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Purpose: To evaluate the diagnostic accuracy of PET with different radiotracers

and parameters in differentiating between true glioma progression (TPR) and post

treatment-related change (PTRC).

Methods: Studies on using PET to differentiate between TPR and PTRC were screened

from the PubMed and Embase databases. By following the PRISMA checklist, the quality

assessment of included studies was performed, the true positive and negative values (TP

and TN), false positive and negative values (FP and FN), and general characteristics of all

the included studies were extracted. Results of PET consistent with reference standard

were defined as TP or TN. The pooled sensitivity (Sen), specificity (Spe), and hierarchical

summary receiver operating characteristic curves (HSROC) were generated to evaluate

the diagnostic accuracy.

Results: The 33 included studies had 1,734 patients with 1,811 lesions suspected

of glioma recurrence. Fifteen studies tested the accuracy of 18F-FET PET, 12 tested
18F-FDG PET, seven tested 11C-MET PET, and three tested 18F-DOPA PET. 18F-FET

PET showed a pooled Sen and Spe of 0.88 (95% CI: 0.80, 0.93) and 0.78 (0.69, 0.85),

respectively. In the subgroup analysis of FET-PET, diagnostic accuracy of high-grade

gliomas (HGGs) was higher than that of mixed-grade gliomas (Pinteraction = 0.04).
18F-FDG PET showed a pooled Sen and Spe of 0.78 (95%CI: 0.71, 0.83) and 0.87 (0.80,

0.92), the Spe of the HGGs group was lower than that of the low-grade gliomas group

(0.82 vs. 0.90, P= 0.02). 11C-MET PET had a pooled Sen and Spe of 0.92 (95%CI: 0.83,

0.96) and 0.78 (0.69, 0.86). 18F-DOPA PET had a pooled Sen and Spe of 0.85 (95% CI:

0.80, 0.89) and 0.70 (0.60, 0.79). FET-PET combinedwithMRI had a pooled Sen and Spe

of 0.88 (95% CI: 0.78, 0.94) and 0.76 (0.57, 0.88). Multi-parameters analysis of FET-PET

had pooled Sen and Spe values of 0.88 (95% CI: 0.81, 0.92) and 0.79 (0.63, 0.89).
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Conclusion: PET has a moderate diagnostic accuracy in differentiating between TPR

and PTRC. The high Sen of amino acid PET and high Spe of FDG-PET suggest that

the combination of commonly used FET-PET and FDG-PET may be more accurate and

promising, especially for low-grade glioma.

Keywords: glioma, positron emission tomography, glioma progression, treatment outcome, meta-analysis

INTRODUCTION

Glioma is the most common primary brain tumor. It includes
low-grade gliomas (LGGs) and high-grade gliomas (HGGs).
The annual incidence of gliomas is approximately six cases
per 100,000 individuals worldwide (1). Maximizing extent
of resection (EOR) was demonstrated to be associated with
improved outcomes, including progression-free survival and
overall survival, by multiple retrospective analyses (2, 3).
According to the NCCN guidelines, the standard treatment
method for LGGs is surgical gross total resection combined
with radiotherapy (RT) and adjuvant chemotherapy (CT)
of temozolomide (TMZ) or PCV (procarbazine, lomustine,
vincristine); for HGGs it is total resection followed by concurrent
and adjuvant chemotherapy of TMZ or PCV (more than six
cycles) (4–6).

Tumor progression monitoring is very important for patients
with glioma after treatment. A confirmed diagnosis of tumor
recurrence or progression guides surgeon and patients for the
next treatment strategy. Progression and recurrence can be
described as true glioma progression (TPR), while all treatment
effects can (e.g., radiation necrosis and pseudoprogression) be
described as post treatment-related change (PTRC). The wrong
differentiation between TPR and PTRC will cause the wrong
decision to be made by surgeon and patients, for example an
unnecessary secondary surgery or the best surgery opportunity
missed. Assessment of the glioma treatment response to
differentiate between PTRC and TPR remains as much of a
challenge as the treatment (7, 8).

