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Huntington’s disease (HD) is characterised by a triad of cognitive, behavioural, and motor

symptoms which lead to functional decline and loss of independence. With potential

disease-modifying therapies in development, there is interest in accurately measuring HD

progression and characterising prognostic variables to improve efficiency of clinical trials.

Using the large, prospective Enroll-HD cohort, we investigated the relative contribution

and ranking of potential prognostic variables in patients with manifest HD. A random

forest regression model was trained to predict change of clinical outcomes based on

the variables, which were ranked based on their contribution to the prediction. The

highest-ranked variables included novel predictors of progression—being accompanied

at clinical visit, cognitive impairment, age at diagnosis and tetrabenazine or antipsychotics

use—in addition to established predictors, cytosine adenine guanine (CAG) repeat

length and CAG-age product. The novel prognostic variables improved the ability of the

model to predict clinical outcomes and may be candidates for statistical control in HD

clinical studies.
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INTRODUCTION

Huntington’s disease (HD) is a rare, genetic, neurodegenerative disease caused by a cytosine
adenine guanine (CAG) repeat expansion variant of the huntingtin gene (HTT) (1) and is
characterised by a triad of cognitive, behavioural, and motor symptoms (2, 3). Disease onset,
defined as the onset of motor signs and symptoms as measured by a Diagnostic Confidence Level of
4 (3, 4), typically occurs in the prime of life, between the ages of 30 and 50 years (2). HD is associated
with increasing disability, worsening of function and loss of independence, leading to death within
approximately 15 years of onset (2, 5). Motor and cognitive symptoms deteriorate steadily as the
disease progresses (3, 6–9), while behavioural symptoms tend to be episodic (10).

With potential disease-modifying therapies for HD in clinical development (11), there is interest
in measuring disease progression and characterising prognostic variables in order to improve the
efficiency and accuracy of clinical trials (12). Prognostic variables can be used to identify a patient
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TABLE 1 | Attrition table showing number of patients included after applying filters

for each inclusion criterium.

Total initial population in the dataset: 15,301

1) Age at baseline = 25–65 years; diagnosis age >20 years: 6,432

2) Manifest only (HDCAT = 3): 6,025

3) DCL = 4: 5,694

4) IS at baseline 100 ≥ IS > 70: 4,277

5) At least 2 year’s follow-up score for all four outcomes: 1,608

Totals are for subjects with complete data on all outcome scores.

DCL, diagnostic confidence level; HDCAT, HD category; IS, Independence Scale.

The bold values indicate the number of patients included after applying each inclusion

criterium.

TABLE 2 | Patient demographics.

Demographic N = 1,608

Age, years, mean (SD) 49.60 (9.32)

Male sex, n (%) 819 (50.9)

Region, n (%)

Australasia 69 (4.3)

Europe 1,068 (66.4)

Latin America 9 (0.6)

North America 462 (28.7)

CAG repeat length, mean (SD) 43.93 (3.04)

CAP score, mean (%) 488.18 (82.35)

Shoulsen and Fahn Stage at baseline, n (%) Stage I: 716 (44.53)

Stage II: 731 (45.49)

Stage III: 159 (9.89)

Stage IIII: 2 (0.12)

CAG, cytosine adenine guanine; CAP, CAG-age product; SD, standard deviation.

population through an enrichment strategy to reduce interpatient
variability in clinical trials or alternatively to enrich for faster
progressors, and to eventually inform the optimum time to start
treatment (12). Statistically controlling for prognostic baseline
variables may also be important in non-randomised (e.g., open-
label) studies as they could confound the relationship between
treatment exposure and outcomes. Additionally, when testing
hypotheses in randomised studies, the probability of detecting
a treatment effect will usually increase by including prognostic
variables as covariates in the analysis, as this would explain a
significant amount of variability observed due to random error.

Large prospective cohort studies have shown that
manifestations of progression, that is, clinical signs and
symptoms of HD, as well as known biological predictors
of progression such as CAG repeat length and CAG-age
product (CAP) score, can predict clinical progression or motor
onset (7, 13). However, no study has systematically ranked
the importance of predictors of progression in a manifest HD
population (i.e., after the onset of unequivocal motor symptoms).

