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The success of ocrelizumab in reducing confirmed disability accumulation in primary

progressive multiple sclerosis (PPMS) via CD20-targeted depletion implicates B cells

as causal agents in the pathogenesis of PPMS. This review explores the possible

mechanisms by which B cells contribute to disease progression in PPMS, specifically

exploring cytokine production, antigen presentation, and antibody synthesis. B cells may

contribute to disease progression in PPMS through cytokine production, specifically

GM-CSF and IL-6, which can drive naïve T-cell differentiation into pro-inflammatory

Th1/Th17 cells. B cell production of the cytokine LT-α may induce follicular dendritic

cell production of CXCL13 and lead indirectly to T and B cell infiltration into the CNS.

In contrast, production of IL-10 by B cells likely induces an anti-inflammatory effect that

may play a role in reducing neuroinflammation in PPMS. Therefore, reduced production

of IL-10 may contribute to disease worsening. B cells are also capable of potent

antigen presentation and may induce pro-inflammatory T-cell differentiation via cognate

interactions. B cells may also contribute to disease activity via antibody synthesis,

although it’s unlikely the benefit of ocrelizumab in PPMS occurs via antibody decrement.

Finally, various B cell subsets likely promulgate pro- or anti-inflammatory effects in MS.

Keywords: B cell, multiple sclerosis, immune pathogenesis, inflammation, primary progressive multiple sclerosis

INTRODUCTION

Multiple Sclerosis (MS) is the most prevalent chronic demyelinating disorder of the central nervous
system (CNS) affecting more than 2 million people worldwide and over 700,000 people in the
United States (1). There are multiple different subtypes of MS. Most common is the relapsing
remitting MS (RRMS) subtype that affects the vast majority of MS patients. Approximately
85–90% of patients present with RRMS (2), which is characterized by relapsing and then remitting
neurological deficits without progressive disability between relapses. In later stages, RRMS patients
may exhibit ongoing worsening without obvious remission, termed secondary progressive MS
(SPMS). Roughly 36–60% of patients who first develop RRMS will go on to develop SPMS, on
average 10 years after disease onset (3, 4). A less common subtype, primary progressiveMS (PPMS),
is characterized by gradual worsening of neurological function from disease onset without evidence
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of remission. Approximately 10–15% of patients with MS
have PPMS (2). Of all the MS subtypes, PPMS has the
worse prognosis, with patients reaching much higher levels of
disability compared to patients with RRMS and SPMS (5). The
pathophysiologic mechanisms leading to these distinct clinical
phenotypes in MS subtypes is an area of ongoing research. The
pathological hallmarks of MS are inflammation, demyelination,
remyelination, and neurodegeneration occurring either focally
or diffusely in the brain and spinal cord (6). These features
are present in all MS subtypes, although in PPMS and SPMS
there is a predominance of diffuse low level inflammation, slowly
expanding pre-existing lesions, and a more intact blood brain
barrier when compared to RRMS (7).

B cells have been implicated in the pathology of MS through
the presence and diagnostic significance of oligoclonal bands (8–
11), an increased concentration of unique B cells subsets in the
periphery and CNS of MS patients (12–15), and the formation of
CNS ectopic lymphoid follicles (16–18). B cells may contribute
to disease progression in PPMS through cytokine production,
antigen presentation and antibody synthesis. A summary of the
mechanism of action of B cells in the immunopathogenesis of
PPMS is shown in Figure 1. Further, the effect of B cells in MS
is likely subset-dependent with some B cells exerting an anti-
inflammatory effect (19–21), while others a pro-inflammatory
effect (22, 23). The influence of various B cell subgroups in MS is
supported by clinical trial data, which demonstrates a reduction
in relapses in RRMS patients treated with anti-CD20 antibodies
(24) and an increased relapse rate after depletion of plasma cells
and late stage B cells (23). In PPMS, the success of ocrelizumab
in reducing disability progression is likely a result of selective
depletion of pro-inflammatory B cell subsets in PPMS patients
withMRI evidence of clinically significant ongoing inflammation

PROGRESSIVE MS PATHOLOGY AND
CLINICAL CHARACTERISTICS

The pathology of PPMS and SPMS are characterized by
widespread diffuse inflammation with slowly expanding lesions,
abundant cortical demyelination, brain atrophy, and lymphocyte
infiltration and microglial activation in normal appearing white
matter (25). In contrast, RRMS is typified by new and active focal
inflammatory demyelinating lesions in the CNS white matter.
The pathogenic mechanisms underlying PPMS and SPMS are
incompletely understood and it remains unclear whether these
disease subtypes are caused by similar or unique pathogenic
mechanisms (26). Increasing recognition that relapses and MRI-
identified lesion activity also occur in some patients with PPMS
and SPMS, typically in the early stages of the disease, led
to a modification of the phenotypic categories of progressive
multiple sclerosis (27). Recent guidelines for diagnosing PPMS
and SPMS now include two qualifiers: (1) with or without disease
activity, defined by MRI or clinical evidence of inflammatory
lesions or relapses; and (2) with or without progression, defined
as gradual worsening disability independent of relapses (27).
There are multiple areas of clinical and pathological overlap

between the different disease subtypes which have led researchers
to hypothesize that two distinct yet related pathophysiologic
mechanisms are driving the phenotypic differences seen in
these subtypes of MS (28, 29). More specifically, one emerging
concept is that relapses and remissions, characteristic of RRMS,
are caused by an inflammatory process driven by autoreactive
effector T cells, while progressive accumulation of disability
without remission, characteristic of SPMS and PPMS, is the result
of a neurodegenerative process driven by dysfunction of the
innate immune system and B cells (30).

