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Background: The pathophysiology underlying essential tremor (ET) still is poorly

understood. Recent research suggests a pivotal role of the cerebellum in tremor

genesis, and an ongoing controversy remains as to whether ET constitutes a

neurodegenerative disorder. In addition, mounting evidence indicates that alterations

in the gamma-aminobutyric acid neurotransmitter system are involved in ET

pathophysiology. Here, we systematically review structural, functional, and metabolic

neuroimaging studies and discuss current concepts of ET pathophysiology from an

imaging perspective.

Methods: We conducted a PubMed and Scopus search from 1966 up to December

2020, entering essential tremor in combination with any of the following search terms and

their corresponding abbreviations: positron emission tomography (PET), single-photon

emission computed tomography (SPECT), magnetic resonance imaging (MRI), magnetic

resonance spectroscopy (MRS), and gamma-aminobutyric acid (GABA).

Results: Altered functional connectivity in the cerebellum and

cerebello-thalamico-cortical circuitry is a prevalent finding in functional imaging studies.

Reports from structural imaging studies are less consistent, and there is no clear

evidence for cerebellar neurodegeneration. However, diffusion tensor imaging robustly

points toward microstructural cerebellar changes. Radiotracer imaging suggests that

the dopaminergic axis is largely preserved in ET. Similarly, measurements of nigral

iron content and neuromelanin are unremarkable in most studies; this is in contrast to

Parkinson’s disease (PD). PET and MRS studies provide limited evidence for cerebellar

and thalamic GABAergic dysfunction.

Conclusions: There is robust evidence indicating that the cerebellum plays a

key role within a multiple oscillator tremor network which underlies tremor genesis.

However, whether cerebellar dysfunction relies on a neurodegenerative process remains

unclear. Dopaminergic and iron imaging do not suggest a substantial overlap of ET

with PD pathophysiology. There is limited evidence for alterations of the GABAergic
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neurotransmitter system in ET. The clinical, demographical, and genetic heterogeneity of

ET translates into neuroimaging and likely explains the various inconsistencies reported.

Keywords: essential tremor, pathophysiology, magnetic resonance imaging (MRI), tremor network, PET, SPECT,

gamma-aminobutyric acid

INTRODUCTION

Essential tremor (ET) is among the most common movement
disorders in adulthood. Its prevalence in the general population
is estimated at ∼0.5% (1). ET can manifest at any age, but there
is a strong association with older age, as demonstrated by a much
higher prevalence (4–5%) in people aged >65 years (2). ET can
manifest sporadically, but 30–70% of ET cases have a positive
family history, suggesting the disease has a genetic background
(3). Familial cases usually show early disease manifestation in the
first two to four decades (4). The clinical hallmark of ET is a
symmetric action tremor of the upper limbs (5). However, tremor
may spread to other regions, such as the head, tongue, torso, jaw,
and legs or can manifest as voice tremor. In some patients, signs
of cerebellar impairment, such as subtle oculomotor disturbances
and gait ataxia are present. Cognitive impairment and psychiatric
symptoms, such as depression also can occur in ET patients
(4). The term “essential tremor plus” has been coined for ET
cases presenting with these additional symptoms (5). Given the
heterogeneity of clinical manifestation, the variable hereditary
background, and wide range of age at onset, it is likely that ET
does not constitute a single disease entity, but rather a disease
spectrum (4).

Despite its high prevalence, the neuronal mechanisms
underpinning ET are still not fully understood. Originally,
the inferior olive nucleus (ION) had been considered the
central oscillator of tremor genesis in ET (6); however, this
hypothesis has since been disputed, and a multiple oscillator
tremor network comprising the ION, brainstem, cerebellum,
thalamus, and motor cortical areas has been indicated in tremor
genesis (7). Moreover, a series of histopathological studies
reporting a loss and morphological alterations of cerebellar
Purkinje cells gave rise to the hypothesis that cerebellar
neurodegeneration may be the primary cause of ET (8–10).
However, this concept has been challenged by others (11,
12). In addition, there is mounting evidence that alterations
in the integrity of the inhibitory gamma-aminobutyric acid
(GABA) neurotransmitter system is a contributory factor in ET
pathophysiology (13). Lastly, particularly in the early course of
the disease, clinical differentiation of ET from Parkinson’s disease
(PD) can be challenging, and some authors have suggested
common pathophysiological features of the two diseases (14).

In recent decades, a substantial number of imaging techniques
have emerged that enable the assessment of structural, functional,
and metabolic alterations of the ET brain in a non-invasive
and easily accessible way, resulting in a large body of literature.
Whereas some findings corroborate with current concepts of
ET pathophysiology (15–17), others do not (18, 19). More
recently, novel techniques have been established to assess distinct
neurotransmitter systems and their role in tremor genesis in

vivo. Furthermore, studies exploring the dopaminergic system
and cerebral iron depositions have tried to establish a connection
between ET and progressive neurodegeneration, particularly with
PD, providing equivocal findings (14). Here, we systematically
review the advances in structural, functional, and metabolic
imaging and discuss pathophysiological concepts underlying ET
based on evidence from neuroimaging.

METHODS

We conducted a PubMed and Scopus search, including
publications from 1966 up to December 2020, entering
“essential tremor” in combination (“AND”) with any of the
following terms and their corresponding abbreviations: positron
emission tomography (PET), single-photon emission computed
tomography (SPECT), magnetic resonance imaging (MRI),
magnetic resonance spectroscopy (MRS), gamma-aminobutyric,
and γ-aminobutyric acid (GABA). In addition, we browsed the
reference lists of original and review articles retrieved in this
primary search. We only considered articles that were (1) written
in English, (2) included >5 ET subjects, (3) directly compared
ET subjects with a healthy control (HC) cohort, (4) were
performed on human subjects, and (5) provided quantitative
or semiquantitative data analyses. We did not consider case
reports, case series, or research papers that primarily focused
on therapeutic interventions, such as thalamotomy, MRI-
guided focused ultrasound, or deep brain stimulation (DBS).
If ET patients were additionally compared with other disease
groups (e.g., dystonic tremor), we solely considered comparisons
with HC. We followed the PRISMA guidelines for systematic
reviews (20).

We sought to address the following questions: (1) does
evidence from neuroimaging support the hypothesis of cerebellar
neurodegeneration in ET? (2) Do findings from neuroimaging
corroborate with the postulated concept of a tremor network?
(3) Is there support from neuroimaging for alterations of
the GABAergic system in ET? (4) Is there evidence from
neuroimaging for striatal dopaminergic degradation and nigral
iron accumulation in ET as typically observed in PD?

RESULTS

Our search revealed 1,135 hits. References retrieved were
imported into a reference manager (Endnote X8), and duplicates
were removed. FH screened all titles and abstracts for eligibility.
A total of 86 papers met our inclusion criteria. Fifteen additional
abstracts were identified by browsing the reference lists of
papers retrieved in the database search. The senior author (JS)
cross-checked papers selected for qualitative data synthesis for
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FIGURE 1 | Flowchart depicting the study selection process. Search was performed in PubMed and Scopus up to December 2020. Modified from Moher et al. (20).

eligibility. A flowchart of the selection process is presented in
Figure 1. Thirty-one studies were assigned to volumetric MRI, 19
to diffusion tensor imaging (DTI), 26 to functional MRI (fMRI),
six to MRS, six to imaging of brain iron, three to GABAergic
imaging, 17 to dopaminergic imaging, seven to perfusion imaging
(PET or SPECT), and five to metabolic radiotracer imaging.
Some studies applied more than one modality and were assigned
to different categories accordingly. A summary of all studies
included is presented in Table 1 (MRI and GABAergic imaging)
and Table 2 (radiotracer imaging).