Random forest (RF) regressionmodels permit interrogation of
large, complex clinical datasets to capture non-linear associations
between multidimensional predictive variables and clinical
outcomes with high predictive accuracy (14, 15). RF approaches
are well-suited to classification and regression problems, such

as identifying variables with predictive potential for disease
progression from clinical datasets. Here, we use modern machine
learning methods to examine a large number of HD variables
to identify the most important predictors of progression on five
clinical outcomes: total functional capacity (TFC), a measure of
function; stroop word reading (SWR), a measure of attention
and psychomotor processing speed; symbol digit modalities test
(SDMT), a measure of executive function, visuo-spatial working
memory, attention and processing speed; total motor score
(TMS), a measure of motor function; and the composite unified
HD rating scale (cUHDRS), an equally weighted composite
outcome measure of the TFC, TMS, SDMT, and SWR that was
developed based on an early manifest HD population (16). The
large prospective Enroll-HD cohort (NCT01574053) is used to
investigate the relative contribution and ranking of potential
prognostic variables to predict clinical progression in a clinical
trial-like manifest HD population.

RESULTS

The analysis included 1,608 individuals meeting typical criteria
for clinical trials in manifest HD and with CAG repeats
between 36 and 64 (filtering criteria shown in Table 1). Patient
demographics are shown in Table 2.

The highest-ranked variables predictive of disease progression
for each outcome are shown in Figure 1 and the top 10 variables
for each outcome shown in Table 3. CAP was found to be
the most predictive variable for all outcomes and CAG repeat
length was ranked as the second most important variable for
all outcomes. Other prognostic variables associated with faster
progression that ranked in the top 10 for at least three of the
five outcomes were: age at diagnosis (all but SWR and TFC),
being accompanied to clinic visits (for all outcomes), history of
cognitive impairment (all but SWR), tetrabenazine use (for all
outcomes) and antipsychotics use (all but TMS). The effect of
these variables on disease progression trajectory as measured by
the cUHDRS is shown in Figure 2.

The common variables among the top 10 most important
features for all outcomes were: CAP score, CAG repeats,
accompanied or unaccompanied at clinic visit, tetrabenazine use,
antipsychotics use and having severe cognitive impairment.

Unadjusted R2 measures were calculated for the RF models
including CAG and CAP score only and compared with the
model including all the features (Table 4). Using additional
features with CAP and CAG can capture the variance of outcome
by 17%more for cUHDRS and 15%more on average for the other
outcomes. The slight improvement in model fit with CAP, CAG
and age compared with the model built with the shared top 10
features could be due to the different cross-validation sets, and
also the very high contributions of CAP andCAG to themodel fit.

DISCUSSION

This analysis used real-world data from the large Enroll-HD
registry and a machine learning algorithm to identify novel
predictors of HD progression with significant impact on the slope
of clinical decline observed over a 2-year follow-up period. The
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FIGURE 1 | Rankings of predictors of clinical progression as measured by (A) cUHDRS; (B) TMS; (C) SDMT; (D) SWR; (E) TFC. Boxplots are shown with the upper

box edge representing the 75th quantile and the “whisker” extending to 1.5 times the IQR. A circle is an outlier, defined as a ranking that extends beyond a whisker.

BMI, body mass index; CAG, cytosine adenine guanine; CAP, CAG-age product; cUHDRS, composite Unified HD Rating Scale; ENT, ear, nose, throat; IQR,

interquartile range; MH, mental health; SDMT, symbol digit modalities test; SWR, stroop word reading; TFC, total functional capacity; TMS, total motor score.

two most important predictors identified were CAP score and
CAG repeat length, in agreement with previous studies (7, 13).
In addition, several strong predictors were identified that have
either not been previously studied (being accompanied to a

visit) or have had inconsistent effects in other studies (cognitive
impairment, use of tetrabenazine or antipsychotics) (7, 17–19).
The novel variables identified were predictive of progression over
multiple clinical domains, measured by motor, cognitive and
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TABLE 3 | Top 10 predictive variables for each outcome.

Rank Outcome

cUHDRS TMS TFC SDMT SWR

1 Baseline CAP Baseline CAP Baseline CAP Baseline CAP Baseline CAP

2 CAG repeats (affected

allele)

CAG repeats (affected allele) CAG repeats (affected allele) CAG repeats (affected allele) CAG repeats (affected allele)

3 Accompanied to

clinical visit

Accompanied to clinical visit Accompanied to clinical visit Tetrabenazine use Accompanied to clinical visit

4 Tetrabenazine use Tetrabenazine use Unaccompanied to clinical

visit

Antipsychotics use Antipsychotics use

5 Antipsychotics use Significant cognitive

impairment or dementia

Tetrabenazine use Significant cognitive

impairment or dementia

Unaccompanied to clinical

visit

6 Unaccompanied to

clinical visit

Age at diagnosis History of apathy Accompanied to clinical visit Tetrabenazine use

