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INTRODUCTION

Functional movement disorder (FMD) is a disorder that is altered by distraction or
non-physiological maneuvers (this includes excessive placebo response); this disorder is clinically
different from movement disorders known to be caused by neurological disease (1). Dystonia
is a movement disorder classified by involuntary patterned or twisting body movements, which
further results in atypical postures (2). Isolated dystonia is a rare neurological disorder where the
patient has dystonia without other neurological disorders like Alzheimer’s. Dystonia often harms
the quality of life and can be markedly disabling (3); furthermore, a relatively high number of cases
are misdiagnosed or underdiagnosed because of the non-availability of a global biomarker.

In a recent research paper by Valeriani and Simonyan (4), a deep learning-based method was
proposed, i.e., DystoniaNet, which can recognize a microstructural neural network biomarker
for the diagnosis of dystonia from raw MRIs. The biomarker-based on DystoniaNet depicted an
overall accuracy of 98.8%, including 3.5% cases in which the network referred the case for further
analysis with a diagnosis time of 0.36 s per subject; this was a significant improvement over shallow
machine learning networks. The assisted diagnosis of isolated dystonia using deep learning has
opened a new direction where computational intelligence plays its part in the early diagnosis of
movement disorders.

DISCUSSION

DystoniaNet pipeline utilizes four convolutional layers (Conv3D), each followed by the rectified
linear unit (ReLU) activation and maximum pooling (MaxPooling3D) layers; furthermore, there
are two densely connected layers, one for feature extraction and another for classification, which is
also the output layer (see Figure 1).

Comparing the performance of DystoniaNet with the current state-of-the-art methods is
essential in benchmarking the method for the universal classification of dystonia. The choice
of benchmarking the proposed DystoniaNet (which is a deep neural network-based approach)
with linear discriminant analysis (LDA) and support vector machine (SVM) was justified as
these methods showed promising results in the classification of laryngeal dystonia and cervical
dystonia (5, 6). In contrast, using a single-layer artificial neural network (ANN) seems to be an odd
choice as there are methods similar to DystoniaNet, which share a similar network pipeline, for
example, VGG and VoxCNN. Selecting appropriate methods to compare and contrast any deep
learning-based diagnosis is critical because it provides insights into the performance of various
methods under similar settings (dataset, computational setup, and programming environment).
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Since its conception, deep learning methods have been used
in medical data analysis; for an overview of deep learning
applications in medical data analysis, we recommend readers
to go through the review papers by Jang and Cho (7) while
Zhang et al. (8). In the past decade, deep learning has been
employed in classification, segmentation, and identification
tasks in assisted or fully automated diagnosis of brain-related
disorders. Oh et al. (9) in 2020 used 13 stacked convolutional
neural networks (CNNs) to build an automated system for
the detection of Parkinson’s disease (PD) with an accuracy of
88.25%, while Bakiya et al. (10) and Khamparia et al. (11)
used deep learning-based methods for the assisted diagnosis of
neuromuscular disorders.

Simonyan and Zisserman (12) proposed a very deep
convolutional neural network called VGG for large-scale image
classification and introduced small convolution filters of the
size of 3 × 3 to design very deep convolutional networks
(up to 19 layers). The proposed pipeline of VGG was further
used by Korolev et al. (13) to design 3D convolution-based
VoxCNN, which successfully classified Alzheimer’s disease
vs. mild cognitive impairment and normal controls using
brain MRI scans. The pipeline of VoxCNN [Refer to Figure
1 in Korolev et al. (13)] is closely related to DystoniaNet
as VoxCNN had four volumetric convolutional blocks for
extracting features, two dense layers, and a dense output
layer with softmax non-linearity for classification (13).
Valeriani and Simonyan (4) used the deep learning pipeline
structure similar to Korolev et al. (13), which shows the
applications of deep learning in the assisted diagnosis of
movement disorders, especially those that do not have a
global biomarker.

Shallow networks like a single layer ANN with only six
neurons in the hidden layer can only extract limited features
discussed by Valeriani and Simonyan (4) in the supplementary
data file. Additionally, shallow methods performed adversely
while using the input features from DystoniaNet. Islam and
Zhang (14) used brain MRI data for multi-class classification

FIGURE 1 | Deep learning and shallow machine-learning pipelines for diagnosis of isolated dystonia. Raw structural brain MRIs were used with the deep learning

pipeline (DystoniaNet). Copyright (2020) National Academy of Sciences.

of Alzheimer’s disease using an ensembled model and deep
neural networks to achieve multi-class accuracy of 93.18%. It
would be interesting if performance evaluation of DystoniaNet
is performed against the methods mentioned above, like
VoxCNN (13), Ensembled method (14), especially when
using DystoniaNet identified input features as input since
these are the state-of-the-art methods used for classification
of FMDs and have already been used for the assisted
diagnosis of movement disorders. Furthermore, DystoniaNet
introduced a new research direction where further investigation
is required to apply VGG or VoxCNN (13), Ensemble method
(14), and other deep learning-based methods to learn the
microstructural biomarkers for the classification of dystonia and
other FMDs.

When comparing deep learning-based methods for diagnosis
in medical data, it is essential to compare existing state-
of-the-art methods in terms of accuracy of the model,
computational efficiency, and inference time. Although the
most crucial parameter is the overall accuracy of prediction,
computational efficiency depicts the computational resources
required for a given deep learning model. The inference
time is critical because it conveys the prediction time of a
method using the pre-trained parameters. Another critical factor
for a deep learning method is the number of parameters;
for instance, VGG-A (12) generated 133 million parameters
on the ImageNet large-scale visual recognition challenge
(ILSVRC). Valeriani and Simonyan (4) did not share the
model’s parameters, making it difficult to compare the proposed
method’s computational efficiency to other state-of-the-art
methods. For DystoniaNet, the inference time was 0.36 s per
subject, which should be compared to other state-of-the-
art methods.

CONCLUSION

In summary, it is crucial to validate the performance of
deep learning-based assisted diagnosis methods with the
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existing state-of-the-art methods. The use of deep learning-
based methods for the assisted diagnosis of dystonia is
a promising application of deep learning in movement
disorders; however, there is a need to introduce cross-subject
validation by subject experts to ensure the evaluation and
comparison is performed with the existing state-of-the-
art methods. This opinion paper highlights the research
gaps in assisted diagnosis of movement disorders while
providing future researchers an opportunity to apply deep
learning-based methods for classification, identification, and
diagnosis of brain-related disorders, including functional
movement disorders.
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