Structural Magnetic Resonance Imaging
A number of imaging techniques have been applied to visualize
the brain morphology of ET patients in vivo.

Volumetric Imaging
Voxel-based morphometry (VBM) allows for a voxel-based
automated and rater-independent analysis of brain volumes
between groups, either in specified regions-of-interest (ROI)
or at a whole-brain level without a priori hypotheses (117).
Alternatively, automated segmentation methods can be

applied to quantitatively measure brain volumes, e.g., the
cortical thickness, using freely available software, such as
FreeSurfer (118).

Cerebellar atrophy is commonly reported in ET patients (15,
22, 26, 28–32, 36, 37, 43, 46, 48). However, an equivocal number
of studies found no morphological cerebellar changes (18, 21,
25, 33–35, 38–42, 49), and even increased cerebellar gray matter
volume in young ET subjects has been reported (27, 45). Findings
of cerebral cortical and subcortical structural changes are even
more heterogeneous. There is no consistent pattern of atrophy.
Moreover, alongside volume loss, gray matter volume gain has
been observed in various cortical regions, and some studies did
not identify any cortical differences between ET patients and HC
(15, 22, 23, 26, 33–36, 38, 41, 44, 45, 47). Of note, the clinical
phenotype of ET is associated with distinct morphological brain
changes. For example, ET patients presenting with additional
head tremor display more pronounced or distinct patterns of
cerebellar atrophy, as well as various cortical structural changes
compared with classic ET (25, 26, 28, 30, 31, 46). Indeed, some of
the studies reporting cerebellar atrophy found significant volume
loss only in ET individuals exhibiting additional head or voice
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TABLE 1 | Summary of MRI and GABAergic imaging studies.

References Subjects (f) Age (mean ± SD) Main findings

Volumetric MRI

Archer et al. (21) ET 19 (12)

HC 18 (10)

65.74 ± 11.56

63.66 ± 7.58

No difference

Bagepally et al. (22) ET 20 (5)

HC 17 (3)

38.2 ± 16.5

40.7 ± 16.5

GM of CER, frontal, occipital, L temporal, and R parietal regions ↓

Benito-Leon et al. (15) ET 19 (10)

HC 20 (10)

69.8 ± 9.4

68.9 ± 10.0

WM of R CER, L medulla, R parietal lobe, and R limbic lobe; and GM of bilateral CER,

bilateral parietal lobes, R frontal lobe, and R insula ↓

No difference between hET and clET

Benito-Leon et al. (23) 13 (7)

17 (7)

67.8 ± 7.3

64.1 ± 11.9

GM (cortical thickness or volume) of both thalami, L PMC/SC, L temporal lobe, L

occipital, L cingulate, bilateral entorhinal and ventral areas ↓

CER not assessed

Bhalsing et al. (24) ET 25 (6)

HC 25 (6)

45.0 ± 10.7

45.4 ± 10.7

GM of CER, R medial frontal gyrus in cognitively impaired ET patients ↓

GM of bilateral medial frontal gyrus, R SC, anterior cingulate and insula ↓ in

cognitively impaired compared with cognitively intact ET group

Buijink et al. (25) ET 36 (13)

HC 30 (11)

56 ± 14

54 ± 15

No difference

GM in bilateral PMC and SC, and L superior medial gyrus ↑ in hET compared

with clET

Cameron et al. (26) ET 47 (23)

HC 36 (26)

76.0 ± 6.8

73.3 ± 6.5

GM of CER, posterior insula, superior temporal gyri, cingulate cortex, inferior frontal

gyri, and parieto-occipital regions ↓

Pronounced atrophy in the hET subgroup

Cao et al. (27) ET 17 (9)

HC 17 (10)

39.65 ± 8.12

42.24 ± 9.47

GM of bilateral CER, occipital fusiform cortices, R inferior temporal gyrus, PMC,

thalamus, midbrain, precuneus ↑

GM of L parietal lobe ↓

Cerasa et al. (28) clET 27 (10)

hET 19 (13)

HC 28 (14)

65 ± 12.8

70.7 ± 7.8

66.5 ± 7.8

GM and WM of CER ↓ in hET only

Cerasa et al. (29) ET 14 (6)

HC 23 (10)

66.3 ± 9.1

64.4 ± 7.1

GM of CER in anterior lobe ↓

No difference in cerebral cortical thickness

Choi et al. (30) ET 45 (13)

HC 45 (13)

65.9 ± 6.8

67.6 ± 7.4

CER GM and WM ↓ in hET only

Daniels et al. (18) ET 27 (9)

HC 27 (9)

57.9 ± 12.2

n.a.b
No difference

Dyke et al. (31) ET 47 (23)

HC 36 (26)

76.0 ± 6.8

73.2 ± 6.7

GM of CER ↓ in hET and ET with voice tremor only

Espay et al. (32) ET 16 (5)a

HC 25 (21)

61.7 ± 9.3

48.6 ± 11.4

GM of L CER, and occipital cortex ↓

GM of R amygdala ↑

Fang et al. (33) ET 20 (8)

HC 20 (8)

50.3 ± 14.2

50.3 ± 14.2

No difference

Fang et al. (34) ET 35 (13)

HC 35 (13)

46.86 ± 11.3

44.46 ± 11.7

No difference

Fang et al. (35) ET 26 (7)

HC 26 (7)

47.3 ± 11.3

43.4 ± 14.4

No difference

Galazzo et al. (36) ET 10 (4)

HC 10 (5)

69.4 ± 8.9

67.7 ± 7.8

GM of CER and R occipital cortex ↓

Gallea et al. (37) ET 19 (7)

HC 19 (7)

50.4 ± 15.0

50.1 ± 16.4

GM of CER ↓

GM of SMA ↑

Klein et al. (38) ET 14 (5)

HC 20 (n.a.)

61.2 ± 12.0

60.2 ± 8.1

No difference

Lin et al. (39) ET 10 (5)

HC 13 (4)

63.4 ± 8.71

65.31 ± 11.09

GM of caudate, L temporal cortex, insular cortex, L precuneus, superior temporal

gyrus ↓

No difference in cerebellar volume

Nicoletti et al. (40) ET 32 (15)

HC 12 (8)

69.7 ± 9.7

67.4 ± 4.8

No difference

Novellino et al. (49) ET 60 (32)

HC 50 (25)

67.11 ± 7.84

67.58 ± 6.14

No difference in CER, thalamus, hippocampus, frontal lobe

Pelzer et al. (41) ET 19 (9)

HC 23 (8)

49.47 ± 3.51

50.93 ± 3.33

GM precuneus ↑

No difference in cerebellar volume

(Continued)
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TABLE 1 | Continued

References Subjects (f) Age (mean ± SD) Main findings

Pietracupa et al. (42) ET 19 (9)

HC 15 (8)

67.00 ± 17.80

63.00 ± 9.00

Thalamic volume ↑

No difference in cerebral cortical thickness or cerebellar volume

Prasad et al. (43) ET 40 (13)

HC 37 (10)

44.95 ± 12.46

46.45 ± 9.93

Cerebellar GM and volume of MCP/ICP ↓, pronounced atrophy in ET with clinical

cerebellar signs

No difference in WM in CER

Prasad et al. (44) ET 40 (12)

HC 40 (10)

