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We report a patient who has cognitive sequalae including verbal retrieval deficits

after severe traumatic brain injury (TBI). The cortico-caudate-thalamic circuit involving

the pre-Supplementary Motor Area (pre-SMA) has been proposed to underlie verbal

retrieval functions. We hypothesized that High Definition-transcranial Direct Current

Stimulation (HD-tDCS) targeting the pre-SMA would selectively modulate this circuit to

remediate verbal retrieval deficits. After the patient underwent 10 sessions of 20min of

1mA HD-tDCS targeting the pre-SMA, we documented significant improvements for

verbal fluency and naming, and for working memory and executive function tasks that

involve the frontal lobes. The effects persisted for up to 14 weeks after completion of

HD-tDCS treatment. We also demonstrated normalization of the event-related potentials

suggesting modulation of the underlying neural circuit. Our study implicates that

region-specific non-invasive brain stimulation, such as HD-tDCS, serves as a potential

individualized therapeutic tool to treat cognitive deficits by inducing longer-lasting

neuroplasticity even in the chronic phase of TBI.

Keywords: TBI, verbal retrieval, HD-tDCS, EEG, case report, verbal fluency, tDCS, word finding

INTRODUCTION

Traumatic brain injury (TBI) can result in a variety of deficits including cognitive, neurological,
and emotional dysfunction (1). There are few if any standardized treatments for the cognitive
sequela of TBI, including word finding difficulties which are among the most frequently reported
(2–5). These word finding difficulties may reflect focal injury to specific brain regions and/or
diffuse injury that disrupts connections between the regions that subserve word retrieval (6). Based
on a series of neuroimaging and neuropsychological studies, Hart et al. (7, 8) have proposed a
neural circuit involving the pre-Supplementary Motor Area (pre-SMA), caudate, and thalamus
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that mediates verbal retrieval functions essential to semantic
and episodic memory. In this model, the pre-SMA serves as
an essential hub for memory and verbal retrieval, involved in
the initiation and selection processes during retrieval. Lesions
located in the pre-SMA and its vicinity have been associated
with deficits in memory retrieval and word production, in
particularly during volitional language-based and motor-based
response selection (9–12).

Non-invasive brain stimulation has been used to test theories
of neurocognitive constructs as well as to modulate neural
functions to enhance cognition. We focus on transcranial Direct
Current Stimulation (tDCS), which leads to modulation of
cortical excitability by biasing membrane potentials toward
polarization at a subthreshold level and has been tested in
TBI populations with promising results (13–15). Spatially,
tDCS affects both the superficial cortical structures immediately
subjacent to the stimulating electrode as well as deep brain
structures (16, 17). Although repetitive application may lead
to more persistent behavioral changes and has been linked
to various possible changes in neurotransmitter receptors, ion
channels, synaptic potentiation/depression based on both in vitro
and in vivo studies, with the detailed mechanisms awaiting
further clarification (18, 19).

Here we report an individual with cognitive sequalae of TBI,
including a significant deficit in verbal fluency and naming. We
applied High Definition tDCS (HD-tDCS) (20, 21) that entails

FIGURE 1 | Baseline MRI brain images and HD-tDCS montage. Selected axial T2-weighted/FLAIR images that depict encephalomalacia involving the right frontal and

temporal lobes and several foci of signal hyperintensity within the right frontal centrum semiovale (A). HD-tDCS is applied using a 4 × 1 montage, including the anodal

electrode at Fz (1mA) paired with four cathodal electrodes at FPz, Cz, F7, F8 (0.25mA each) as shown after reconstruction of the subject’s gray matter surface (B)

and scalp (C). Normalized electric field is then simulated to represent its intensity and distribution based on the subject’s own T1 and T2 weighted images presented

over the gray matter surface (D), saggital section (E), and coronal section (F). Even though the distribution of electric field is slightly asymmetric due to chronic right

temporal lobe volume loss and right lateral ventricular enlargement, the focus of HD-tDCS is located to the medial superior part of the pre-Supplementary area and the

dorsal anterior cingulate cortex. Normalized electric field is in the unit of Volt per meter. All analyses were performed using SimNIBS 3.2.1 (22).

better focality than conventional tDCS in order to selectively
target the pre-SMA and thus to modulate the pre-SMA-
caudate-thalamic circuit underlying verbal retrieval deficits. We
documented significant therapeutic effects using longitudinal
neuropsychological testing corroborated by neurophysiological
measures (cognitive task-related event-related potentials) to
investigate potential underlying neural mechanisms.