At present, imaging follow-up was still the most common
method to monitor TPR. Gadolinium-enhanced T1-weighted
magnetic resonance imaging (G-T1-MRI) is often the choice
for monitoring glioma patients’ response to PTRC and TPR.
However, this test often gets a false positive result because
it only detects the disruption of the blood-brain barrier and

Abbreviations: 11C-CHO, 11C-choline; DCE, dynamic contrast-enhanced;

DOR, diagnostic odds ratio; DSC, dynamic susceptibility contrast; DWI,

diffusion-weighted imaging; FDG, 18F-fluorodeoxyglucose; 18F-FET, O-

(2-[18F]fluoroethyl)-L-tyrosine; 18F-FLT, 18F-fluorothymidine; 18F-DOPA,

3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine; HGGs, high-grade gliomas; LGGs,

low-grade gliomas; LR+, positive likelihood ratio; LR–, negative likelihood

ratio; 11C-MET, 11C-methionine; MRS, magnetic resonance spectroscopy;

PTRC, post treatment-related change; PWI, perfusion-weighted imaging; ROIs,

regions of interest; SUV, standardized uptake value; TBR, tumor-to-brain ratio;

TBRmax/mean, tumor-to-brain maximum/mean ratio (calculated by dividing the

max or mean SUV of the tumor ROIs by the max or mean SUV of healthy brain

tissue); TMZ, temozolomide; TPR, true progression; TTP, time-to-peak (the time

in minutes from the beginning of the dynamic acquisition to the time at which the

maximum SUV of the lesion occurred).

not the tumor activity specifically. To overcome the limitations
of G-T1-MRI, multimodal MRI has been proposed, including
magnetic resonance spectroscopy (MRS), diffusion-weighted
imaging (DWI), and perfusion-weighted imaging (PWI), among
others (9, 10). Some previous meta-analyses had demonstrated
the relative high diagnostic accuracy of MRS and PWI
but low accuracy of DWI (11–13). However, these methods
also sometimes caused false positive or false negative results
because of their inability to provide metabolic information of
lesions directly.

Due to the challenge to accurately determine brain tumor
response by MRI both in daily practice and clinical trials,
radiolabeled amino acid-positron emission tomography (PET)
was proposed in the management of brain tumors by the
RANO (Response Assessment in Neuro-Oncology) group (14).
The radiotracers include O-(2-[18F] fluoroethyl)-L-tyrosine
(18F-FET), 18F-fluorodeoxyglucose (18F-FDG), 11C-methionine
(11C-MET), 3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine (18F-
DOPA), and 11C-choline (11C-CHO), among others. PET of
various tracers can visualize biological processes such as cell
proliferation, membrane biosynthesis, glucose consumption,
and uptake of amino acid analogs. Hence PET provides
additional insight beyond MRI into the biology and treatment
response of gliomas which may be used for non-invasive
grading, differential diagnosis, delineation of tumor extent,
surgical and radiotherapy treatment planning, post treatment
surveillance, and prognostication (15). Many previous studies
have demonstrated the usefulness of PET for the assessment
of the treatment response of glioma (16, 17), yet a systematic
review and meta-analysis of the diagnostic accuracy of PET
using different radiotracers and parameters is lacking. Here, we
conducted a systematic review and meta-analysis to assess the
diagnostic accuracy of PET at differentiating TPR and PTRC.

METHODS

Search Strategy
This systematic review and meta-analysis was performed
according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA) criteria
(Supplementary Material 1). It was registered on PROSPERO
with registration number CRD42020197852. PubMed and
Embase were searched using the key words as follows: “glioma” or
“glioblastoma” or “astrocytoma” or “oligodendroglioma” or
“oligoastrocytoma”; and “Positron Emission Tomography”
or “PET;” and “progression” or “recurrence” or “recurrent”
or “relapse” or “pseudoprogression” or “necrosis” or
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FIGURE 1 | Flow diagram of the study-screening process.

“posttreatment.” The detailed search strategy is shown in
Supplementary Material 2.

Selection Criteria
The inclusion criteria were as follows: English language,
publication from January 1999 to December 2019, clinical
diagnostic test for glioma with adequate PET data (radiotracers,
imaging technique, parameters, etc.), more than 15 patients,
adult patients with glioma treated with standard therapy
(surgery+RT/CT), diagnostic test involving PET to differentiate

between TPR and PTRC compared to a definite reference
standard diagnosis (histology or clinical/imaging follow-up), and
2 × 2 tables from which true positives (TP), false positives
(FP), false negatives (FN), and true negatives (TN) could be
extracted. The reference standard of clinical/imaging follow-up
was reasonable according to RANO criteria. For WHO grade
II gliomas, the PTRC required that both the clinical and the
radiological situation had to be stable/improved for at least 12
months without administration of another therapy. For WHO
grade III-IV gliomas, the classification of PTRC required at
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least 6 months of stable or improved clinical and radiological
condition, as well as no change in tumor treatment. TPR was
considered present when lesions continued to increase in size on
at least two subsequent MRI scans, paralleled by a deterioration
in performance status, or when a patient died of glioma, which
ever occurred first (18).

Exclusion criteria were the inclusion of other tumor entities
besides glioma (such as brain metastases, lymphomas, or
meningiomas); pediatric glioma patients; in vitro or animal
studies; publication as a review, letter, comment, case report, or
abstract; and treatment methods other than standard therapy
recommended by NCCN guidelines (6), such as antiangiogenic
bevacizumab therapy, intracavitary radiation, and tumor-treating
field therapy.