44.95 ± 12.46

46.30 ± 9.39

GM in bilateral thalamus, hippocampus, midbrain ↓

GM in R caudate nucleus, pallidum, amygdala, bilateral putamen, nucleus

accumbens ↑

CER not assessed

No difference between familial vs. sporadic or between clET and rET

Qi et al. (45) ET 27 (13)

HC 27 (12)

39.65 ± 8.12

42.24 ± 9.47

GM of bilateral CER, L temporal occipital fusiform gyrus, precentral lobe, R occipital

fusiform gyrus, R inferior temporal gyrus, L thalamus, midbrain, medulla, bilateral

precuneus ↑

GM of L parietal lobe, pons, L insula ↓

Quattrone et al. (46) clET 30 (12)

hET 20 (14)

HC 32 (16)

61.5 ± 16.5

70.6 ± 7.6c

66.2 ± 8.1

GM of cerebellar anterior lobe, vermis, paravermal ↓ in hET only

No difference between hET and clET

Serrano et al. (47) ET 18 (8)

HC 18 (9)

63.7 ± 10.5

63.3 ± 12.0

GM (cortical thickness or volume) in precentral, temporal, orbitofrontal,

(para)hippocampal, entorhinal, posterior cingulate, and supramarginal regions ↓

CER not assessed

Shin et al. (48) ET 39 (16)

HC 36 (17)

63.7 ± 13.0

65.3 ± 6.8

GM cerebellar vermis ↓, more pronounced in clET

Diffusion tensor imaging

Archer et al. (21) ET 19 (12)

HC 18 (10)

65.74 ± 11.56

63.66 ± 7.58

No difference in FA, MD not assessed

Bhalsing et al. (50) ciET 33 (m:f 1:2.8)

clET 22 (m:f 1:2.5)

HC 55 (m:f 1:2.5)

47.03 ± 10.4

43.4 ± 13.4

46 ± 11

No difference in MD or FA between clET and HC

MD in R cingulum and L precuneus ↑ in ciET

No difference between clET and ciET

Caligiuri et al. (51) clET 25 (14)

rET 22 (11)

HC 25 (11)

64.7 ± 10.9

63.7 ± 13.5

65.1 ± 6.7

Structural connectivity of thalamo-cerebello and thalamo-cortical tracts ↓ in rET and

clET

Structural connectivity in basal ganglia–cortical tracts ↓ in rET only

Gallea et al. (37) ET 19 (7)

HC 19 (7)

50.4 ± 15.0

50.1 ± 16.4

FA in CST ↑, no difference in tremor network-related connections

Jia et al. (52) ET 15 (5)

HC 15 (n.a.)

65.07 ± 11.41

62.07 ± 7.60

MD in red nuclei ↑, no difference in FA

CER not assessed

Klein et al. (38) ET 14 (5)

HC 20 (n.a.)

61.2 ± 12.0

60.2 ± 8.1

MD in bilateral fronto-parietal and L temporo-occipital WM, and ICP ↑

FA in R ICP ↓

Martinelli et al. (19) ET 10 (8)

HC 10 (n.a.)

66 ± 11

60 ± 8

No difference in MD, FA not measured

Nestrasil et al. (53) ET 12 (4)

HC 10 (4)

45.5 ± 17.5

46.6 ± 14.8

MD in forceps minor and major, R

CST, R inferior fronto-occipital fasciculi, R superior longitudinal fasciclus, R inferior

longitudinal fasciculus, bilateral uncinate fasciculi, cingulum bundles, bilateral anterior

thalamic radiation ↑

No FA assessment

Nicoletti et al. (54) ET 25 (13)

HC 15 (8)

62.9 ± 69.5

62.47 ± 5.4

FA in DN and SCP ↓

MD in SCP ↑

Novellino et al. (55) ET 67 (29)

HC 39 (18)

65.64 ± 10.48

64.56 ± 9.4

MD of GM in CER ↑ in ET and rET, but no difference between clET only and HC

Novellino et al. (49) ET 60 (32)

HC 50 (25)

67.11 ± 7.84

67.58 ± 6.14

MD in bilateral hippocampus, and cerebellar GM ↑

Pak et al. (56) ET 40 (28)

HC 40 (20)

44.23 ± 18.91

37.45 ± 10.95

FA in inferior longitudinal fasciculus, corpus callosum ↓

MD in inferior/superior longitudinal fasciculus, genu and corpus callosum ↑

CER not assessed

Pelzer et al. (41) ET 19 (9)

HC 23 (8)

49.47 ± 3.51

50.93 ± 3.33

MD in widespread WM including tremor network correlated with clinical tremor

severity

Positive correlation of callosal FA with verbal fluency test

Pietracupa et al. (42) ET 19 (9)

HC 15 (8)

67.00 ± 17.80

63.00 ± 9.00

FA ↓ and MD ↑ in multiple motor and non-motor tracts including MCP, SCP, CST,

anterior thalamic radiation, longitudinal fasciculus, and inferior fronto-occipital

fasciculus

(Continued)
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TABLE 1 | Continued

References Subjects (f) Age (mean ± SD) Main findings

Prasad et al. (57) ET 40 (12)

HC 40 (10)

44.95 ± 12.46

46.30 ± 9.39

FA in corpus callosum and CST in rET ↓

MD in CER ↑ in overall ET cohort and rET

No differences of FA or MD between rET and clET

Revuelta et al. (58) ET 18 (8)

HC 10 (7)

71.1 ± 8.8

69.4 ± 9.0

MD in Vim-PMC, Vim-SMA, Vim-pre-SMA tract ↓

No difference in FA

CER not assessed

Saini et al. (59) ET 22 (5)d

HC 17 (3)

38.2 ± 16.5

40.7 ± 16.5

Tract-based spatial statistics whole brain: no difference in FA; MD in R internal and

external capsule, and R parietal WM ↑

No difference in CER

ROI based: FA in L SCP and R CST ↓

MD in right internal capsule, and left CST ↑

Shin et al. (60) ET 10 (5)

HC 8 (5)

52.8 ± 11.5

51.3 ± 11.1

FA of WM in R pons, bilateral cerebellum, L retrorubral area of the midbrain,

orbitofrontal, lateral frontal, parietal, and temporal WM ↓

Tikoo et al. (61) ET 25 (11)

HC 26 (17)

68.4 ± 9.7

63.2 ± 10.3

FA ↓ and MD ↑ in cerebellar peduncles

Functional MRI (task-based)

Archer et al. (21) ET 19 (12)

HC 18 (10)

65.74 ± 11.56

63.66 ± 7.58

Complex changes of activity in the tremor and visual networks during a motor task

that could be modulated by increased visual feedback

Broersma et al. (62) ET 21 (9)

HC 21 (7)

51.6 ± 17.8

50.6 ± 16.4

Tremor-associated activity in L/R cerebellum, and brainstem ↑ compared with

mimicked tremor in HC

Bucher et al. (16) ET 12 (4)

HC 15 (7)

61.1 ± 11.9

58.2 ± 9.8

Bilateral activation of the cerebellar hemispheres, DN, and red nuclei, and unilateral

activation of the contralateral PMC/SC, thalamus, and globus pallidus in ET during

involuntary tremor

Higher activation of cerebellar hemispheres and red nuclei during involuntary tremor in

ET compared with mimicked tremor in HC

Buijink et al. (63) ET 31 (10)

HC 29 (9)

55.4 ± 15.8

52.6 ± 16.1

Activity in CER, parietal and frontal cortex, DN and ION ↓ during motor task

Buijink et al. (64) ET 22 (10)

HC 21 (7)

59.5 ± n.a.