SINGLE CASE DESCRIPTION

A 39-year-old right-handed (dominant hand), Caucasian female
was referred to our memory clinic 3 years after a bicycle accident,
which resulted in a left temporo-parietal epidural hematoma and
scattered right temporal lobe contusions that required surgical
evacuation and intensive care unit monitoring. Retrospectively,
post-traumatic amnesia was unclear and loss of consciousness
was prolonged. This would be most appropriately graded as
severe TBI although we do not have information on her initial
Glasgow Coma Scale and length of hospitalization. Brain MRI
acquired within a few months of treatment initiation showed
encephalomalacia involving the right frontal and temporal lobes
(Figure 1A). Even though there was no evident encephalomalacia
near the previous left epidural hematoma, there was visibly
reduced volume in the left parietal region suggesting prior
injury. She had significant functional recovery and regained
her independence in daily functioning. Modified Rankin Scale
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was 2 at post-TBI baseline. Prior to the injury, she was a high
functioning executive with 18 years of education. She was not
able to resume her prior job as a manager due to persistent
cognitive complaints and frequent episodes of dizziness. She was
taking levetiracetam 500mg twice daily due to a post-TBI seizure
immediately after the accident and she had been seizure free
since then. She had a history of migraine but did not have any
pre-morbid developmental delay or learning disabilities. Of note,
during the study she was on a stable dose of off-label use of
ropinirole 0.75mg twice daily for at least 3–4 months to treat
her verbal retrieval deficits, with reportedmild improvement. Use
of dopaminergic agents for improving verbal fluency has been
reported in the literature with mixed results [see review by (23)
for its potential mechanisms], as we have observed in our clinical
practice with often variable success among different individuals.

Description of Reported Cognitive
Symptoms
The patient reported stable, persistent cognitive symptoms for at
least the past 2 years, including difficulties with concentration to
complete a task, word finding, naming objects, understanding
what she has read, difficulties in remembering names and
trouble recognizing people’s faces, organizing ideas and shifting
attention. She denied any such issues prior to the accident.

EXPERIMENTAL ASSESSMENT AND
THERAPEUTIC INTERVENTION

The patient was recruited as part of an open-label group study
using HD-tDCS targeting the pre-SMA for cognitive deficits
in patients with chronic TBI. Both safety and feasibility were
evaluated in this study. HD-tDCS (with a similar 4× 1 montage)
has been tested extensively in healthy subjects, with side effects
reported to be minimal even at a current significantly higher
than ours (24). However, there is lack of large-scale studies that
systematically examine safety in neurologic patients, other than
case reports and case series.We are not aware of studies reporting
major safety concerns for HD-tDCS application in neurologic
patients that precluded our study protocol. We strictly followed
exclusion criteria for tDCS protocols [e.g., presence of electronic
implants or any extracranial or intracranial foreign objects (25)]
and closely executed safety protocol including having a trained
physician on site, and closely monitoring the patient’s symptoms
during and after HD-tDCS sessions. Informed consent was
obtained in accordance with the protocols approved by the
Institutional Review Board of the University of Texas at Dallas
and the University of Texas Southwestern Medical Center.

HD-tDCS Protocol and Outcome Measures
The HD-tDCS montage targeting the pre-SMA consisted of
Fz for the central anodal electrode and FPz, Cz, F7, and F8
for the return (cathodal) electrodes (i.e., five circular Ag/AgCl
electrodes 1 cm radius with conductive gel). A battery-driven,
wireless multichannel transcranial current source generated the
stimulation current (Neuroelectrics Starstim R©). This montage
has been reported in previous studies (15, 21) and was designed

to target the dorsomedial prefrontal cortex, with the electric
field most concentrated in the pre-SMA/dACC based on electric
field simulation (Figures 1B–F; including pre-SMA and part of
the dorsal Anterior Cingulate Cortex, dACC). At each session,
active HD-tDCS was ramped up over 60 s until it reached 1mA,
maintained at 1mA for 20min, and then ramped down to 0mA
over 60 s. This current was selected based on a prior study that
showed good tolerability in healthy adults (21). HD-tDCS was
administered across 10 sessions over 2 weeks, each constituting
20min of stimulation while the patient sat quietly or engaged
in casual conversation with the experimenter. We assessed the
patient’s pain and comfort level during and after each session.
The patient only experienced minimal tingling sensation near the
electrodes in the beginning of each session, and did not report
discomfort or any other side effects.