There are now over 20 FDA approved disease modifying
agents for MS, with one designated by the FDA as an effective
option for PPMS. Ocrelizumab is the only FDA approved
medication for PPMS, having been approved in early 2017 (31).
Ocrelizumab is a monoclonal antibody that targets CD20, a
cell marker found principally on B cells (24). The mechanism
of action of ocrelizumab is considered to be mainly anti-
inflammatory via selective depletion of B cells. In a randomized
double-blinded, placebo-controlled trial in patients with PPMS,
ocrelizumab reduced confirmed disability as defined by slowed
advancement in the expanded disability status scale (EDSS) (31).
Prior to this, numerous other immune-targeting therapeutic
drugs approved to treat RRMS had been trialed in PPMS without
success. Interferon β-1a (32) and β-1b (33), fingolimod (34),
rituximab (35) and glatiramer acetate (36) were ineffective at
reducing disability accumulation in PPMS. Dronabinol (37) and
high dose biotin (38) were also trialed in PPMS and SPMS
with the hope that these drugs would promote neuroprotection
and repair. Dronabinol showed no significant change in disease
worsening, whereas high dose biotin demonstrated disability
improvement in 12.6% of patients compared with 0% of the
placebo arm in a randomized double-blinded placebo controlled
study (38). However, a phase III clinical trial of high dose biotin
in the treatment of PPMS and SPMS demonstrated that high
dose biotin failed to meet its primary and secondary endpoints,
including improvement of disability or progression of disability
(39). Research into the mechanisms by which biotin may exert a
beneficial effect in progressiveMS is ongoing (40). Teriflunomide
(41), natalizumab (42), alemtuzumab (43), mitoxantrone (44),
and hematopoietic bone marrow transplantation (45, 46) have
also been found to alter B cells in MS patients but have not been
tested in large scale clinical trials for PPMS. It is not currently
known whether PPMS is pathogenetically distinct from RRMS
and SPMS but the clinical success of Ocrelizumab in PPMS,
viewed in the context of the failure of other disease-modifying
therapies, implies a difference in the disease mechanism of
PPMS. The mechanism or mechanisms by which B cell depletion
produces a therapeutic effect in PPMS will be explored herein.

EVIDENCE FOR A PATHOGENIC ROLE OF
B CELLS IN PPMS

Oligoclonal Bands
The presence of unique oligoclonal bands (OCBs) and increased
intrathecal IgG synthesis by antigen experienced B cells has
long been recognized as a component of MS (47). OCBs are
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FIGURE 1 | Impact of B cells on PPMS pathogenesis. Production of cytokines influences the function of CD4 T cells, including promoting and suppressing

inflammation. Production of the cytokines IL-6 and GM-CSF can induce differentiation of CD4 T cells into Th1 and Th17 T cells which can then cause CNS damage.

The cytokine IL-10 is believed to decrease activity of Th1 effector T cells and reduce neuroinflammation in EAE and MS. Decreased IL-10 production by B cells may

result in increased neuroinflammation in MS. B cells induce T cell activation and differentiation into pro-inflammatory T cell subsets via antigen presentation via the

tri-molecular complex of MHCII, antigen, and T cell receptor. B cells are capable of differentiating into antibody secreting cells which produce antibodies capable of

directly damaging the CNS. Binding of lymphotoxin (LT) by follicular dendritic cells induces secretion of CXCL13 which may serve as a chemoattractant for B cells and

T cells, increasing lymphocyte infiltration into the CNS. Created with BioRender.com.

detectable in ∼95% of patients upon first presentation who
subsequently go on to develop MS. Further, OCBs may have
prognostic value in determining the likelihood of progression
from CIS to multiple sclerosis and disability accumulation (9–
11). Preferential expression of variable gene segments in isolated
CNS immunoglobulin from patients with MS indicate that
immunoglobulins present in the CNS have undergone affinity
maturation likely driven by the presence of a specific antigen (48,
49).MS patients withOCBs have amore aggressive disease course
than MS patients without OCBs (50). Moreover, in patients
with progressive disease, oligoclonal IgM bands in the CSF are
linked to faster progression into SPMS (51, 52) and with active
inflammation in PPMS (53). These findings indicate a potential
pathogenic role for intrathecal immunoglobulins in MS.