Data Extraction and Quality Assessment
After duplicates were eliminated, studies were screened
for eligibility based first on their title and abstract and
subsequently on their full text independently by a board-
certified neurosurgeon with 6 years of experience and a
neuro-oncologist with 5 years of experience. Study quality was
assessed independently according to the quality assessment
of diagnostic accuracy studies (QUADAS-2) (19). Then these
two authors reviewed in detail the abstracts, methods, results,
figures, and tables. Extracted data consisted of true positives
(TP), false positives (FP), true negatives (TN), and false negatives
(FN); if raw numbers were not reported in the papers, we
calculated them from the sensitivity (Sen) and specificity (Spe).
The general characteristics extracted from each study were the
total number of patients, study design, patient selection criteria,
therapy method, mean or median age, sex, reference standard of
diagnosis (histopathology or clinical/MRI follow-up), time point
at which tumor progression was suspected, PET characteristics
and time at which PET was performed, and parameters of PET
with or without cut-off value. Disagreements were reassessed by
the two authors together to reach a consensus.

Statistical Analysis
By using Meta-Disc statistical software version 1.4, we first

evaluated the heterogeneity between each study caused by the

threshold effect. The Spearman correlation coefficient between
the logit of Sen and the logit of (1–Spe) was computed to assess

the threshold effect (20). A strong positive correlation would

suggest a threshold effect with P < 0.05.
Then, we used Stata 14.0 to perform the statistical analysis:

(1) To evaluate the extent of heterogeneity in each study, we

used the Q test and the inconsistency index (I2) of the diagnostic
odds ratio (DOR: the ratio of LR+ and LR-). Heterogeneity was

considered to be significant if P < 0.1 or I2 > 50%. In this case,

the Sen and Spe of the studies were pooled using a random-
effects model. Otherwise, a fixed-effects model was used (21).
(2) The pooled Sen, Spe, and DOR with their 95% confidence
intervals (CIs) were calculated for all studies and are presented
as forest plots. If any cells of studies contained a count of zero,
a value of one was added to replace zero in order to avoid

FIGURE 2 | Methodological quality assessment summary of the included

studies.
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any impossibilities in odds calculations for studies with a Sen
or Spe of 100%. (3) The hierarchical logistic regression model
was used to generate hierarchical summary receiver operating
characteristic (HSROC) curves and area under the curve (AUC)
to evaluate the diagnostic accuracy (22–24). (4) We assessed
publication bias visually by using a scatter plot (X axis was log
DOR, Y axis was ESS1/2, which is the inverse of the square root of
effective sample size). A symmetric funnel shape and P > 0.01 in
Deeks’ asymmetry test indicated the absence of publication bias;
otherwise, there was significant bias.

Subgroup analysis was performed using meta-regression if≥3
studies could be included, and meta-regression tests were used to
analyze differences between subgroups.

RESULTS

Characteristics of Included Studies
A flow diagram describing our study search process is provided
in Figure 1. The results of the quality assessment are presented in
Supplementary Material 3 and Figure 2. In brief, the quality of
the included studies was satisfactory.

In total, the 33 included studies (retrospective = 21,
prospective = 12) consisted of 1,734 patients and 1,811 lesions
suspected of glioma recurrence. The mean ages ranged from 33.9
to 59.5 years. There were 1,110males and 624 females. The lesions
comprised 388 (21.4%) LGGs (WHO grades I and II) and 1,300
(71.8%) HGGs (WHO grades III and IV). In addition, 16 (0.9%)
were other kinds of brain tumors, and 107 (5.9%) pathology
results of lesions were not mentioned or determined.

Among the included studies, 15 tested the accuracy of 18F-FET
PET (25–39), 12 tested 18F-FDG PET (40–51), seven tested 11C-
MET PET (46, 47, 51–55), three tested 18F-DOPA PET (45, 56,
57), one tested 18F-FLT PET (44), and 1 tested 11C-CHO PET
(46). Of all the included lesions, 836 (46.0%) had histopathology
as the reference standard, 549 (30.2%) had clinical combined with
imaging follow-up, and 81 (4.5%) only had imaging or clinical
follow-up. Though the remaining 353 (19.4%) cases had either
a combination or individual use of histopathology and clinical
and imaging follow-up as the reference standard, the detailed
data were not reported in these four studies (43, 47, 49, 51). The
total incidence of TPR was 77.4% (1,394/1,801) in all patients.
The incidence of TPR in HGG and LGG patients was 80.5%
(577/717) and 63.1% (106/168), respectively. The incidence of
PTRCwas 22.6% (407/1,801) among all patients, 19.5% (140/717)
in patients with HGG, and 36.9% (62/168) in patients with LGG
(Supplementary Material 4).