The overall study protocol is demonstrated in Figure 2A.
We administered verbal fluency (phonemic and category) before
and after each single HD-tDCS session in order to monitor
instantaneous and cumulative change over time. Both phonemic
and category fluency tasks reflect aspects of lexico-semantic
processing and executive function (34, 35). In addition, a
comprehensive battery of neuropsychological measures was
performed at baseline as well as immediately, 6 weeks, and 14
weeks after completion of the 10 HD-tDCS treatment sessions.
For cognitive outcome measures, we evaluated verbal retrieval
function (phonemic fluency using FAS and category fluency
using animal category, Boston naming test), executive functions
(Trails Making B, Delis-Kaplan Executive Function Systems
color-word interference), speed of processing (Trails Making A)
and facial recognition (the Benton face test) (see references in
Table 1). Electrophysiological measures (to be described in detail
later) were also recorded at baseline, immediately, and at 6 weeks
after completion of the 10 HD-tDCS sessions. We used different
parallel versions as were available for HVLT-R and Digit Span for
testing. Given limited versions available for any other tests, we
did not use multiple versions.

HD-tDCS Effects After Each Single Session
After each session, we observed immediate improvements in
verbal fluency (Figure 2B), but these changes did not persist until
the next session.

HD-tDCS Effects on Neuropsychological
Measures After 10 Sessions
As shown in Table 1, at baseline, the patient exhibited impaired
performance (<1 standard deviation from the average) in verbal
retrieval (phonemic and category fluency, Boston naming test).
She also demonstrated impaired executive functions (Trails
Making B, color-word interference), speed of processing (Trails
Making A) and facial recognition (the Benton face test)
on neuropsychological measures (Figure 2C). Otherwise, she
had near average performance in working memory, visuo-
spatial and verbal learning functions (Table 1). Improvement in
performance was found in tasks at which the patient was most
impaired, most evident in verbal retrieval and executive function
tests, including trails B, confrontational naming, phonemic and
category fluency (Table 1, Figure 2C). These positive therapeutic
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FIGURE 2 | Study protocol and performance change in response to HD-tDCS after each session and at longitudinal follow ups after completion of intervention. Study

protocol is demonstrated (A). Verbal fluency demonstrated significant improvements after each single HD-tDCS session, which wore off prior to the next session, but

the post-session performance had a steady improvement as the number of sessions increased, with some expected fluctuations (B). Phonemic fluency (P-FL) was

scored with the summed number of items from COWAT (letters F, A, and S) and category fluency (C-FL) was scored with the total item using animal category (B). At

baseline, category fluency was more than 1 standard deviation (SD) below average. Performance on most of these tests improved to closer to or within 1 standard

deviation from average after the HD-tDCS intervention, except for D-KEFS inhibition. These positive effects persisted over 6 and 14 weeks (C). References for these

neuropsychological measures are cited in Table 1.

effects persisted for at least 14 weeks after HD-tDCS was
completed. In inhibition and inhibition/switch parts of the color-
word interference test, we found incremental improvements over
time, indicating delayed effects.

HD-tDCS Effects on Electrophysiological
Outcome Measures
In order to investigate underlying neural changes in response
to HD-tDCS intervention, we recorded EEG and evaluated
N2/P3 event-related potentials (ERPs) components at baseline,
immediately and at 6 weeks after completion of HD-tDCS
treatment. EEG was recorded during two Go/NoGo tasks,
including 2 different levels of perceptual and semantic complexity
[applied extensively in a series of prior studies where more
detailed description can be found, e.g., in (36)]. The N2 and
P3 components during the response inhibition (Go/NoGo)
paradigm are in general thought to represent correlates of
cognitive control and response selection/inhibition (37, 38).
While we recorded absent and markedly diminished N2/P3
components prior to HD-tDCS, we found restoration and
normalization of the typical N2/P3 ERP components after
completion of treatment (Figure 3), which persisted until 6
weeks after intervention, with overall increased amplitude and
decreased latency in both N2 and P3 components. Behavioral
performance improved significantly as well, with Go reaction
time reduced from 635ms at baseline to 447 and 327ms
immediately and at 6 weeks post intervention, respectively, in the
more perceptually driven task (Figure 3, Task 1), and improved

from 662ms at baseline to 559 and 494ms immediately and 6
weeks post intervention, respectively, in the more semantically
driven task (Figure 3, Task 2). Accuracy remained relatively
stable above 90% except for the baseline Go accuracy that was
77 % but improved to above 95% for all subsequent testing.

