants studied
were without symptoms of vestibular impairment, the observed
age-related increase in vestibular thresholds also highlights the
potential impact of sub-threshold (i.e., below the threshold for
triggering symptoms) vestibular noise on age-related imbalance.

Although speculative, one potential explanation for this
association is an age-related increase in noise within a specialized
class of neurons within the vestibular nuclei [vestibular-only
(VO) neurons] that act as relays for both vestibulospinal
control and self-motion perception [see (240) for a review].
As justification for this hypothesis, the VOR and self-motion
perceptual pathways relay through different neurons in the
VN, and as such show qualitatively dissimilar behavior (193,
194). As an alternative explanation, since the perception of tilt
is dependent upon one’s ability to use vertical canal cues to
disambiguate changes in net gravitoinertial force sensed by the
otoliths (195), roll tilt thresholds may instead more generally
represent a measure of age-related changes in central canal-
otolith integration. Wiesmeir showed that postural responses to
pseudorandom tilts of the support surface differed significantly
between young and older adults within the frequency range

(0.15–0.40Hz) (147) where canal and otolith cues have been
shown to be optimally integrated when rotating about an earth
horizontal axis (241). Similar performance between age groups
at 0.05Hz suggests that at frequencies below the threshold for
vertical SCC activation, where otolith cues predominate, the gain
of postural sway is instead unaffected by age (241). Such findings
lend support to our hypothesis that an age-associated increase in
central vestibular noise, manifesting as a breakdown in central
canal-otolith integration, may serve as a principle contributor to
age-related balance declines.

While such explanations are plausible, as of now empirical
proof is lacking, thus it does remain possible that roll tilt
perceptual thresholds and balance are simply parallel yet
independent consequences of aging. However as previously
stated by Karmali et al. (190), this alternative is unlikely given
that one would expect that if a common central nervous system
pathology caused the correlation between roll tilt thresholds
and balance, that most, if not all, vestibular thresholds, not just
0.2Hz roll tilt, would display this same predictive relationship.
Nevertheless, correlation does not equal causation, therefore
additional studies are needed to (1) determine if the relationship
between vestibular noise and age-related balance impairment
is indeed causal, (2) to confirm or refute these findings in
an independent sample of older adults, and (3) determine the
mechanism explaining the association. Determining if alternative
measures of vestibular noise, such as the vestibular time constant
(199, 212) or measures of VOR variability (242), display similar
associations with age-related balance impairment may provide
further insights.

Summary
A standardized method for determining the specific
contributions of the vestibular system to age-related balance
impairment has yet to be developed. Although traditional
measures of vestibular function allow one to infer the integrity

TABLE 3 | Summary of main findings.

➢ The video head impulse test and measures of dynamic visual acuity

correlate with imbalance in older adults; tests of the low frequency

VOR (i.e., caloric irrigation and rotational chair testing) do not.

➢ Clinical and instrumented balance tests capture age-related

changes in balance performance but are limited in their capacity to

isolate specific vestibular contributors (canal versus otolith versus

central processing, etc.) to balance dysfunction.

➢ Postural responses to galvanic vestibular stimulation are attenuated

in older adults yet the relevance of this finding to age-related

imbalance is unclear.

➢ Biased perceptions of subjective postural vertical and subjective

visual vertical correlate with imbalance in older adults suggesting

that age-related changes in multisensory integration may contribute

to age-related imbalance.

➢ Increased vestibular noise, quantified by roll tilt vestibular

thresholds, is a significant predictor of sub-clinical balance

impairment in asymptomatic older adults; this finding suggests that

roll tilt vestibular thresholds may reflect a shared source of central

vestibular rnoise affecting both the balance and perceptual

pathways of older adults.
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of the peripheral or central vestibular structures, the extent by
which they capture the specific subclinical age-related changes
that affect the vestibular balance pathways appears limited
(Table 3). Standardized balance assessments are sensitive to
acute vestibular lesions and predict fall risk, yet, fail to account
for the multi-modal nature of the vestibular system. One
hypothesis arising from recent basic research (17, 22, 23, 190) is
that roll tilt vestibular thresholds reflect central vestibular noise
that affects both perception and balance and thus may provide a
method to quantify contributions of the central vestibular system
to age-related balance impairment. Identifying a method to
detect vestibular contributions to age-related postural instability
would support efforts to screen for vestibular mediated fall risk
and could potentially permit earlier implementation of targeted
rehabilitative interventions.
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