Quantitative Synthesis
The pooled results and subgroup analysis are shown in
Tables 1, 2, respectively. The HSROC curves are shown in
Figure 3. The forest plots are shown in Figure 4.

18F-FET PET (TBRmax, TBRmean, TTP)

The pooled weighted values of tumor-to-brain maximum ratio
(TBRmax) tests were Sen = 0.88 (95% CI: 0.80, 0.93), Spe =

0.78 (0.69, 0.85), DOR = 26 (12, 57), and AUC of HSROC
curve = 0.86 (0.83, 0.89). The Sen of these studies had high

heterogeneity (P < 0.1, I2 = 85.3%). Subgroup analysis of glioma
histopathology showed that the HGG subgroup of the FET-PET
test group benefitted from higher accuracy than the mixed-grade
group (Pinteraction = 0.04). Subgroup analysis of PET scans (static
and dynamic scan groups) showed no significant difference in
diagnostic accuracy (Pinteraction = 0.54). Different time points of
PET scans may influence the diagnostic accuracy, but subgroup
analysis indicated no difference between the ≤7-day and >7-day
groups after suspicious recurrence.

Thresholds of the tumor-to-brain mean ratio (TBRmean)
ranged from 1.52 to 2.98. The Spearman’s correlation coefficient
(ρ) was −0.677 (P = 0.022), which indicated that a threshold
effect was detected only in this group when quantitative synthesis
was performed. Therefore, the Sen and Spe of studies could not
be pooled directly. The AUC of the HSROC curve was 0.90 (0.87,
0.92), which was used to evaluate the diagnostic accuracy of the
TBRmean tests of FET-PET.

The pooled weighted values of time-to-peak (TTP) tests were
Sen = 0.80 (95% CI: 0.68, 0.88), Spe = 0.67 (0.48, 0.81), DOR =

8 (4, 16), and AUC= 0.81 (0.77, 0.84).

18F-FDG PET

The pooled weighted values were Sen= 0.78 (95% CI: 0.71, 0.83),
Spe = 0.87 (0.80, 0.92), and DOR = 23 (14, 39). The AUC of the
HSROC curve was 0.90 (0.87, 0.92). Subgroup analysis of PET
visual assessment and semiquantitative analysis of one parameter
(such as TBR and SUV) were performed. The difference in Spe
between these two groups was statistically significant (P < 0.05).
Subgroup analysis of glioma histopathology showed that the
mixed-grade group and LGG group had higher pooled Spe than
the HGG group according to the FDG-PET test (0.87 vs. 0.82 [P
< 0.05], 0.90 vs. 0.82 [P = 0.02]). However, the pooled Sen of
the HGG group was not significantly different from those of the
other two groups (both P > 0.05).

11C-MET PET (TBR)

Heterogeneity was detected in pooled Sen (P < 0.1, I2 = 86.3%).
The pooled Sen, Spe, and DOR were 0.92 (95% CI: 0.83, 0.96),
0.78 (0.69, 0.86), and 39 (15, 105), respectively. The AUC of the
HSROC curve was 0.82 (0.78, 0.85). The subgroup of HGGs and
the subgroup of mixed grades were analyzed, but no significant
differences in diagnostic accuracy were detected (all P > 0.05).
Subgroup analysis of time points showed a higher pooled Spe of
the >20 months after radiotherapy group than the <20 months
group (P= 0.04), but the diagnostic accuracy in these two groups
was not different (Pinteraction = 0.11).

18F-DOPA PET (TBRmax, Visual)

The pooled values of Sen, Spe, and DOR were 0.85 (95% CI: 0.80,
0.89), 0.70 (0.60, 0.79), and 13 (7, 24), respectively. The AUC
of the HSROC curve was 0.85 (0.82, 0.88). Subgroup analysis
showed that there were significant differences between the visual
and semiquantitative groups regarding sensitivity (P < 0.05).

Publication Bias Assessment
Publication bias did not exist in the FET-PET (TBRmax), FDG-
PET, or 18F-DOPA-PET studies (P = 0.85, P = 0.99, P = 0.40),
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TABLE 1 | Pooled Sen, Spe, DOR, and heterogeneity analysis results of PET tests of different radiotracers and techniques.