B Cells in the CSF and Peripheral Blood
In healthy patients, B cells are hardly detectable in the CSF,
whereas in MS the mean frequency of B cells among CSF
leukocytes is about 5% (12, 13). In contrast to B cells in the
periphery, most B cells in the CNS are memory B cells, identified
by surface expression of CD27. In patients with RRMS, elevated
features of neurodegeneration, as revealed by MRI, correlate
with increased numbers of peripheral B cells and a higher
proportion of activated B cells (14). Patients with SPMS have
greater numbers of specific B cell populations in their peripheral
blood, notably DC-SIGN+ B cells and CD83+ B cells (54),
which correlate with disease progression. Another study found
that CD19+ B lymphocytes expressing TNFα in the periphery

are increased in patients with PPMS compared to patients with
SPMS, RRMS, or healthy controls (15). CD19+ B lymphocytes
from RRMS and SPMS patients display hyper-phosphorylation
of p65 (55), but this hyperactivity has not been confirmed in
PPMS. In addition, anti-inflammatory “regulatory B cells”, which
produce IL-13, IL-10, and TGF-β, are reduced in all subtypes
of MS compared to healthy controls. Multiple studies have
reported flow cytometric characterization of the phenotype of
both CSF and peripheral immune cells that offer insight into the
possible underlying mechanisms leading to B cell proliferation
and activation in MS. Overall, the presence of increased numbers
of activated B cells in the CSF and periphery of patients with
PPMS and SPMS, the lack of regulatory B cells in all forms of MS,
and the correlation of increased B cell populations with disease
progression in patients with SPMS indicate a unique role for B
cells in the pathology of progressive MS.

Ectopic Lymphoid Follicles
The CNS is separated physically from the peripheral circulation
by the blood brain barrier (BBB), which compartmentalizes the
CNS and restricts leukocyte migration into the brain and spinal
cord. Historically, the CNS was believed to be an immune-
privileged site, but recent evidence has demonstrated a steady
trafficking of memory T cells between the periphery and the
CNS (56). It is hypothesized that memory T cells enter the CSF
using specific adhesion molecules, chemokines, and chemokine
receptors and enter the CSF through the epithelium of the
choroid plexus (56). These memory T cells then circulate through
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the CSF and interact with CNS myeloid antigen presenting
cells (APCs) within the subarachnoid space surrounding the
leptomeninges where they may propagate an immune response.
Diverse immune cell infiltrates have been observed in the
leptomeninges in patients with RRMS, SPMS, and PPMS (17, 18).
Numerous studies have linked these immune cell infiltrates to
demyelination and neuronal degeneration in the adjacent cortex
(18, 57) leading researchers to postulate that leptomeningeal
inflammation is a potential driver of disease progression in MS
(16). The spectrum of leptomeningeal inflammation exhibits
significant variability, ranging from disorganized collections of
immune cells in some patients to well-organized collections of
immune cells with many features similar to lymphoid tissue in
others (58). These well-organized immune cell structures have
been termed ectopic lymphoid follicle-like structures (ELFs) and
are characterized by separate B and T cell regions, a network of
follicular dendritic cells, plasma cells, and proliferating B cells
with evidence of ongoing germinal center reactions (59). While
the true incidence and significance of these ELFs inMS patients is
still under heavy scrutiny, they are not uncommon in progressive
forms of MS. One autopsy study found evidence of ELFs in
the meninges in up to 40% of patients with SPMS, but not in
RRMS or PPMS (59). Further autopsy series of patients with MS
have supported the presence of meningeal ELFs in patients with
SPMS (17). Notably, the presence of ELFs is linked with increased
cortical demyelination (17).

Further studies looking exclusively at PPMS found no proof
of ELFs but instead evidence of more widespread disorganized
leptomeningeal inflammation (16). In an autopsy series of 26
patients with PPMS, formal organization of ELFs was not
detected; however, a subset of PPMS patients had extensive
meningeal immune cell infiltration, consisting of both B and
T cells. Patients with evidence of widespread leptomeningeal
inflammation had a more severe clinical course and increased
cortical demyelination. Further investigation corroborated these
findings and demonstrated the presence of ELFs in patients
with SPMS and generalized leptomeningeal inflammation in
patients with PPMS and RRMS (60). Interestingly, in progressive
patients, leptomeningeal inflammation is only present in patients
with pathologically active disease defined as the presence of
classically active or slowly expanding lesions at the time of
autopsy. Patients with pathologically inactive plaques do not
display features of leptomeningeal inflammation (60). The
makeup of the leptomeningeal immune cell infiltrate varies
by disease subtype, with an increased prevalence of plasma
cells in patients with either PPMS or SPMS. Additionally,
progressive patients with pathologically inactive disease have
levels of overall leptomeningeal inflammation similar to those of
healthy controls but still have a modest but significantly higher
number of plasma cells and overall B cells (60). Leptomeningeal
inflammation, given that it is more prevalent in the subset
of patients with PPMS who had active disease and can be
visualized on MRI (60, 61), may serve as a potential biomarker
to identify patients with PPMS who may benefit most from B
cell therapy.