56.5 ± n.a.

Cerebello-motor cortical FC ↓ during motor task

Cerasa et al. (65) ET 12 (6)

HC 12 (6)

62.2 ± 12.4

59.8 ± 10.7

Activity in dorsolateral prefrontal cortex and in the inferior parietal cortex ↑ during

cognitive task

Espay et al. (32) ET 16 (5)a

HC 25 (21)

61.7 ± 9.3

48.6 ± 11.4

No difference during emotion processing and finger tapping task

Galazzo et al. (36) ET 10 (4)

HC 10 (5)

69.4 ± 8.9

67.7 ± 7.8

Activity in CER, sensory-motor cortex, and basal ganglia ↓ during motor task

Muthuraman et al. (66) ET 34 (9)

HC 34 (9)

58.9 ± 9

58 ± 9

Activity in CER associated with involuntary tremor mapped to motor cortex in ET,

whereas it mapped to premotor cortex during mimicked tremor in HC

Different topography of cerebellar activity sources in ET compared with HC

Neely et al. (67) ET 14 (8)

HC 14 (9)

61.7 ± 11.0

60.2 ± 9.2

Cerebello-cortical FC ↓

Cortico-cortical FC (PMC, SMA, premotor cortex) ↑ during motor task

Nicoletti et al. (40) ET 32 (15)

HC 12 (8)

69.7 ± 9.7

67.4 ± 4.8

Activity in CER and other nodes of the tremor network ↓ during motor task

Activity in PMC and SC, precuneus and superior parietal gyrus ↑ during motor task

Activity in widespread cortical regions, CER and internal globus pallidus ↑ during

motor task in rET compared with clET

Passamonti et al. (68) ET 15 (n.a.)

HC 15 (n.a.)

61.6 ± 9.3

60.4 ± 7.3

FC between CER and various cortical regions implicated in focusing attention and

with the DMN ↓ during cognitive task

Functional MRI (resting state)

Benito-Leon et al. (69) ET 23 (12)

HC 23 (13)

63.3 ± 13.4

60.6 ± 13.2

FC in CER and visual network ↓

FC in DMN ↑

Benito-Leon et al. (70) ET 23 (12)

HC 23 (13)

63.3 ± 13.4

61.1 ± 13.1

Graph theory-based study showing complex alterations of various parameters inside

and outside the tremor network in ET subjects

Fang et al. (33) ET 20 (8)

HC 20 (8)

50.3 ± 14.2

50.3 ± 14.2

Regional homogeneity in cerebellar lobes, bilateral thalamus, and the insular lobe ↓

Regional homogeneity in bilateral prefrontal and parietal cortices, L PMC, and L

SMA ↑

Fang et al. (34) ET 35 (13)

HC 35 (13)

46.86 ± 11.3

44.46 ± 11.7

FC in sensorimotor network, salience network, and between anterior and posterior

DMN ↑

FC in CER, and between CER and DMN and sensorimotor networks ↓

Fang et al. (35) ET 26 (7)

HC 26 (7)

47.3 ± 11.3

43.4 ± 14.4

Thalamus related FC in cerebello-thalamo-cortical network ↓

Thalamus related FC in primary and supplemental motor cortical areas ↑

(Continued)
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TABLE 1 | Continued

References Subjects (f) Age (mean ± SD) Main findings

Gallea et al. (37) ET 19 (7)

HC 19 (7)

50.4 ± 15.0

50.1 ± 16.4

FC between cerebellar hemispheres and ipsilateral DN, and between SMA and

ipsilateral PMC ↓

Lenka et al. (71) ET 30 (11)

HC 30 (10)

45.4 ± 13.7

43.4 ± 9.2

FC of PMC and SC with R CER ↓

FC of bilateral thalamus with posterior CER ↑

Li et al. (72) rET 20 (7)

HC 27 (12)

48.32 ± 13.16

49.12 ± 11.81

Regional homogeneity in CER, putamen, and DMN ↓

Li et al. (73) rET 19 (13)

clET 31 (21)

HC 25 (17)

46.58 ± 14.04

46.29 ± 14.30

49.88 ± 12.56

Activity in basal ganglia, inferior orbitofrontal gyrus, and insula ↓, activity in R CER ↑ in

overall ET cohort

In subgroup analysis, only clET patients showed ↑ activity in the CER

Distinct differences of activity in various cortical regions and basal ganglia between

rET and clET compared with HC

Mueller et al. (74) ET 19 (4)

HC 23 (n.a.)

55.5 ± 19.2

50.9 ± 18.0

Connectivity (eigenvector centrality) in cerebellar hemispheres ↓

Connectivity in the anterior cingulate and in the PMC bilaterally ↑

Nicoletti et al. (75) ET 23 (10)

HC 23 (12)

71.6 ± 10.5

70.3 ± 5.3

Complex alterations of (sensorimotor) cortico-cortical FC showing both ↓ and ↑

Cortico-cerebello FC ↓

Thalamico-cerebellar FC ↑

Tikoo et al. (61) ET 25 (11)

HC 26 (17)

68.4 ± 9.7

63.2 ± 10.3

FC of DN with L CER cortex, L caudate, L thalamus, L PMC and SC, bilateral frontal,

and parietal cortices ↓

Wang et al. (76) hET 20 (7)

clET 27 (11)

HC 27 (12)

51.00 ± 12.10

45.00 ± 14.43

45.00 ± 4.43

Activity in CER, bilateral caudate, R middle temporal gyrus, and L inferior parietal

lobule ↑ in hET compared with HC

Activity in R putamen, L precentral gyrus, and L SC ↓ in hET compared with HC

Activity in thalamus, R middle temporal gyrus, R middle frontal gyrus, and R inferior

parietal lobule ↑ in clET compared with HC

Activity in thalamus, R middle temporal gyrus, R middle frontal gyrus, and R inferior

parietal lobule ↓ in clET compared with HC

Yin et al. (77) ET 24 (12)e

HC 23 (12)

46.4 ± 14.2

47.2 ± 12.8

Activity in cortical regions, mainly related to motor function (e.g., pre- and postcentral

gyrus, SMA) ↑

Activity in CER ↓

Magnetic resonance spectroscopy

Barbagallo et al. (78) rET 12 (6)

HC 10 (2)

69.9 ± 8.3

64.1 ± 8.3

No difference in thalamic NAA/Cr or Cho/Cr ratios

Barbagallo et al. (79) ET 16 (3)

HC 14 (4)

65.5 ± 11.1

60.8 ± 10.2

No difference in thalamic NAA/Cr or Cho/Cr ratio

Thalamic Glx and Glx/Cr ratio ↑

Kendi et al. (80) ET 14 (8)

HC 9 (n.a.)

38.64 ± 12.8

35.4 ± 11.7

No difference in thalamic NAA/Cr and Cho/Cr ratios

Louis et al. (81) ET 16 (9)

HC 11 (5)

66 ± 18

60 ± 24

Cerebellar NAA/Cr ratio ↓

Louis et al. (82) ET 20 (10)

HC 11 (4)

62.2 ± 19.4

59.6 ± 23.0

No difference in cerebellar NAA/Cr ratio

NAA/Cr asymmetry index between R/L cerebellar hemispheres ↓

Pagan et al. (83) ET 10 (n.a.)

HC 10 (n.a.)