Patient Report of HD-tDCS Effects
The patient reported significant and progressive improvement in
her daily function during and after HD-tDCS. Before treatment
she had dizziness that could be triggered by rapid head and eye
movements. Her dizziness improved such that she started reading
books, doing grocery shopping and watching her daughter’s
football practices. Second, she had trouble organizing and
following her schedule and constantly relied on her notes and
calendar. She noticed that after HD-tDCS she was able to follow
plans by memory, and was less dependent on notes. Third, before
she began this treatment regimen she experienced mental fatigue
quite easily after limited duration of cognitive activity. After HD-
tDCS, she had more energy and could carry out more daily tasks
that she had not been able to prior to treatment.

DISCUSSIONS

In this TBI patient with baseline cognitive sequalae including
persistent verbal retrieval and executive function deficits, we
found clear responses to HD-tDCS intervention focused at
the pre-SMA/dACC. We were able to show underlying neural
correlates of her persistent behavioral changes.
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TABLE 1 | Neuropsychological test results.

Pre Post-

immediate

Post-

6 weeks

Post-

14 weeks

Trails Aa – a sec (T) 123 (2) 37 (35) 28 (42) 29 (38)

Trails Ba - sec (T) 220 (11) 77 (34) 65 (37) 59 (42)

Digit Spanb - ss 9 11 11 13

Delis Kaplan Color Word Interference Testc

Naming - sec (ss) 56 (1) 32 (8) 31 (8) 39 (5)

Reading - sec (ss) 19 (12) 19 (12) 19 (12) 23 (9)

Inhibition - sec (ss) 101 (1) 83 (2) 70 (6) 68 (6)

Inhibition-switching - sec (ss) 159 (1) 66 (8) 57 (10) 55 (11)

Phonemic fluencyd - items (T) 15 (19) 51 (51) 39 (40) 44 (44)

Category fluencye – items (T) 20 (38) 29 (55) 24 (46) 24 (46)

Boston Naming Testf - raw (T) 56 (39) 58 (51) 53 (31) 57 (43)

The Hopkins verbal learning test-revisedg

Total recall - raw (T) 28 (50) 30 (54) 31 (57) 29 (52)

Delayed recall – items, total

of 12

10 12 12 11

Rey-Osterrieth complex figureh

Copy - raw score (T) 36 (54) 36 (54) 36 (54) 36 (54)

Immediate recall - raw (T) 19.5 (44) 22 (49) 26 (57) 24 (53)

Delay recall - raw (T) 21 (47) 23 (51) 25 (55) 23.5 (52)

Benton Facei -

No. correct trials, total of 54

37 37 33 33

Raw: raw scores; T: T scores; ss: scaled scores.
aTrails A&B: Trails Making Test (26).
bDigit Span (27).
cD-KEFS: Delis Kaplan Color Word Interference Test (28).
dPhonemic fluency test: Controlled Oral Word Association Tests (COWAT) (29).
eCategory fluency: animal fluency (29).
fBNT: Boston Naming Task (30).
gHTLV-R: The Hopkins verbal learning test-revised (31).
hRey-O: Rey-Osterrieth complex figure (32).
iBenton facial recognition test (33).

By targeting the pre-SMA/dACC, we found improved
confrontational naming suggesting improvement in verbal
retrieval function, and improved verbal fluency, suggesting
improvement in both verbal retrieval and executive functions.
We also found improvements in those tasks especially involving
the frontal lobes such as working memory, processing of speed,
and executive functions, which plausibly reflect the potential role
of the pre-SMA/dACC in these cognitive functions (12). The
pre-SMA has been proposed to be involved in domain general
processing regardless of stimulus modalities [for both motor
and language selection, as in (9)] and its functional/structural
connectivity to other pre-frontal regions as well as subcortical
regions makes it a hub for higher cognitive processing including
conflict resolution and cognitive control, as compared to more
posterior regions such as the SMA proper and the primary
motor cortices (11, 12). It is possible that some electric current
spread to other frontal regions, effecting tDCS modulation in
these regions, based on the simulated head model with the HD-
tDCS montage (Figure 2). These would potentially explain the
observed cross-domain/domain-general effects. Nevertheless, we
did not find improvements in the impaired facial recognition,
and her visuospatial and verbal episodic memory remained

relatively stable despite HD-tDCS, supporting some level of
response selectivity.