Given the correlation between both ELFs in SPMS and
widespread disorganized leptomeningeal inflammation in

PPMS with adjacent cortical pathology, it is possible that
leptomeningeal inflammation is an independent driver of
disability, particularly in progressive MS (16, 17). However, the
specific role of leptomeningeal inflammation in MS pathogenesis
remains an area of active debate. Some studies have described
extensive subpial demyelination in patients with PPMS and
SPMS without convincing evidence of ELFs or B cell infiltration
(62). This seems to indicate that leptomeningeal inflammation
with ELFs or B cells may not be needed for cortical demyelination
observed in these patients. Additionally, given that most research
data on leptomeningeal inflammation inMS comes from autopsy
series, the possibility that the leptomeningeal inflammation is
a secondary response to primary cortical demyelination rather
than a causative factor remains.

MECHANISM OF ACTION OF B CELL
MEDIATED DISEASE PROGRESSION IN
PPMS

Antibody Production
The presence of unique oligoclonal bands in the CSF of MS
patients led to the hypothesis that B cells could be contributing
directly to MS pathogenesis via autoantibody mediated CNS
tissue damage (47). This idea is supported by the presence
of CNS B cell clonal populations in patients with MS that
demonstrate evidence of somatic hypermutation and antigen
driven affinity maturation (48, 49). Additionally, plasma cells
isolated from the CSF of MS patients produce antibodies that
make up oligoclonal bands (63). Compared to RRMS patients,
SPMS and PPMS patients have higher amounts of plasma
cells in perivascular and meningeal immune cell infiltrates
indicating a unique role of plasma cells in progressive disease
(60). Early studies exploring the role of antibodies in MS
pathogenesis demonstrated antibodies bound to disintegrating
myelin in acute MS lesions at autopsy and in the marmoset
model of EAE (64). Immunoglobulins bound to myelin could
induce tissue damage via complement activation (65), activation
of microglia/macrophages via activating Fc receptors (66),
disturbance of oligodendrocyte physiology (67), or by proteolytic
activity on myelin basic protein (68). Additionally, the number
of antibody-secreting plasma cells increases with age in patients
with PPMS and SPMS (60). Overall, these data indicate that CNS
plasma cell antibody production could be playing a role in PPMS
disease progression.

It should be emphasized that no specific self-antigen has
yet been identified that has consistently been verified as an
autoantibody target in MS (69). Evidence supporting intrathecal
antibody-mediated injury derives from a study involving
adoptive transfer of Ig from the CSF of PPMS patients to naïve
mice. These mice succumbed to motor deficits paralleled by
CNS pathology, including demyelination and axonal loss within
the spinal cord (70). Many potential self-antigens have been
implicated by the presence of specific autoantibodies in patients
with PPMS. Candidate targets for auto-antibodies in PPMS
include anti-neurofilament light (71), anti-ganglioside GM3 (72),
and anti-SPAG16 (54). However, these antibodies have not been
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reliably detected in large populations of PPMS patients, nor has
a causal mechanism of injury been well-established. In a study
of patients with all subtypes of MS, antibodies specific to KIR4.1
(an ATP-sensitive inward rectifying potassium channel expressed
found primarily on glial cells) were found in roughly half of the
subjects. However, the presence of anti-KIR4.1 antibodies did
not correspond to a specific MS phenotype (73) and subsequent
studies have failed to reproduce these findings (74). Overall, while
many autoantibodies have been identified in patients with PPMS,
no specific autoantibody has been reliably linked to CNS damage.

Clinical data from anti-CD20 treatment of patients with MS
argues against a link between treatment benefit and antibody
production. B cells down-regulate CD20 expression as they
develop into plasma cells and thus mature plasma cells secreting
antibodies do not express CD20 (75). Therefore, plasma cells
are not directly targeted by ocrelizumab or rituximab and anti-
CD20 therapies are unlikely to have a direct impact on intrathecal
antibody levels, at least in the short term. This is supported
by a lack of measurable change in total serum antibody levels
in MS patients treated with rituximab, even in those patients
experiencing clinical benefit (76). Additional clinical studies
specifically evaluating rituximab’s effect on antibody levels have
confirmed that rituximab does not change peripheral antibody
levels (77). Further, CSF IgG levels, IgG index and oligoclonal
band numbers are also unchanged in patients with RRMS treated
with rituximab, even in the presence of depleted CSF B and T cells
(78). Given that anti-CD20 therapy depletes the vast majority of
plasma cell precursor cells, it’s possible that long-term CD20-
targeted B cell depletion therapy may impact plasma cells in
treated patients and thereby alter antibody levels, but antibody
modulation does not appear to contribute to the clinical benefit
seen shortly after treatment in MS.