59.4 ± 18.7

57.2 ± 17.0

Cerebellar NAA/Cr and Cho/Cr ratios ↓

Imaging of brain iron

Cheng et al. (84) ET 9 (n.a.)

HC 166 (104)

63.8 ± 8.6f

63.6 ± 6.1

No difference in nigral susceptibility-weighted imaging or nigrosome-1 integrity

between ET and HC

Homayoon et al. (85) ET 25 (10)

HC 25 (12)

65.80 ± 12.82

64.60 ± 11

No difference in nigral R2* relaxation times between ET and HC

Jin et al. (86) ET 25 (15)

HC 34 (21)

61.12 ± 11.16

63.53 ± 7.81

No difference in nigral neuromelanin concentration or nigrosome-1 integrity between

ET and HC

Novellino et al. (87) ET 24 (10)

HC 25 (12)

64.29 ± 10.02

64.16 ± 9.26

Higher T2* relaxation times of bilateral globus pallidus internus, substantia nigra, and

R DN Only pallidal findings survived correction for multiple comparisons

Reimao et al. (88) ET 15 (8)

HC 10 (4)

70.5 ± 12.5a

61.2 ± 67.3

No difference in nigral neuromelanin in ET compared with HC

Wang et al. (89) ET 18 (7)

HC 21 (11)

62.56 ± 9.31

63.52 ± 8.34

No difference in nigral neuromelanin in ET compared with HC

Imaging of the GABAergic system

Boecker et al. (90) ET 8 (4)

HC 11 (6)

65.5 ± 8.0

56.6 ± 4.3

11C-flumazenil binding in CER, thalamus, and lateral premotor cortex ↑

(Continued)
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TABLE 1 | Continued

References Subjects (f) Age (mean ± SD) Main findings

Louis et al. (91) ET 45 (19)

HC 35 (25)a
74.98 ± 6.16

73.26 ± 6.06

No difference in DN GABA concentration between ET and HC

Higher values in R compared with L DN in ET cohort, but no correlation with

tremor scores

Tapper et al. (92) ET 10 (3)

HC 6 (1)

60.2 ± 9.7

62.2 ± 11.4

No difference in thalamic or CER GABA or Glx concentrations between ET and HC

Positive correlation of GABA/Glx ratio with tremor severity

ET, essential tremor; clET, classical ET; hET, ET subjects presenting with head tremor; rET, ET subjects presenting with resting tremor; HC, healthy controls; ↓, lower compared with

HC; ↑, higher compared with HC; R, right; L, left; GM, gray matter; WM, white matter; CER, cerebellum; CST, corticospinal tract; DN, dentate nucleus; ICP, inferior cerebellar peduncle;

MCP, middle cerebellar peduncle; PMC, primary motor cortex; SC, sensory cortex; SMA, supplementary motor area; SCP, superior cerebellar peduncle; Cr, creatine; Cho, choline; FA,

fractional anisotropy; FC, functional connectivity; GABA, gamma amino-butyric acid; Glx, glutamate/glutamine; MD, mean diffusivity; NAA, N-acetylaspartate; n.a., not available.
aGroups not matched for gender and/or age.
bAge-matched, but no mean age for the cohort provided.
chET significantly older than clET.
dTwo ET subjects excluded from the final analyses because of extensive white matter lesions.
eTwo subjects excluded due to excessive head motion.
fET subjects were a subgroup of a larger cohort including atypical parkinsonian patients; no demographical data are provided for the ET group separately, but statistical analyses were

performed for the ET subgroup.

tremor (28, 30, 31, 46). Moreover, cognitive dysfunction in ET
has been linked to specific cortical atrophy patterns not apparent
in cognitively intact ET individuals (24). The heterogeneity of
structural brain alterations reported in ET has been highlighted
in a recent meta-analysis including 16 VBM studies and more
than 350 ET individuals (119). The latter study did not identify
any brain regions, including the cerebellum, that exhibited
consistent gray matter volume loss in ET patients compared with
HC (119).

Diffusion Tensor Imaging
DTI is utilized for the assessment of the brain’s microstructural
integrity and is particularly sensitive to alterations in cerebral
white matter. DTI measures the random movement of water
molecules, which is mainly directed along white matter fiber
tracts (120). Two important measures are the mean diffusivity
(MD) and the fractional anisotropy (FA). The MD depicts the
average movement of water molecules in organic tissue, whereas
the FA refers to the directionality of movement. FA values close
to 1 reflect anisotropy, whereas values nearing 0 are isotropic and
are suggestive of tissue damage. Conversely, highMD values are a
surrogate for a loss of cellular integrity and indicative of neuronal
damage (121).

Compared with conventional MRI, DTI studies more
consistently point toward microstructural alterations of the
cerebellum, particularly of the cerebellar peduncles and dentate
nuclei (38, 49, 54, 55, 57, 59–61). In contrast to these 11 studies,
only two studies, both employing an ROI-based approach, did
not find any differences in DTI between ET patients and HC
(19, 21). Beyond cerebellar changes, widespread microstructural
alterations have been reported in various cerebral white matter
tracts related to both motor and non-motor function and in
the red nuclei (37, 38, 52, 53, 56, 59). For example, in a recent
study by Revuelta et al., the authors reported decreased MD of
fiber tracts connecting the ventral intermediate nucleus of the
thalamus (Vim), the typical target for DBS in ET, with motor
and supplementary motor cortical regions (58). Even though no
alterations of FA were observed in the same tracts, both MD
and FA in the Vim supplementary motor area tract correlated

with tremor severity, suggesting a pathological reinforcement
of this tract in ET (58). Similar to VBM studies, phenotype-
specific changes of FA and MD have been reported. Specifically,
ET patients presenting with additional resting tremor, but
unremarkable dopamine transporter imaging, showed reduced
structural connectivity in a network comprised of the globus
pallidus, caudate nucleus, and supplemental motor area that
was not apparent in ET patients without resting tremor (51).
Moreover, distinct cortical microstructural changes, including
the hippocampi, have been linked to cognitive dysfunction (41,
49, 50).

Functional and Metabolic Magnetic
Resonance Imaging
The initial model of ET tremor genesis proposed that rhythmic
discharges originating in the ION propagate tremor in ET (6).
However, based on current research, it seems more likely that
tremor genesis is not governed by a single oscillator, but is
rather driven by a number of oscillators within a tremor network
comprising the ION, cerebellum, thalamus, motor cortical
regions, and the brainstem (7). This hypothesis is supported by
evidence from neurophysiological studies confirming abnormal
oscillatory activity within the tremor network in ET (122).

Functional Magnetic Resonance Imaging
fMRI measures the blood oxygen level-dependent (BOLD)
contrast—generally called “the BOLD signal” (123). The BOLD
signal is affected by hemodynamic, vascular, and metabolic
factors, but is generally assumed to be closely related to
neural activity (123, 124). The first task-based fMRI study in
ET patients identified increased activity in the contralateral
sensory and motor cortices, thalamus, and globus pallidus and
bilateral overactivation of the cerebellar hemispheres and dentate
nuclei during arm posturing. In contrast, the authors observed
increased activity in the ION in only two out of 12 patients,
supporting a pivotal role of the cerebellum in tremor genesis and
refuting the single oscillator ION hypothesis (16). Subsequently,
numerous task-based fMRI studies have confirmed that altered
cerebellar and cerebello-thalamico-cortical activity is correlated
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TABLE 2 | Summary of radiotracer studies.

References Subjects (f) Age (mean ± SD) Main findings

Dopaminergic imaging

Asenbaum et al. (93) ET 32 (19)

HC 30 (20)

45 ± n.a.a

63 ± n.a.