Radiotracer and test

technique

Quantitative

parameter

Threshold

range

ρ and P value Heterogeneity of pooled

Sen (upper) and Spe

(lower) (P-value of Q test

and I2)

Pooled Sen and its

95%CI

Pooled Spe and its

95%CI

Pooled DOR and its

95%CI

AUC of HSROC

18F-FET TBRmax (810 tests) 1.95,3.52 0.068 (P = 0.816) §P < 0.1, I2 = 85.3%

‖P = 0.09, I2 = 36.1%

0.88 (0.80,0.93) 0.78 (0.69,0.85) 26 (12,57) 0.86 (0.83, 0.89)

TBRmean (713 tests) 1.52,2.98 −0.677 (P = 0.022) NA* NA* NA* NA* 0.90 (0.87, 0.92)

TTP (317 tests) 20,45 0.714 (P = 0.111) §P = 0.03, I2 = 59.1%

¶P = 0.1, I2 = 45.2%

0.80 (0.68,0.88) 0.67 (0.48,0.81) 8 (4,16) 0.81 (0.77, 0.84)

18F-FDG (631 tests) NA
†

NA
†

0.432 (P = 0.161) —‖P = 0.04, I2 = 46.4%

¶P = 0.5, I2 = 0.0%

0.78 (0.71,0.83) 0.87 (0.80,0.92) 23 (14,39) 0.90 (0.87, 0.92)

11C-MET TBR (409 tests) 1.43,2.51 0.559 (P = 0.192) §P < 0.1, I2 = 86.3%

¶P = 0.35, I2 = 10.8%

0.92 (0.83,0.96) 0.78 (0.69,0.86) 39 (15,105) 0.82 (0.78, 0.85)

18F-DOPA TBRmax (175 tests),

visual (175 tests)

NA
†

−0.638 (P = 0.173) ¶P = 0.30, I2 = 18.2%

¶P = 0.61, I2 = 0.0%

0.85 (0.80,0.89) 0.70 (0.60,0.79) 13 (7,24) 0.85 (0.82, 0.88)

FET-PET and MRI (190

tests)

NA‡ NA‡ 0.316 (P = 0.648) §P = 0.06, I2 = 60.2%

¶P = 0.16, I2 = 42.5%

0.88 (0.78,0.94) 0.76 (0.57,0.88) 23 (9,59) 0.90 (0.87, 0.92)

FET-PET

static/dynamic

multi-parameters

analysis (354 tests)

NA‡ NA‡ −0.100 (P = 0.873) ‖P = 0.09, I2 = 49.5%

¶P = 0.30, I2 = 18.4%

0.88 (0.81,0.92) 0.79 (0.63,0.89) 26 (9,78) 0.91 (0.88, 0.93)

AUC, area under receiver operating curve; CI, confidence interval; DOR, diagnostic odds ratio; HSROC, hierarchical summary receiver operating characteristic; NA*, not available because of the threshold effect existed; NA
†
, not

available because not all the studies used quantitative parameter analysis of PET; NA‡, not available because different parameters were used among studies; ρ, Spearman correlation coefficient; TBR, tumor-to-brain ratio; TTP, time-

to-peak; §, significant heterogeneity; ‖, slight heterogeneity; ¶, no heterogeneity; #, some studies only reported the value of TBR, so it was used instead of TBRmax or TBRmean to analyze the pooled effect. Bold face type indicates

statistical significance.
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TABLE 2 | Subgroup analysis between LGGs, mixed-grade gliomas, and HGGs; between static PET scan and dynamic PET scan; and between visual assessment of the

PET scan and semi-quantitative parametric analysis.

Radiotracer and

parameter

Subgroup Number of

studies/PET

scan tests

Pooled Sen and its

95%CI

P-value Pooled Spe and

its 95%CI

P-value Pooled DOR and

its 95%CI

AUC P*
interaction

18F-FET, TBRmax HGGs 6/333 0.92 (0.85,0.98) 0.51 0.88 (0.79,0.96) 0.90 75 (18,304) 0.92 0.04

Gliomas of mixed

grades

8/477 0.84 (0.75,0.93) 0.71 (0.61,0.81) 12 (6,23) 0.80

Static scan 5/311 0.94 (0.88,0.99) 0.80 0.76 (0.62,0.90) 0.09 47 (7,299) 0.92 0.10

Dynamic scan 9/810 0.82 (0.73,0.91) 0.79 (0.71,0.88) 15 (7,32) 0.86

PET performed ≤7d

after SRR

3/108 0.84 (0.76,0.92) 0.19 0.79 (0.56,1.00) 0.64 NA NA 0.34

PET performed >7d

after SRR

4/233 0.76 (0.68,0.84) 0.82 (0.68,0.95) NA NA

18F-FDG Visual assessment 8/355 0.76 (0.63,0.85) 0.30 0.90 (0.81,0.95) <0.05 29 (14,60) 0.92 0.17