Cytokine Production
B cells exert both pro-inflammatory and anti-inflammatory
effects depending on distinct cytokine production (79). B cells are
capable of controlling the polarization of effector T cell responses
and the formation of memory T cells through cytokine secretion
(79). A subset of B cells exhibits anti-inflammatory properties
through the secretion of IL-10, TGF-β and IL-35. These unique
B cells are identified by CD markers CD19 and CD138 and have
been termed “regulatory B cells” due to their hypothesized role
in the production of these anti-inflammatory cytokines (79, 80).
B cells also produce cytokines that induce T-cell differentiation
toward Th1, Th2, or Th17 subtypes (81) and exert an anti-
inflammatory role in mouse models of autoimmunity (80).

Patients with RRMS and SPMS have a dysregulated cytokine
network, specifically demonstrating a decrease in the anti-
inflammatory cytokine IL-10 (82). B cells (particularly memory
B cells) isolated from individuals with RRMS and SPMS can
also be activated to produce abnormally high amounts of the
cytokines TNF-α, LT-α, IL-6, and GM-CSF (82, 83). A study on
the peripheral blood of MS patients demonstrated that peripheral
pro-inflammatory B cells, defined by the cell surface marker
CD19 and by secretion of the cytokine TNF-α, are significantly
increased in all subtypes of MS, particularly those with PPMS
(15). Additionally, peripheral B regulatory cells, identified by the

cell surface marker CD19 and secretion of the cytokines IL-10
and TGF-β, are reduced in all subtypes of MS, particularly those
with PPMS. The overproduction or underproduction of specific
cytokines by B cells could play a causal role in the pathogenesis
of PPMS.

B Cell Production of LTα

LTα is secreted by B and T cells and binding of membrane bound
LTα to follicular dendritic cells induces CXCL13 production (84).
CXCL13 is a ligand that binds to the chemokine receptor CXCR5,
which is expressed on virtually all B cells, a subset of T cells,
and transiently on T cells upon activation (85, 86). CXCL13 is
presumed to be a potent chemoattractant that plays a causative
role in T and B cell CNS infiltration and lesion formation in MS
(87) and is locally produced in active demyelinating MS lesions
(87). Elevated CSF CXCL13 also correlates with an increased
risk of relapse and unfavorable prognosis in patients with RRMS
(88). Elevated levels of CSF CXCL13 increase the likelihood of
conversion of CIS toMS (88). In patients with RRMS treated with
rituximab, decreased levels of the chemokine CXCL13 correlate
with decreased levels of T cells (89). This led study researchers
to hypothesize that B cell depletion induces secondary T cell
depletion through reduced LT-α-mediated follicular dendritic
cell production of CXCL13. Analysis of CSF cytokines has also
demonstrated an increase in CXCL13 in patients with PPMS
compared to healthy control (90). Additionally, in patients with
PPMS, CSF CXCL13 was found to correlate with CSF B and T
cell levels (91) and higher amounts of CXCL13 were found in
patients with disease activity compared to those without (92).
Overall, these data suggest a possible pathogenic role for B cells
in PPMS via LT-α and CXCL13, which may be mitigated by
anti-CD20 therapies.

B Cell Production of IL-6
Murine EAE is a commonly used animal model that has been
used to decipher the immunopathogenic mechanisms of MS and
devise novel therapies (93). EAE is induced by immunizing mice
with CNS tissue or myelin peptides in the presence of an adjuvant
or by the adoptive transfer of encephalitogenic T cells into naïve
mice. Different strains of mice will exhibit different pathology
after induction of disease. The SJL/J mouse strain typically
demonstrates a relapsing remitting form of demyelinating disease
when immunized, whereas C57BL/6 mice display a monophasic
or chronic progressive demyelinating disease (94). The latter is
considered a suitable model for studying the demyelination and
axonal damage present in PPMS and SPMS, although notable
differences between murine and human MS disease pathology
have raised obvious limitations for the interpretation of EAE
results (94).

B cells from mice with EAE produce more IL-6 than naive
mice and treatment with monoclonal anti-CD20 antibodies
leads to normalized B cell production of IL-6 (95). Genetic
deletion of IL-6 exclusively in B-cells during EAE demonstrates
a more indolent course compared to control mice without
B cell IL-6 deletion (95). In co-culture, B cells enhance Th1
and Th17T cell responses to fungal infection in vitro, partly
through IL-6 signaling (96). Additionally, analysis of CSF
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from patients with PPMS and RRMS revealed that patients
with PPMS have significantly higher levels of intrathecal IL-6
production (97). Recent clinical data demonstrates that treatment
of PPMS patients with ocrelizumab leads to a reduction in B
cell production of IL-6 which correlates with a shift in T cells
to a more anti-inflammatory phenotype (98). The concordance
of animal and human studies with clinical data in PPMS
patients treated with ocrelizumab offers strong evidence for a
role of IL-6 in the pathogenesis of PPMS. Taken together, these
findings indicate that B cell production of IL-6 could exert
inflammatory damage in PPMS by skewing T cells toward a
pro-inflammatory phenotype.