DaTScan

Normal striatal uptake

Barbagallo et al. (78) rET 12 (6)

HC 10 (2)

69.9 ± 8.3

64.1 ± 8.3

DaTScan

Normal striatal uptake

Benamer et al. (94) ET 27 (9)

HC 35 (20)

64.1 ± 8.8

61.1 ± 8.7

DaTScan

Normal striatal uptake

Breit et al. (95) ET 6 (4)

HC 10 (5)

60 ± 5

58 ± 5

11Cd-threo-methylphenidate PET

Normal striatal uptake

Caligiuri et al. (51) clET 25 (14)

rET 22 (11)

HC 25 (11)

64.7 ± 10.9

63.7 ± 13.5

65.1 ± 6.7

DaTScan

Normal striatal uptake in clET and rET

Di Giuda et al. (96) ET 15 (9)

HC 17 (10)

52.5 ± 19.5

55.3 ± 13.7

DaTScan

Normal striatal uptake

Fang et al. (97) ET 33 (23)

HC 28 (10)

72.1 ± 10.0

52.3 ± 15.7

[99mTc]-TRODAT SPECT

Striatal uptake ↓

Gerasimu et al. (98) ET 28 (18)

HC 28 (16)

64 ± 15

63 ± 11

DaTScan

Putamenal uptake ↓

No longitudinal change in 9/10 ET subjects with available follow-up scan

Isaias et al. (99) ET 32 (10)

HC 31 (18)

70 ± 7

64 ± 10

DaTScan

Striatal uptake ↓

Isaias et al. (100) ET 20 (8)

HC 23 (13)

70.4 ± 9

70.5 ± 9

DaTScan

Normal striatal uptake with a trend toward reductions in caudate nucleus

No change over 3 years of follow-up

Lee et al. (101) clET 9 (5)

rET 6 (2)

HC 21 (n.a.)

60.0 ± 11.4

68.3 ± 10.29

61.8 ± 9.7

DaTScan

Normal striatal uptake in clET, ↓ in rET

Nistico et al. (102) clET 14 (7)

rET 14 (6)

HC 16 (8)

68.29 ± 9.15

68.29 ± 9.15

66.37 ± 2.39

DaTScan

Normal striatal uptake in clET and rET

Nistico et al. (103) rET 10 (4)

HC 20 (10)

60.60 ± 12.80

66.71 ± 4.02

DaTScan

Normal striatal uptake

Novellino et al. (104) ET 10 (6)

HC 18 (9)

68.5 ± 5.13

64.06 ± 4.84

DaTScan

Normal striatal uptake

Sun et al. (105) ET 8 (n.a.)

HC 11 (n.a.)

n.a.c

n.a.c

11C-CFT PET

Normal striatal uptake

Waln et al. (106) pET 9 (4)

clET 22 (8)

HC 13 (6)

67 ± 7.2

60.7 ± 8.5

63.2 ± 10.1

DaTScan

Trend toward reduced striatal uptake predominantly in the caudate nucleus

in both clET and ET-P

Wang et al. (107) ET 12 (4)

HC 10 (3)

52.1 ± 14.1

52.5 ± 10.7

[99mTc]-TRODAT SPECT

Normal striatal uptake

Perfusion imaging

Boecker et al. (108) ET 6 (4)

HC 6 (n.a.)

54 ± 13.8

45 ± 18.3

H15
2 O PET

rCBF in bilateral CER ↑, increase diminished after intake of ethanol and was

accompanied by increased rCBF of the ION

Jenkins et al. (109) ET 11 (5)

HC 8 (4)

63.8 ± n.a.

57.1 ± n.a.

C15O2 PET

rCBF of bilateral CER ↑ during rest, further ↑ during involuntary tremor with

additional rCBF increases of the contralateral thalamus, striatum,

and PMC/SC

Wills et al. (17) ET 7 (3)

HC 6 (n.a.)

49.4 ± n.a.

51.1 ± n.a.

C15O2 PET

rCBF of CER and thalamus ↑ during rest, further increase during involuntary

tremor with additional increase in the red nuclei

No increase in rCBF in the ION

Wills et al. (110) ET 7 (3)

HC 6 (n.a.)

49.4 ± n.a.

51.1 ± n.a.

C15O2 PET

rCBF in CER, midbrain, and thalamus ↑ during involuntary tremor

Sahin et al. (111) ET 16 (9)

HC 16 (9)

29.6 ± 10

28.0 ± 7.1

Technetium-99m HMPAO SPECT

No difference in rCBF, inverse correlation of frontal cortical rCBF with

cognitive function

(Continued)

Frontiers in Neurology | www.frontiersin.org 9 June 2021 | Volume 12 | Article 680254

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Holtbernd and Shah Imaging ET

TABLE 2 | Continued

References Subjects (f) Age (mean ± SD) Main findings

Song et al. (112) ET 16 (7)

HC 33 (23)

68.44 ± 13.73

66.94 ± 5.40

Technetium-99m HMPAO SPECT

rCBF in posterior CER, frontal gyrus, cingulate, insula ↓

Song et al. (113) clET 13 (8)

hET 10 (6)

HC 33 (23)

63.54 ± 20.22

65.60 ± 8.96

66.94 ± 5.40

Technetium-99m HMPAO SPECT

rCBF in posterior CER, frontal gyrus, cingulate, insula ↓

No difference between clET and hET

Metabolic imaging

Hallett and Dubisnky

(114)

ET 8 (3)

HC 10 (2)

50 ± n.a.

40 ± n.a.

FDG PET

rMRG of medulla oblongata and thalamus ↑

No difference in CER

Ha et al. (115) ET 17 (0)

HC 23 (n.a.)

67.29 ± 4.79

65.35 ± 6.11

FDG PET

rMRG of medial frontal lobe, medial temporal lobe, and precuneus ↓

No difference in CER

Song et al. (116) trET 8 (0)

nrET 9 (0)

HC 11 (0)

65.9 ± 0.7

68.6 ± 6.4

67.2 ± 1.5

FDG PET

rMRG of CER, frontal, temporal, and occipital lobes, and right precuneus ↓

rMRG of right basal ganglia ↓ in trET compared with nrET

Sun et al. (105) ET 8 (n.a.)b

HC 11 (n.a.)

n.a.

n.a.

FDG PET

No difference in rMRG in basal ganglia, midbrain, and CER

Breit et al. (95) ET 6 (4)

HC 10 (5)

60 ± 5

58 ± 5

FDG PET

No difference in rMRG in basal ganglia

ET, essential tremor; clET, classical ET; rET, ET subjects presenting with resting tremor; pET, ET individuals presenting with one cardinal parkinsonian feature (bradykinesia, rigidity, or rest

tremor); trET, ET patients responsive to propranolol therapy; nrET, ET patients unresponsive to propranolol therapy; HC, healthy controls; ↓, lower compared with HC; ↑, higher compared

with HC; n.a., not available; CER, cerebellum; ION, inferior olive nucleus; PMC, primary motor cortex; SC, sensory cortex; DaT, dopamine transporter; FDG, 18F-fluorodeoxyglucose;

PET, positron emission tomography; rCBF, regional cerebral blood flow; rMRG, regional metabolic rate of glucose; SPECT, single-photon emission computed tomography.
aHC significantly older than ET.
bOnly gender and age distribution of the entire cohort are provided, and it is not clear if cohorts were matched for gender and age.

to clinical tremor manifestation and task performance (36, 40,
62–64, 66, 67). One study did not report a significant difference in
functional connectivity during an emotion processing and finger
tapping task in ET patients compared with HC. However, in the
latter study, HC were not age matched to the ET cohort (32). In
line with the findings from structural imaging, cognitive function
has been associated with specific activity changes outside the
classical tremor network (65, 68).