7 Significant cognitive

impairment or dementia

BMI Antipsychotics use Age at diagnosis Age at diagnosis

8 History of apathy Unaccompanied to clinical

visit

Speech therapy History of drug abuse Anti-epileptics use

9 Age at diagnosis Age History of perseverative

obsessive MH behaviours

Region—North America Occupational therapy

10 Mix of accompanied

and unaccompanied to

clinical visit

Mix of accompanied and

unaccompanied to clinical

visit

Significant cognitive

impairment or dementia

Comorbidities—

musculoskeletal

Education—upper

secondary

BMI, body mass index; CAG, cytosine adenine guanine; CAP, CAG-age product; cUHDRS, composite Unified HD Rating Scale; MH, mental health; SDMT, symbol digit modalities test;

SWR, stroop word reading; TFC, total functional capacity; TMS, total motor score.

functional endpoints, as well as the composite endpoint. Using all
predictors in addition to known prognostic variables improved
the ability of the model to predict clinical outcomes (see video
abstract in the Supplementary Materials).

Some of the features tested, which may have been expected
to rank highly as prognostic variables based on previous studies
in premanifest HD (i.e., prior to the onset of unequivocal motor
symptoms)—including smoking, alcohol intake and body mass
index (BMI) (20–22)—were not found to be important predictors
of progression. These results may not be directly comparable
to the current study, which was carried out in a manifest HD
population. It is also known that self-reporting of smoking and
alcohol use is unreliable in the general population, as revealed
by studies using advances in DNA methylation measurement
to assess substance use status (23). We found BMI to be a
weak discriminating factor among patients with different values
of change in outcome. A further potential explanation for the
disparity between our findings and previous studies could be
that the prognostic value of these variables may be dependent on
disease stage. In the current study, the population was relatively
progressed, and it is possible that other variables associated with
the disease could outweigh environmental variables.

It should be noted that we used an RF algorithm with the
setting that prevents bias in the ranking based on the data
structure. Whilst it is still possible that a feature can rank highly
due to collinearity with another feature that is a strong predictor
of the outcome, this could be prevented by calculating the
conditional importance of the features, which is computationally
very complex (24).

Additionally, the observed associations are based on
observational data and are therefore not indicative of causal
relationships, due to measured and unmeasured potential
confounding factors. For example, being accompanied to clinic
visits may affect the clinical outcome scores measured by
virtue of the companion’s additional report which informs the
clinical rating. It may also be because healthier participants
are able to continually attend visits alone, whereas those who
are on worse clinical trajectories need additional emotional or
practical assistance (e.g., driving) to complete visits. Similarly,
antipsychotics may be used to treat motor symptoms in HD, and
therefore may be expected to reduce TMS without influencing
overall disease progression. Cognitive outcome measures may
also be related to variables including dementia and severe
cognitive impairment. RF approaches have good performance in
modelling complex, multidimensional disease-specific datasets
(like Enroll-HD) (25). In this application, an RF approach was
used to find novel associations (e.g., identify variables with
predictive potential for disease progression), and does not imply
causality (i.e., the aetiological role of the variable during disease
progression) (26). Nevertheless, by virtue of the strength of the
associations observed, some of these features may be important
to control for in analyses of observational studies and may have
implications for companion participation in interventional trials.

The current study focused on clinical variables only and
did not include imaging or fluid biomarkers, which previous
studies have suggested may be predictive of disease progression
(7, 27, 28). This limitation was due to the nature of the
currently available HD databases. In this study, we used the
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FIGURE 2 | Effect of the highest-ranked variables on clinical progression trajectory as measured by cUHDRS. (A) Cognitive impairment; (B) Antipsychotics use;

(C) Tetrabenazine use; (D) Being accompanied at clinic visit. cUHDRS, composite Unified HD Rating Scale.

Enroll-HD database, which provides a sufficiently large sample
size for the analysis but does not include imaging or biofluid
data as part of the main study. Imaging databases such as
PREDICT-HD (NCT00051324) are available, but do not provide
the comprehensive range of clinical variables that is available in
Enroll-HD, such as medication history. The available biofluid
databases, such as the HD-CSF study (28, 29), are too small to
be informative on the scale of the current analysis.