B Cell Production of IL-10
IL-10 is a potent immunoregulatorymolecule that is dysregulated
in several autoimmune diseases, such as inflammatory bowel
disease, rheumatoid arthritis and systemic lupus erythematous
(99). Selective genetic deletion of IL-10 in B cells during EAE
results in a non-remitting disease course believed to be driven by
increased Th1 cell activity (100), supporting an IL-10-mediated
anti-inflammatory effect of B cells. Disease is suppressed in EAE
mice that received IL-10-producing B cells (101). A distinct
subpopulation of B cells, termed B10 cells, potentially function
as negative regulators of inflammation and autoimmunity (80).
B10 cells have been isolated in the peripheral blood of patients
with PPMS, RRMS, and SPMS (102) leading to the hypothesis
that deficient functioning of this B cell population may be driving
MS pathogenesis (82). What remains unclear is the role of B10
cells in progressive disease; a specific function of B10 cells (or lack
thereof) has not been detailed in studies on PPMS to date. Given
that the evidence for the anti-inflammatory role of B cell derived
IL-10 in PPMS comes primarily from animal studies, it remains
to be seen whether these findings will be observed in patients with
PPMS and therefore it’s specific role in the pathogenesis of PPMS
remains unclear.

Reconstitution of Anti-inflammatory B Cell
Population
In addition to the immediate effects of anti-CD20 therapies on
patients with PPMS there is also the potential for more long-
lasting effects from treatment, specifically through reconstitution
of an anti-inflammatory B cell population that may further
modulate disease progression and/or activity. Treatment of
RRMS patients with rituximab leads to reconstitution of B
cells producing lower levels of GM-CSF and higher levels of
IL-10 (83). This suggests a durable effect of rituximab on
the immunologic underpinnings of MS pathogenic processes.
It remains to be seen whether such anti-inflammatory B cell
reconstitution occurs in PPMS patients treated with ocrelizumab.

Antigen Presentation to T Cells
B cells are extremely potent APCs for T cells. They selectively
internalize antigen bound to surface immunoglobin and
then present this to T cells via MHC II molecules. The
antigen concentration necessary for selective internalization and
presentation by B cells are 103- to 104-fold lower than those
required for presentation by monocytes (103) which potentially

makes B cells a necessary APC for T cell activation when antigen
levels are low (104). B cells are also more effective APCs when
they recognize the same antigen as T cells (103).

The relevance of B cell antigen presentation to MS
pathogenesis was initially explored in EAE mouse models. Mice
with selective deficiency of MHC II molecules on B cells are
resistant to EAE (105). In contrast, mice selectively expressing
MHC II only on MOG specific B cells and no other APCs are
susceptible to EAE (105). This suggests a causal role of B cells in
MS pathogenesis through a mechanism of antigen presentation
enhanced by a cognate antigen between B and T cells. In a
study exploring the role of B cells in mice with EAE induced by
recombinant MOG protein, which produces what is considered
a “B cell dependent” EAE mouse model, anti-CD20 treatment
reduces Th1 and Th17 subsets significantly more than in the EAE
model induced by immunization withMOG peptide residues 35–
55 (106). This indicates that B cells, via antigen presentation, may
induce a pro-inflammatory polarization with an increase in Th1
and Th17 subsets.

The antigen presentation function of B cells has been explored
further in recent human studies. In vitro T cell proliferation was
found to be increased in RRMS patients with the HLA-DR15+

risk haplotype compared to those RRMS patients without the
risk haplotype (107). Given that the HLA-DR15 gene encodes
a distinct MHC II, this data led to the hypothesis that the
increased risk of MS with this haplotype is a direct consequence
of antigen presentation by B cells. The study further explored
the pathogenicity of the HLA-DR15+ haplotype and found that
in vitro proliferation of T cells was dependent on co-culturing
with B cells. When HLA-DR expression by B cells was inhibited
by ibrutinib, T cell proliferation was decreased, implying an
HLA-DR dependent mechanism of T cell activation by B cells.
Additionally, in RRMS patients treated with rituximab, ex vivo
proliferation and production of pro-inflammatory cytokines by
T cells was substantially reduced. The addition of autologous
CD20+ B cells obtained pre-treatment with rituximab was found
to restore CD4+ T cell proliferation. Memory B cells, specifically
un-switched memory B cells, were the B cell population most
strongly correlated with T cell proliferation (107). A recent
pathological study demonstrated that PPMS patients had higher
amounts of B cells within their CNS lesions compared to patients
with RRMS (108). Additionally, lower amounts of B cells within
these lesions was correlated with decreased CNS T cell infiltration
a better clinical outcome (108). Overall, these data indicate that
B cell modulation of T cells via antigen presentation is a likely
contributor to MS pathogenesis with memory B cells implicated
as the B cell population contributing most to T cell proliferation
via antigen presentation. Current research studies have consisted
almost exclusively of animal studies and human studies in RRMS
and therefore it remains to be seen whether these findings can be
replicated in PPMS.

The Pro-inflammatory and
Anti-inflammatory Role of B Cells
The clinical success of ocrelizumab viewed alongside research
indicating both pro- and anti-inflammatory effects of distinct
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B cell populations and cytokines indicates a multi-faceted role
of B cells in inflammation. This idea is supported by the pro-
inflammatory effects of atacicept in MS, an anti-inflammatory
drug previously trialed to treat RRMS (23).