More recently, neuronal activity has been assessed in the
resting state. Resting-state fMRI is advantageous over task-based
paradigms in that it is independent of individual variability
in task performance and interference of tremor with motor
function. The most consistent finding reported by these studies
was altered intrinsic cerebellar and cerebello-thalamo-cortical
activation/connectivity, particularly of cerebello-motor cortical
projections (33–35, 37, 61, 71–75, 77). There is also evidence that
complex functional alterations outside the classical tremor axis
are present in ET, including visual networks (69, 70). In this vein,
Archer et al. have demonstrated that activity within the tremor
and visual networks during a grip motor task could be modulated
by visual feedback (21).

Of note, surgical interventions to treat ET, such as Vim-DBS
or thalamotomy have been shown to restore connectivity in the
tremor network partially and to cause widespread remodeling
of other brain networks outside the classical tremor axis [e.g.,
(125, 126)]. In line with observations from structural MRI,
the clinical phenotype appears to be associated with distinct
functional brain changes. For example, ET individuals exhibiting
head tremor showed distinct cerebellar activity compared with

those who did not (76), and ET patients with resting tremor
showed different activation patterns of various cortical and
subcortical brain regions compared with classical ET (73).

Magnetic Resonance Spectroscopy
MRS is utilized to assess neurometabolic alterations in brain
tissue in vivo. N-acetylaspartate (NAA) is an abundant amino
acid derivative synthesized in neurons. A reduction of NAA,
therefore, is indicative of neuronal damage. The choline
(Cho) fraction comprises several soluble components mainly
located in myelin and cell membranes. Conditions resulting
in increased turnover or damage to cellular membranes and
myelin, such as inflammation, tumor, or neurodegenerative
processes, result in increased Cho concentrations. Creatine
(Cr) is found in most neurons and astrocytes. The Cr
peak is very robust, which is why Cr is commonly used
as a denominator to offset changes of NAA and Cho
(127). MRS can also be applied to measure GABA (please
see below).

Few studies have exploited MRS to investigate
neurometabolite changes in ET. Louis et al. were the first
to report a reduced NAA/Cr ratio in the cerebellum of 16 ET
patients compared with 11 HC that was inversely correlated
to tremor severity (81). The same group later found that
NAA/Cr changes were similar between cerebellar hemispheres,
in accordance with the symmetric clinical manifestation of
ET (82). Similarly, reduced NAA/Cr ratios have been reported
by Pagan et al. in a small cohort of 10 ET patients (83). That
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said, others found normal NAA/Cr ratios in the thalami of ET
patients (78–80), whereas there was an increase in the excitatory
neurotransmitter glutamate/glutamine evident in one of these
studies (79).

Imaging of the GABAergic System
The role of GABA in ET has been a topic of ongoing
discussion for many years (13), and different lines of research
have vindicated the significance of the GABAergic system in
ET pathophysiology.

ET patients show lower GABA levels in the cerebrospinal
fluid (128), and GABA receptor density in the cerebellar dentate
nucleus has been reported to be reduced (129). Alcohol has
agonistic GABAergic properties and alleviates tremor in many
patients with ET (130), and the majority of drugs used to
treat ET act via GABAergic pathways (131). Moreover, GABA-
A1 receptor knockout mice develop an ET-like disease that
responds to GABAergic drugs commonly used to treat ET (132).
The impact of reduced cerebellar GABAergic tone on neuronal
activity in cerebello-thalamico-cortical tremor network activity
has also been highlighted in a recent study applying a complex
computational simulation model of ET (133).

Very few in vivo imaging studies have explored the role
of GABA in ET. Using PET and 11C-flumazenil, a ligand of
the benzodiazepine site of the GABA receptor, Boecker et al.
observed increased cerebellar, thalamic, and premotor cortical
tracer uptake in a small cohort of ET patients compared with
HC, hinting at reduced GABAergic function (90). In contrast, a
separate study employingMRS failed to demonstrate a significant
difference in GABA concentration in the dentate nuclei between
ET individuals and HC (91). Another MRS study reported
a positive correlation of the cerebellar GABA/glutamate +

glutamine ratio with clinical tremor scores in a small ET cohort.
However, neither GABA nor glutamate/glutamine levels differed
between ET patients and HC in the latter study (92). Given the
limited number of available imaging studies focused on GABA,
we would like to mention the work by Gironell et al. even though
their study did not meet our inclusion criteria; they found a
significant correlation of cerebellar 11C-flumazenil uptake and
tremor severity in a cohort of 10 ET patients (134).

Imaging of Brain Iron
Different MRI techniques, such as susceptibility-weighted
imaging, T2∗-weighted, or its inverse R2∗-weighted gradient
echo imaging, can be used to measure brain iron (135). More
recently, novel methods, such as neuromelanin and nigrosome-1
imaging have been developed to visualize the neuronal integrity
of the substantia nigra (136). These techniques have been
extensively used to detect iron depositions, which are assumed to
be a surrogate of cellular damage in neurodegenerative disorders,
such as PD (137).

In one study comparing 25 ET patients with 25 matched HC,
no significant difference was found in the R2∗ relaxation times of
the substantia nigra (85). Similarly, three other studies reported
normal nigral neuromelanin concentrations in ET patients (86,
88, 89), and nigral nigrosome-1 integrity has been found to be
comparable with that of HC (84, 86). The focus of all these

studies was on the substantia nigra, and only one study applied
a whole-brain voxel-based approach (87). The authors reported
increased iron levels in the bilateral pallidum, substantia nigra,
and the right dentate nucleus. That being said, only the pallidal
iron increase survived correction for multiple comparisons and
was correlated to tremor severity (87).

Radiotracer Imaging
Alongside MRI, PET and SPECT have been applied using a
variety of tracers to study the integrity of the dopaminergic axis,
brain perfusion, and metabolism in ET.

Dopaminergic Imaging
Epidemiological studies suggest that ET populations have
an increased risk of developing PD, and there is an ongoing
controversy about a potential pathophysiological overlap
between the two diseases (14).

FP-CIT SPECT (commercially known as DaTScan) is
commonly used to assess the presynaptic striatal dopaminergic
integrity (138). Striatal tracer uptake is significantly reduced in
typical and atypical parkinsonism (138).

Most studies using FP-CIT SPECT or comparable techniques
found no alterations of the dopaminergic system in ET (51, 78,
93–96, 100, 102–105, 107, 139). These findings were extended
by two longitudinal studies showing constant tracer uptake over
time (98, 100). Of note, a third longitudinal study not meeting
our inclusion criteria did not reveal a decline of striatal dopamine
transporter availability over a mean follow-up period of 28
months (140). One study reported normal DaTScan in classical
ET patients, whereas tracer uptake was reduced in ET patients
with additional resting tremor (101). However, resting tremor ET
individuals were about 7 years older than the corresponding HC,
and several subjects presented with subtle parkinsonian features,
raising the question of whether they may have subsequently
developed PD. Conversely, others have found normal striatal
dopaminergic integrity in ET patients with resting tremor (102).
That being said, some authors reported signs of slight striatal
dopaminergic degradation in classical ET (97–99, 106). Of note,
ET patientsmay show reductions of tracer uptake primarily in the
caudate nucleus, contrasting the typical pattern of pronounced
posterior putamenal reductions observed in PD (99, 106).