We also found variable durations of the HD-tDCS effects
on performance of different types of tasks. Of note, tDCS
effects have been proposed to reflect hormetic response, which
simulates an inverse U-shape curve that only appears linear
outside the accumulative dose range thought to be associated
with the adaptive response (19). It is possible that the
optimal hormetic response for each cognitive/motor function
is different because of differences in function and sensitivity
of underlying neural circuits. In general, short-term effects on
neural function can be mediated through neuronal and synaptic
activity (bottom-up processes), neuronal network dynamics (top-
down processes), or a combination (39, 40). This hormetic
response may also reflect long (er) term neuromodulatory effects
mediated through either direct stimulation or a compensatory
response to homeostatic perturbation, resulting in an adaptive
response (19). The cumulative effect results from multiple
repetitive HD-tDCS sessions (direct stimulation), while the
adaptive responses even after completion of 10 HD-tDCS
sessions (compensatory response) plausibly reflects ongoing
effects. This latter effect may have been manifested by
incremental improvements over time, even after HD-tDCS
was completed, such as D-KEFS inhibition and inhibition-
switch tests. A recent study using a similar HD-tDCS
montage in veterans with TBI showed a delayed and extended
improvement in category fluency that potentially supports this
contention (15).

Aside from standardized neuropsychological measurements,
the ERP findings provide strong evidence of the HD-tDCS
modulatory effects on underlying neural circuits. Given that ERPs
are thought to index both excitatory and inhibitory processes,
the re-emergence of N2 and P3 components suggests HD-tDCS
modulates synaptic potentials that underlie successful response
selection and inhibition, supported also by improved Go trial
reaction time. It has been shown that N2 and P3 components are
generated from multiple brain regions with the most consistent
generators from the frontal cortices such as the pre-SMA/dACC
[(41); also based on Go/NoGo fMRI studies as in (42)].
Therefore, the observed modulation effect could potentially be
mediated by either recruiting more neurons (that underly N2/P3
components) or bringing the underlying neuronal population
into increased synchrony (16). These systems-level effects can
be examined in the future with time-frequency power and phase
coherence analysis.

We acknowledge that this is a single case study so the
results may not be generalizable to other TBI patients and
future research is warranted to include more patients to
test treatment efficacy, which lies beyond the scope of the
current report. One should take caution in designing and
administering HD-tDCS in moderate to severe TBI populations
with skull or brain lesions in that local current density could
be enhanced over fissures or cranial penetrations (burr holes,
etc) (25). Second, we did not have a sham condition and some
improved performance could be related to learning/practice
effect. However, the degree of improvement and the pattern of
change during inter-trial testing (significantly better after each
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FIGURE 3 | ERP effects in response to HD-tDCS. ERPs at the midline fronto-central electrode (FCz) were examined for the two response inhibition tasks (Go/NoGo),

each contingent upon a different level of complexity [Task 1 is more perceptually based, requiring distinguishing between single exemplars of a car and a dog; Task 2

is more semantically based, requiring distinguishing between multiple exemplars of animals from non-animal objects. Refer to (36) for more detailed description of the

tasks]. N2 (a negative deflection of evoked potentials peaking around 200ms post-stimulus) and P3 (a positive deflection of evoked potentials peaking 300–500ms

post-stimulus) components are classically reported in this type of task, with NoGo trials eliciting more prominent N2/P3 amplitude than do Go trials. There was no

evident N2/P3 prior to HD-tDCS. Both N2 and P3 components appeared after 10 sessions of HD-tDCS, which persisted after 6 weeks. In Task 1, comparing

immediate post to 6 weeks post data, N2 peak amplitude/latency changed from −4.1 µV/293ms to −4.4 µV/255ms, while P3 peak amplitude/latency changed from

5.2 µV/448ms to 7.7 µV/382ms. In Task 2, N2 peak amplitude/latency changed from −3.8 µV/267ms to −6.1 µV/298ms, while P3 peak amplitude/latency

changed from 4.6 µV/527ms to 8.6 µV with a latency at 525ms.

session rather than steady incremental change over sessions)
would not be fully explained by learning effect. In addition,
some impaired performance did not change significantly or
to a similar extent after intervention (such as Benton face
recognition and color-word interference inhibition part) as well
as no changes on repeated assessment on tasks that that were
initially intact, suggesting differential intervention effects but not
an overall learning effect. Third, dizziness was a main complaint
that affected the patient’s daily activity and we did not assess
how dizziness symptom might be associated with improved
scores, although it is unlikely that improved performance
was the result of improved dizziness. The patient did not
complain of dizziness that limited her performance during
neuropsychological testing.

CONCLUSION

Our goal was to examine the therapeutic effects of HD-
tDCS targeting the pre-SMA. While more systematic and
randomized group studies will be needed to validate HD-
tDCS as an effective treatment option, we demonstrated
in this single patient the considerable potential that the
technique has for addressing deficits in patients who have
incurred TBI.
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