Atacicept is a human recombinant fusion protein that binds
to the receptor for both BLyS (B-Lymphocyte Stimulator)
and APRIL (A PRoliferation-Inducing Ligand) acting as an
antagonist to these ligands and inhibiting receptor activation.
These two cytokines are important for B-cell maturation,
function, and survival. Atacicept has selective effects on B cells,
depleting plasma cells and late stage B cells while sparing B-
cell progenitor cells and memory B cells (109). Atacicept is the
only immunotherapy for MS whose mechanism of action leads
to relative sparing of memory B cells (22).

In a randomized double-blind, placebo-controlled trial of
atacicept in patients with RRMS, patients who received atacicept
had a higher annualized relapse rate compared to those receiving
placebo (23). For this reason, the trial was suspended early and
has led to the hypothesis that atacicept’s depletion of plasma cells
and relative sparing of memory B cells implies that plasma cells
mainly function as anti-inflammatory cells while memory B cells
are pro-inflammatory in MS (13, 110).

This hypothesis is supported by further data highlighting these
distinct functions of plasma cells and memory B cells. In an EAE
mouse model, plasma cells from the gut were found to play an
anti-inflammatory role on neuroinflammation in EAE through
the secretion of IL-10 (19). This fits with previously mentioned
data regarding the anti-inflammatory effects of IL-10 in EAE
(101) and implicates plasma cells as the B cell subtype responsible
for IL-10 secretion. Additionally, immunoglobulin produced by
intrathecal plasma cells in progressive multiple sclerosis may
have a direct anti-inflammatory effect by binding to inhibitory Fc
receptors (111). Oligodendrocyte-specific Igs might also promote
remyelination (112). In contrast, memory B cells are likely pro-
inflammatory and recent research indicates that ex vivo memory
B cells play a prominent role in inducing CD4+ self-reactivity,
likely through a mechanism of antigen presentation (107).

Clinical evidence demonstrating that atacicept increases the
rate of MS relapses, taken in conjunction with additional findings
suggesting an anti-inflammatory role of plasma cells and a pro-
inflammatory role of memory B cells, indicates that B cells can
have both a pro and anti-inflammatory effect in MS depending
on their specific clonal subset, causing either disease mitigation
or progression, respectively.

OCRELIZUMAB IN PPMS

The success of ocrelizumab at reducing disability in PPMS, in
the context of previous failures of other anti-inflammatory drugs
approved for RRMS, in particular the anti-CD20 monoclonal
antibody rituximab, raises important questions about the specific
mechanisms by which ocrelizumab exerts its therapeutic benefit.
One hypothesis put forth regarding the success of ocrelizumab
and failure of rituximab derives from phenotypic differences in
the types of PPMS patients enrolled in each study. Rituximab
and ocrelizumab are both CD20 monoclonal antibodies. CD20

is a cell surface marker expressed on most B cell subsets with
the exception of early pro-B cells, late stage plasmablasts and
terminally differentiated plasma cells (113). In clinical trials,
ocrelizumab, but not rituximab, significantly reduced disability
progression in PPMS patients (31, 35). In the OLYMPUS
trial involving treatment of PPMS patients with rituximab, no
significant reduction in disease progression was observed overall
(35). However, a subgroup analysis revealed that younger age
(<51) and the presence of a gadolinium enhancing lesions
on MRI (≥1 gadolinium enhancing lesion at baseline) were
predictive of treatment responsiveness (35). In particular,
patients who had these characteristics in the placebo arm were
3 times more likely to have clinical disease progression compared
to the same demographic of patients treated with rituximab
(35). The subsequent ORATORIO trial of ocrelizumab in PPMS
was designed with recruitment directed at relatively younger
participants (mean age 44.6 years; maximum age 55 years),
with shorter disease durations (mean 6.4 years; maximum 15
years), and included a relatively high proportion of participants
with gadolinium enhancing lesions at baseline (26%) (31). For
comparison, in previous PPMS clinical trials with rituximab,
fingolimod, and glatiramer acetate, the percentage of participants
with any baseline gadolinium enhancement was 24.5, 13, and
14%, respectively (34–36). In ORATORIO, the subgroup of
patients with gadolinium-enhancing lesions at baseline had a
greater reduction in risk of disease progression (although the
difference was not significant) for those with enhancing lesions
(hazard ratio 0.65 [95% CI 0.40–1.06]) vs. for those without
enhancing lesions (0.84 [0.62–1.13]) (114). These differences in
the patient populations in each study have led to speculation
that there are a subset of patients with PPMS, specifically young
patients with evidence of active inflammation, who preferentially
benefit from B cell depletion therapy due to removal of a B
cell-mediated inflammatory effect (115).