Semi-quantitative

parametric analysis

7/349 0.83 (0.73,0.90) 0.82 (0.72,0.89) 23 (10,51) 0.85

HGGs 11/214 0.76 (0.68,0.83) 0.82 (0.70,0.90) 15 (7,33) 0.84

Gliomas of mixed

grades

7/417 0.76 (0.58,0.88) 0.31
†

0.87 (0.80,0.92) <0.05
†

21 (8,52) 0.88 0.64
†

LGGs 5/141 0.61 (0.34,0.83) 0.83
†

0.90 (0.77,0.96) 0.02
†

15 (3,88) 0.90 0.10
†

11C-MET, TBR HGGs 3/248 0.94 (0.87,1.00) 0.95 0.82 (0.69,0.95) 0.47 71 (20,251) 0.95 0.58

Gliomas of mixed

grades

4/384 0.89 (0.78,0.99) 0.77 (0.67,0.86) 29 (7, 117) 0.79

PET performed

<20m after RT

2/92 0.96 (0.91,1.00) 0.89 0.71 (0.53,0.89) 0.04 NA NA 0.11

PET performed

>20m after RT

4/110 091 (0.84,0.97) 0.89 (0.79,0.99) NA NA

18F-DOPA Visual assessment 3/175 0.86 (0.80,0.92) <0.05 0.72 (0.59,0.86) 0.22 16 (4,62) 0.93 0.8

Semi-quantitative

analysis of TBRmax

3/175 0.84 (0.77,0.90) 0.68 (0.54,0.83) 14 (4,50) 0.85

AUC, area under receiver operating curve; CI, confidence interval; DOR, diagnostic odds ratio; HGGs, high-grade gliomas; LGGs, low-grade gliomas; SRR, suspicious recurrence of

glioma; TBR, tumor-to-brain ratio. Bold face type indicates statistical significance. *Based on meta regression.
†
Compared with group of HGGs.

while bias may have existed in the MET-PET (TBR) studies (P =

0.01) (Figure 5).

MRI Combined With FET-PET and
Multi-Parameter FET-PET
The pooled Sen, Spe, and DOR of the FET-PET/MRI group
were 0.88 (95% CI: 0.78, 0.94), 0.76 (0.57, 0.88), and 23 (9, 59),
respectively. The AUC of the HSROC curve was 0.90 (0.87, 0.92).
The multi-parameter FET-PET test had pooled Sen, Spe, DOR,
and AUC values of 0.88 (95% CI: 0.81, 0.92), 0.79 (0.63, 0.89), 26
(9, 78), and 0.91 (0.88, 0.93), respectively. Publication bias did not
exist between these studies (P = 0.66, P = 0.65).

DISCUSSION

To overcome the limitations of MRI, PET-CT has been suggested
by RANO for the management of glioma in addition to
conventional MRI at every disease stage (58). Many studies
have explored the diagnostic accuracy of PET labeled by
different radiotracers, which indicates its potential value. Static
and dynamic PET scans can acquire different parameters to

assess diagnosis. Static scans can calculate SUVmax, SUVmean,
TBRmax, and TBRmean to analyze the characteristics of
radiotracer uptake in lesions and unaffected brain tissue to
differentiate between tumor and normal brain tissue. Dynamic
scanning brings in the variable of time and can depict the
time-activity curves (TACs) of radiotracer uptake by lesions,
and can then identify tumors by calculating TTP or slope (the
change in SUV per hour) or by visually assessing the shape
of TACs (28, 30, 39). All these parameters are believed to
improve the diagnostic accuracy of PET tests compared to visual
assessments alone.

According to the pooled AUC of HSROC curves in this meta-
analysis, the diagnostic accuracy of 18FET-PETwas similar to that
of 18F-FDG PET, which was higher than that of 18F-DOPA PET
and 11C-MET PET.

18F-FET PET had a high diagnostic accuracy for TBR.
Subgroup analysis demonstrated a higher test accuracy
for HGGs than gliomas of mixed grades (Pinteraction =

0.04). Because of the higher recurrence rate of HGGs than
LGGs, FET-PET will benefit HGG patients more during
monitoring recurrence after surgery (Table 2). Compared
with dynamic scanning, static FET-PET scanning may have
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FIGURE 3 | HSROC curves for (A) 18F-FET PET (TBRmax), (B) 18F-FET PET (TBRmean), (C) 18F-FET PET (TTP), (D) 18F-FDG PET, (E) 11C-MET PET (TBR), (F)
18F-DOPA PET, (G) FET-PET/MRI, and (H) multi-parameters FET-PET.

similar accuracy for the differential diagnosis between TPR and
PTRC (Pinteraction = 0.10).