A further limitation is that the results described here are
based on a selected cohort intended to reflect the inclusion
criteria of ongoing clinical trials, and therefore may not be
representative of the wider HD population, including younger
patients (juvenile-onset HD), elderly patients (>65 years), late-
stage patients (>Stage III) or premanifest patients. Further
research is needed to determine the wider applicability of these
results to these populations.

This study made use of a supervised RF regression model
to identify putative and novel predictors of disease progression
in HD. Identifying prognostic variables usually requires large
sample sizes to optimise predictive accuracy, which may be
a limitation for rare conditions such as HD. Since 2012, the

Enroll-HD registry, which includes over 19,000 participants from
177 sites in 20 countries, has allowed a large, high-quality dataset
to be available for researchers to advance the understanding
of HD. The power of RF modelling is particularly relevant
within the context of HD, where improved understanding of this
multidomain disease and need for efficient trial design is evident.

To overcome known methodological limitations, RF
approaches are being developed to harness the full potential
of long-term registry data in clinical risk prediction and may,
in future, accelerate disease risk and course prediction in HD.
Given the dynamic nature of disease, the recently published RF
Survival, Longitudinal and Multivariate model was developed
to evaluate the temporal nature of variables (such as rate of
change of variables) (30). Such approaches will further refine
identification of clinically meaningful predictive variables not
only for risk of disease progression as a static entity, but risk of
disease progression over time and clinical course. Such temporal
approaches will prove useful for future studies in HD, where
disease course is highly variable.

In summary, the RF approach described here using the Enroll-
HD dataset has identified novel prognostic variables which may
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TABLE 4 | Comparison of model performance with all the features (1), with the discovered top-ranking features (2) and with only established prognostic features (3 and 4).

Model Outcome variable

cUHDRS SDMT TFC SWR TMS

1 R2 with all the features 41% 28% 30% 26% 36%

2 R2 with the shared top 10 features* 31% 18% 20% 14% 24%

3 R2 with CAP, CAG and age at baseline 29% 19% 20% 16% 25%

4 R2 with CAP and CAG 24% 14% 15% 12% 20%

Difference between 4 and 1 17% 14% 15% 14% 16%

*Shared features among the individual top 10 important features of each outcome: CAP, CAG, accompanied or alone at visit, tetrabenazine use, antipsychotics use and

cognitive impairment.

CAG, cytosine adenine guanine; CAP, CAG-age product; cUHDRS, composite Unified HD Rating Scale; SDMT, symbol digit modalities test; SWR, stroop word reading; TFC, total

functional capacity; TMS, total motor score.

TABLE 5 | List of candidate prognostic variables included in analyses.

Age Marital status—separated Nutrition—homeopathic

Age at diagnosis Marital status—single Nutrition—aromatherapies

Rater’s judgement of initial major symptom—motor Residence—rural Non-pharmacological therapies—physical therapy

Rater’s judgement of initial major symptom—cognitive Residence—village Non-pharmacological therapies—occupational therapy

Rater’s judgement of initial major symptom—psychiatric Residence—town Non-pharmacological therapies—psychotherapy

Rater’s judgement of initial major symptom—oculomotor Residence—city Non-pharmacological therapies—counselling

Rater’s judgement of initial major symptom—other Residence—unknown Non-pharmacological therapies—speech therapy

Rater’s judgement of initial major symptom—mixed Region—Australasia Non-pharmacological therapies—swallowing therapy

Rater’s judgement of initial major symptom—unknown or missing Region—Europe Non-pharmacological therapies—music therapy

CAG repeats (affected allele) Region—Latin America Non-pharmacological therapies—relaxation therapy

CAG repeats (unaffected allele) Region—North America Non-pharmacological therapies—acupuncture

Baseline CAP score—age*(affected CAG repeats−33.66) BMI Accompanied to clinic visit*

Male sex Comorbidities—renal Unaccompanied to clinic visit*

Female sex Comorbidities—gynaecological Mix of accompanied and unaccompanied to clinic visit*

Race—black Comorbidities—reproductive History of irritability

Race—Native American Comorbidities—dermatological History of depression

Race—Asian Comorbidities—musculoskeletal History of violence/aggression

Race—Caucasian Comorbidities—neurological History of apathy

Race—Hispanic/Latin American Comorbidities—metabolic History of perseverative obsessive MH behaviours

Race—mixed Comorbidities—psychiatric History of psychosis (hallucinations MH or delusions)

Race—other Comorbidities—ENT Family history of psychotic illness in 1st degree relative