Perfusion Imaging
A series of small exploratory PET studies conducted in the 1990s,
mostly using 15O-labeled H2O and PET, revealed increased
regional cerebellar blood flow (rCBF) during both rest and
posture in ET patients compared with HC (17, 109, 110).
These studies showed overactivation of additional regions
comprising the tremor network, whereas olivary overactivation
was not present in any of these studies (17, 109, 110).
Boecker et al. demonstrated that abnormally increased cerebellar
rCBF decreased toward normal values after ingestion of
ethanol, and this decrease was correlated to concurrent tremor
alleviation (108). Furthermore, there was an increase in ION
activation following ethanol ingestion, suggesting increased
afferent olivary input as a consequence of normalizing synaptic
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cerebellar activity (108). More recently, SPECT and 99mTc-
hexamethylpropylenaminoxom (HMPAO) have been used to
measure rCBF in ET cohorts. Sahin et al. did not observe any
difference of rCBF between 16 ET patients and matched HC,
but reported an inverse correlation of frontal cortical rCBF with
tremor severity (111). Employing the same method, Song et al.
found no significant differences in rCBF between ET patients
with and without head tremor (113). Interestingly, rCBF was
reduced in various brain regions, including the cerebellum, in
the overall ET cohort compared with HC in the latter and in a
subsequent study conducted by the same group (112, 113).

Metabolic Imaging
18F-fluorodeoxyglucose (FDG) and PET can be used to
quantitatively assess brain glucose consumption, which is largely
equivalent to neuronal activity (141). FDG PET has been
extensively used to characterize metabolic brain abnormalities
in neurodegenerative disorders, such as PD, and has revealed
disease-specific abnormal brain networks that correlate with
disease severity and can discriminate PD from atypical
parkinsonism (142).

Hallett and Dubisnky were among the first to report increased
brainstem and thalamic activity in ET patients, whereas they did
not observe significant changes in cerebellar metabolism (114).
Similarly, two recently published studies did not find changes in
cerebellar metabolism, but widespread cortical hypometabolism
was reported in one of these studies (105, 115). In contrast, Song
et al. found cerebellar hypometabolism accompanied by reduced
tracer uptake in various cortical regions (116). In yet another

study using an ROI-based approach, no metabolic differences
were identified in ET patients compared with controls in the basal
ganglia (95).

DISCUSSION

Whereas there is relatively little support from neuroimaging for
the hypothesis that the ION is the primary oscillator of abnormal
neuronal activity, there is robust evidence indicating that the
cerebellum plays a major role in ET pathophysiology. Findings
from volumetric MRI studies are, however, heterogeneous,
and VBM studies do not unequivocally corroborate with
histopathological findings of cerebellar neurodegeneration.
Importantly, the topography of cerebellar regions displaying
atrophy is inconsistent across studies, countering arguments in
favor of a uniform pattern of cerebellar cell loss. DTI studies
have more consistently revealed microstructural alterations of
the cerebellum, and fMRI studies have clearly demonstrated
abnormal cerebellar function and altered connectivity in
cerebello-thalamico-cortical circuitry. Along these lines,
radiotracer studies have shown increased cerebellar rCBF in ET
patients, further underpinning a pivotal role of this structure in
tremor genesis. That said, in view of the widespread functional
alterations reported, it is likely that the cerebellum is not the
sole driver of tremor genesis but rather constitutes a major hub
within a multiple oscillator tremor network, thus validating
neurophysiological data (122).

FIGURE 2 | Overview of neuroimaging studies in essential tremor. CER, cerebellum; CTC, cerebello-thalamico-cortical; DAT, dopamine transporter; FDG,
18F-fluorodeoxyglucose; GABA, γ-aminobutyric acid; MRS, magnetic resonance spectroscopy; MRI, magnetic resonance imaging; PET, positron emission

tomography; SPECT, single-photon emission computed tomography; ↑, higher compared with the healthy controls; ↓, lower compared with the healthy controls; ↔,

no difference compared with the healthy controls. 1CER not assessed by three studies. 2CER not assessed by one study. 3One study used 11C-CFT PET and two

studies used [99mTc]-TRODAT SPECT.
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Findings from FDG PET studies are ambiguous. Some studies
have reported extensive cortical hypometabolism, and there is
evidence for increased thalamic activity. However, other studies
have reported opposing results, and in particular, there are
conflicting findings with respect to cerebellar metabolic activity.
Data from MRS studies are scarce and insufficient to draw firm
conclusions. However, the few available studies provide some
evidence for thalamic and cerebellar neuronal damage.

The dopaminergic axis appears to be largely preserved in ET.
This is also illustrated by the fact that DaTScan has been certified
for use in the differentiation of PD from ET by both the European
Medicines Agency (EMA) and the United States Food and Drug
Administration (FDA), and some studies on PD even use ET
cohorts as “normal” controls [e.g., (143)]. That being said, some
authors have suggested slightly reduced striatal dopaminergic
integrity in ET subjects that does not, however, seem to decline
over time.

With the exception of one study, there is no evidence for
pathological nigral iron accumulation as typically observed in
PD. However, only one study did not apply an ROI-based
approach limited to the substantia nigra, and this study did
observe a significant increase of iron accumulation in the bilateral
globus pallidus internus. Therefore, it seems that there is no
relevant nigral iron accumulation in ET, but this could well be the
case for other brain regions not commonly assessed by imaging
studies thus far, arguing in favor of neurodegenerative processes.

Finally, MRS and radiotracer studies lend some support to the
hypothesis that dysfunction of the GABAergic system is involved
in ET pathophysiology. It remains to be elucidated whether the
reduced GABAergic tone is a primary contributing factor to ET
pathophysiology or rather a consequence of disturbed Purkinje
cell function or even cell death.

Based on the epidemiological, genetic, and clinical
heterogeneity, it is likely that no single ET entity exists, but
rather an ET spectrum. This is supported by the notion that
clinical phenotype, e.g., the distribution of tremor manifestation,
the presence of cognitive impairment, or resting tremor, is linked
to specific functional and structural brain changes. A summary of
the main findings reported in this review is depicted in Figure 2.

Taking genetic background (familiar vs. sporadic), age at
onset, disease duration, therapeutic responsiveness, and clinical
phenotype (e.g., presence of head tremor, symptoms of “ET
plus”) into account is important when studying ET populations,
but these factors have not been consistently implemented
in study designs so far. There are additional issues likely
contributing to the heterogeneous findings from neuroimaging
studies, such as limited sample size (this is particularly true
for PET and SPECT studies), subject age (the mean age
of ET cohorts included in this review ranged from 28 to
74 years), nature of the analytical approach (e.g., ROI-based
vs. whole-brain analysis, statistical threshold applied), and
the different field strengths of the MRI scanners. Moreover,
several groups have published multiple papers on related topics
using similar cohorts or did not specify if there was an
overlap of cohorts across their studies, a potential source of
reporting bias.

It is desirable that future studies more rigorously focus on
the demographical, genetic, and clinical heterogeneity of ET.
Multimodal imaging, including the simultaneous assessments
of MRI, PET, and electroencephalography, may shed further
light on the complex neuronal alterations underlying ET.
Furthermore, the much higher spatial resolution of ultra-
high field MRI may enable researchers to solve the remaining
controversy of whether cerebellar neurodegeneration is the
pathological foundation of ET.
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