A common PET modality for the central nervous system (53,
59), 11C-MET PET had good test accuracy when calculating TBR
(pooled set: 0.92, Spe: 0.78). Although the accuracy of 11C-MET
PET was not different between the HGG group and the mixed-
grade group (Pinteraction = 0.58), a trend of higher diagnostic
accuracy in the HGG group was detected. As seen for FET-PET,
this result also indicated a better performance of MET-PET for
HGG patients. 18F-DOPA is a kind of amino acid radiotracer that
can be transported across the intact blood-brain barrier, but it is
scarcely used or researched (60). The accuracy of 18F-DOPA PET
was not superior to that of FET- or MET-PET in our analysis,
which will limit the use of FDOPA-PET.

Because of the limited number of studies that reported the
time when PET was performed, only the FET-PET TBRmax
and MET-PET TBR could be evaluated for the influence of
time point by subgroup analysis in this review. Because of the
pseudoprogression caused by radiotherapy, the symptoms of
patients and MRI always showed false positive results, which
can be falsely considered as tumor recurrence. In our analysis, a
longer time after radiotherapy showed a higher Spe of MET-PET,
which indicated that the PET scan may need to be performed
in the appropriate time window (perhaps a longer time after
radiotherapy). Further research is needed to identify the best time

point for performing PET after there is suspicious recurrence
on MRI.

18F-FDG is a common radiotracer used in PET scans, but it
always fails to differentiate between tumors and the brain due
to the similarly high uptake rates of glucose in normal brain
tissue (61). In this review, the accuracy of FDG-PET showed
a similar accuracy to amino acid PET (Table 1). Compared to
amino acid PET, FDG-PET had a higher Spe but a lower Sen,
so we can predict that the combination of these two radiotracers
would acquire better diagnostic performance. In the subgroup
analysis (Table 2), the pooled Spe of visual assessment was higher
than that of semiquantitative parametric analysis (P < 0.05).
Compared to the mixed-grade glioma group and LGG group, the
HGG group had a lower Spe (P < 0.05, P = 0.02). These results
demonstrate that the high Spe of FDG-PET may be derived from
the visual assessment of PET and the testing of LGG patients.
Thus, visual assessment should also be an important part of
PET tests in addition to parametric analysis. For HGG patients,
the accuracy of amino acid PET was satisfactory, while for
postoperative recurrence tests of LGG patients, amino acid PET
was not good enough and should be combined with FDG-PET to
acquire a higher Spe.

A confirmed diagnosis of recurrence during the follow-up
of glioma patients is most important for choosing the next
treatment method (secondary surgery or others). MRI is the
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FIGURE 4 | Forest plots for (A) 18F-FET PET (TBRmax), (B) 18F-FET PET (TTP), (C) 18F-FDG PET, (D) 11C-MET PET (TBR), and (E) 18F-DOPA PET.

most common and valuable method to monitor recurrence at
present. From a review of some previous meta-analyses, the
diagnostic accuracy of anatomical G-T1-MRI and advanced
MRI is summarized in Table 3. The accuracy of G-T1-MRI
and DWI was obviously not adequate for the diagnosis of
glioma recurrence (10, 13). Advanced MRI showed a higher
accuracy (11, 12, 62–64). Compared to advanced MRI, PET
with different radiotracers did not present an obvious superiority
in the differential diagnosis of glioma recurrence (Table 1).
However, the high Sen of amino acid PET and high Spe of

FDG-PET may suggest their combination in future applications
of diagnosis.

Some previous meta-analyses evaluated the accuracy of PET,
which did not show an obviously better performance than
advanced MRI. Moreover, none of them took the different
parameters (TBR, TTP, etc.) of PET into consideration (63–
67). Along with the evaluation of PET with different tracers,
this meta-analysis concentrated on the different accuracy of
parameters of PET scans and showed more accuracy in the static
parameter TBRmax of FET-PET than the dynamic parameter
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FIGURE 5 | Funnel plots of publication bias for different PET tests. (A) 18F-FET PET (TBRmax), (B) 18F-FDG PET, (C) 11C-MET PET (TBR), (D) 18F-DOPA PET, (E)

FET-PET/MRI, and (F) multi-parameters FET-PET.

TABLE 3 | Previous meta-analysis of MRI accuracy for diagnosis of glioma recurrence.