Previous alcohol problems Comorbidities—gastrointestinal Significant cognitive impairment or dementia

Ever smoked Comorbidities—allergy: immunological History of motor symptoms MH compatible with HD

Currently smoke Comorbidities—pulmonary Drugs for anti-depression

Ever abused drugs Comorbidities—ophthalmological Lipid-modifying agents, plain and combinations

Current drug abuse Comorbidities—cardiovascular Thyroid therapies

Currently drink alcohol Comorbidities—hepatobiliary Antipsychotics use

Father affected by HD Comorbidities—haematological/lymphatic Anxiolytics, hypnotics and sedatives use

Mother affected by HD Comorbidities—none Analgesics use

Inheritance unknown Comorbidities—other Tetrabenazine use

Education—bachelor’s degree or higher Nutrition—vitamin ACE inhibitors (plain and combination)

Education—post secondary but not university degree Nutrition—herbs Anti-epileptics use

Education—upper secondary or lower Nutrition—teas Protein pump inhibitors use

Marital status—married Nutrition—other Dopaminergic therapies use

ACE, angiotensin-converting enzyme; CAG, cytosine adenine guanine; CAP, CAG-age product; ENT, ear, nose, throat; HD, Huntington’s disease; MH, mental health.

*Accompanied/unaccompanied/mix of accompanied and unaccompanied to clinical visits were separated into a trichotomous variable. Accompanied means the patient did not come

alone to all Enroll-HD study visits throughout follow-up (maximum three visits); Unaccompanied means they came alone to all visits; Mix of accompanied and unaccompanied means

they sometimes came alone, but not always. This is the only candidate predictive variable based on some post-baseline data.
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be important candidates for statistical control in clinical trials and
observational studies in HD.

METHODS

Data Source
Data from the Enroll-HD database were used for this study.
Enroll-HD is a global platform designed to facilitate clinical
research in HD. Core variables are collected annually from all
research participants as part of this multicentre, longitudinal,
observational study. Data are monitored for quality and accuracy
using a risk-based monitoring approach. All sites are required
to obtain and maintain local ethical approval. The study began
recruiting in 2012, and as of data released in 2018, includes
over 19,000 total participants and more than 8,000 patients with
manifest HD. The second version of the fourth periodic dataset
release (PDS4 version 2.0) was used, which has a data cut-off date
of 31 October 2018 and was made available in August 2019.

Patient Population
The study population is purposely limited to individuals meeting
typical criteria for clinical trials inmanifest HD, using the filtering
criteria shown in Table 1.

The primary population of interest was individuals with
manifest HD aged 25–65 years, inclusive. Patients with juvenile-
onset HD (age of first symptom onset at age <20 years) were
excluded. Participants were required to have Independence Scale
>70 at baseline and at least two subsequent annual visits
with clinical information recorded. The rationale for these
criteria is that the typical duration of clinical studies in this
population is 2 years.

Analytical Approach
A total of 102 prognostic variables (Table 5) were considered for
each participant, including demographics, clinical characteristics,
comorbidities, symptoms, as well as pharmacological and non-
pharmacological treatments at baseline. The predicted variables
are the estimated change of outcome measures over time.
Estimated linear change was calculated for five outcomemeasures
of HD which have known sensitivity to detect clinical change
(change from baseline was measured out to 2 years): TFC, SWR,
SDMT, TMS, and cUHDRS. The slope was estimated based on a
linear mixed model with fixed and random intercept and slope
respectively, and the individual-specific slope was computed as
the sum of the random and fixed slope. Follow-up assessments
up to 2 years that fell within a± 90-day window around planned
annual visits were included.

An RF regression model with 1,000 trees was trained to rank
the features on their ability to predict the estimated linear change
of each clinical outcome. The model randomly selects a subset of
34 variables (one third of all available) for splitting at each node
within each tree. The training was repeated 100 times, each time
on a 75% random sample of the data. In each round, permutation
importance of each feature for prediction of the outcome was
calculated and used for the ranking of the features. The median
of the rankings of these 100 models was used for the final ranking
of the feature importance.

The R2 measure (the percentage of the slope variance that is
explained by the model) was calculated for the following models
predicting each outcome—a model trained with CAP score and
CAG only, a model trained with CAP score, CAG and age, a
model trained with the above-mentioned shared top 10 ranked
features and a model trained with all features.

The analysis was done using R version 3.5.2, with lmer()
from the lme4 package for the linear mixed-effects model,
and Cforest() from the Party package for the RF
regression model.
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