MRI Study Pooled Sen and its 95%CI Pooled Spe and its 95%CI DOR and its 95%CI AUC

Anatomical G-T1-MRI (13) 0.68 (0.51,0.81) 0.77 (0.45,0.93) NR NR

(64) 0.48 (0.08,0.90) 0.85 (0.39,0.98) NR NR

ADC of DWI (13) 0.71 (0.60,0.80) 0.87 (0.77,0.93) NR NR

MRS (63) 0.87 (0.80,0.92) 0.86 (0.77,0.93) NR 0.93

(13) 0.91 (0.79,0.97) 0.95 (0.65,0.99) NR NR

(64) 0.82 (0.68,0.90) 0.79 (0.69,0.87) NR NR

Cho/NAA of MRS (11) 0.88 (0.81,0.93) 0.86 (0.76,0.93) 37 (12,84) 0.92

Cho/Cr of MRS (11) 0.83 (0.77,0.89) 0.83 (0.74,0.90) 24 (12,49) 0.90

DSC of PWI (62) 0.88 (0.82,0.93) 0.85 (0.75,0.92) 42 (19,94) 0.93

(12) 0.90 (0.85,0.94) 0.88 (0.83,0.92) NR NR

(13) 0.87 (0.82,0.91) 0.86 (0.77,0.91) NR NR

DCE of PWI (12) 0.89 (0.78,0.96) 0.85 (0.77,0.91) NR NR

(13) 0.92 (0.73,0.98) 0.85 (0.76,0.92) NR NR

ADC, apparent diffusion coefficient; Cho/Cr, choline/creatine; Cho/NAA, choline/N-acetyl-aspartate; DCE, dynamic contrast-enhanced; DSC, dynamic susceptibility contrast; DWI,

diffusion-weighted imaging; G-T1-MRI, gadolinium-enhanced T1-weighted magnetic resonance; MRS, magnetic resonance spectroscopy; PWI, perfusion-weighted imaging; NR,

not reported.

TTP. However, most studies in this review only performed
static parameter analysis, and the accuracy of dynamic parameter
analysis needs more research for evaluation. Regardless of these
results, as a supplement to MRI, PET with different tracers
and parameters can provide additional useful information by
evaluating different metabolic pathways.

Furthermore, the accuracy of FET-PET multi-parameter
analysis or FET-PET/MRI in this meta-analysis was similar to
that of FET-PET TBR alone (Table 1). FET-PET multi-parameter
analysis and hybrid PET/MRI also were not more accurate

than advanced MRI. Although hybrid PET/MRI seemed to be a
promising technique for recurrent glioma diagnosis, quantitative
meta-analyses are scarce, and its accuracy in our analysis was
not satisfactory (7, 68). PET-CT was also commonly used to
differentiate TPR and PTRC in patients with brain metastases.
A meta-analysis showed that pooled Sen and Spe of FDG-PET
were 0.83 (95% CI: 0.74, 0.92) and 0.88 (0.81, 0.95), respectively.
The pooled Sen and Spe of amino acid PET were 0.84 (0.79,
0.90) and 0.85 (0.80, 0.91) (69). These results were similar to
the results in this review, thus it demonstrated similar diagnostic
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accuracy of PET differentiating TPR and PTRC both in glioma
and brain metastases.

To acquire high diagnostic accuracy in the management of
glioma as well as high feasibility and low cost to patients,
the method of radiomics analysis is applied broadly now.
PET radiomics combines datasets of static and dynamic PET
parameters to make full use of imaging information. Precise
image segmentation and feature extraction using different
classification methods make it more accuracy in diagnosis.
However, many studies demonstrated that a PET radiomics
model had higher accuracy than the PET single parameter
analysis in differentiating TPR from PTRC (70, 71). Feature-
based PET/MRI radiomics also showed higher accuracy (72).
One study used FDG PET, MET PET, and structural MRI images
to develop an integrated radiomics-based model which showed
a very high diagnostic accuracy with an AUC of 0.99 (51).
In this review we did not cover radiomics. Multi-parameter
PET radiomics combined with other imaging modalities has
indeed great potential in differentiating TRP and PTRC, and
its diagnostic performance should be summarized and evaluated
in future.

Some limitations exist in this meta-analysis. First, while 33
studies were included, only three tested 18F-DOPA PET, one
tested 18F-FLT PET, and one tested 11C-CHO PET. So their
credible diagnostic accuracy cannot be found in this review. The
accuracy of 18F-FET, 11C-MET, and 18F-FDG PET which was
synthesized in this review was credible due to the support of
enough studies. Second, some studies included a small number
of patients, so the correction of zero replaced by 1 in 2× 2 tables
caused a large effect on these studies.

CONCLUSION

This meta-analysis demonstrates that PET with different
radiotracers has a moderate diagnostic accuracy in differentiating
between glioma progression or recurrence and post treatment-
related changes. However, their performance does not show an

obvious advantage over advanced MRI. The high Sen of amino
acid PET and high Spe of FDG-PET suggest that the combination
of these twomethods will yield a higher accuracy. The PETmulti-
parameter analysis and PET/MRI have a great clinical application
prospect, their diagnostic performances require further research
in large sample sizes in multicenter studies.
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