A recent retrospective study examined the off-label use of
rituximab in the treatment of PPMS and found that 41.5% of
PPMS patients treated with rituximab had significant disease
progression after 3 years (116). The patients had a higher degree
of inflammation prior to treatment as demonstrated by the
presence of gadolinium enhancing lesions in 50% of the patients
on their baseline brain MRI (116). In contrast, ORATORIO
demonstrated a 32.9% incidence of disease progression at 12
weeks with a 26% incidence of gadolinium enhancing lesions
on baseline brain MRI (31). The off-label rituximab study had
numerous limitations including a retrospective design, which
prevented the researchers from including a control group, and
a relatively low amount of PPMS patients (43 total) (116).
Additionally, it is unclear the specific criteria that led to the
off-label use of rituximab and it is likely that the patients
were selected for treatment due to rapid disease progression
which may have led to a bias selection of patients with a more
aggressive form of PPMS. Nevertheless, the study suggests that a
significant amount of PPMS patients, despite having evidence of
inflammation on their brain MRI, will continue to progress after
B-cell depletion with rituximab.

Functional differences in the antibody structure of
ocrelizumab compared to rituximab may lead to more favorable
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safety and tolerability profiles but are unlikely to significantly
change the levels of circulating B cells in the periphery and
CNS of treated PPMS patients. Rituximab is a chimeric
antibody with an Fab domain derived from mouse protein,
whereas ocrelizumab is exclusively derived from human protein
(117). Compared to rituximab, ocrelizumab has a structurally
distinct Fc region domain that binds with higher affinity to
natural killer cells. This difference leads to relatively stronger
antibody-dependent cell cytotoxicity and relatively weaker
complement-dependent cytotoxicity for ocrelizumab compared
to rituximab (24). This relative decrease in complement-
dependent cytotoxicity is hypothesized to reduce the rate of
adverse effects by reducing rates of systemic complement
mediated cytokine release (118). Additionally, ocrelizumab has
a distinct Fab binding domain that alters its binding affinity
to CD20 (119). This difference in epitope binding affinity is
unlikely to translate to increased depletion of circulating B
cells with ocrelizumab compared to rituximab given that PPMS
patients treated with rituximab had near-complete depletion of
circulating B cells, defined as a >95% decrease of CD19+ B cells,
fromweek 2 to 96 after rituximab treatment (35). Additionally, in
RRMS patients treated with rituximab, CSF B cells were reduced
by 90% at 24 weeks post-treatment with rituximab (78). Another
study examining the efficacy of dual intravenous and intrathecal
rituximab for depleting CNS B cells in patients with SPMS found
that peripheral B cells were reliably depleted but CSF B cells were
incompletely and transiently depleted (120). While it’s possible
that ocrelizumab may deplete CSF B cells more effectively than
rituximab, given that ocrelizumab is administered intravenously
it is unlikely to achieve the CNS penetration necessary to
outperform intrathecal rituximab administration.

CONCLUSION

Ocrelizumab is the first and only FDA approved disease-
modifying therapy for patients with PPMS. The characteristics of
patients treated in ORATORIO indicate that ocrelizumab likely
exerts an anti-inflammatory effect with the most pronounced
benefit occurring in younger PPMS patients with a high
propensity for disease activity (114). This idea is supported in
the rituximab clinical trial in PPMS that showed benefit to a
subgroup of younger patients with gadolinium enhancing lesions
on MRI (35). Ocrelizumab likely induces an anti-inflammatory
effect primarily through abrogating B cell functions, such as
cytokine production and antigen presentation. B cells exhibit
a spectrum of activity in MS with memory B cells playing
a pro-inflammatory role and a subset of B cell lineage cells,
such as segments of plasmablasts/plasma cells contributing to
the suppression of inflammation. Cytokines produced by B
cells, including LT-α, IL-6, and GM-CSF, have been implicated
as drivers of the pro-inflammatory effects in MS via T-cell
differentiation from naïve T cells into inflammatory Th1/Th17
cells as well as via indirect myeloid cell stimulation of T cells.
In contrast, production of IL-10 by B cells may cause an
anti-inflammatory effect in PPMS. However, there is currently
a lack of clinical human studies to definitively support or
refute this claim. B cell antigen presentation also likely plays a
prominent role in driving T cell activity by inducing naïve T

cell differentiation to Th1/Th17 and driving MS pathogenesis.
Ocrelizumab is unlikely to exert benefit in MS through antibody
decrement given that immunoglobulin levels remain elevated
despite B and T cell depletion in the presence of a treatment
benefit. It is unclear if PPMS patients treated with ocrelizumab
will experience reconstitution of anti-inflammatory B cells
after therapy in a similar way to RRMS patients treated with
rituximab (83).

Altogether, the above data indicates that ocrelizumab likely
reduces disease progression in PPMS by reducing inflammation.
This mechanism of action represents a continuation of the
therapeutic paradigm used to treat RRMS in which the primary
treatment modality involves drugs that work via reducing
inflammation. The benefit of ocrelizumab but the failure of
multiple other RRMS anti-inflammatory drugs, in conjunction
with the phenotypic differences in PPMS compared to RRMS,
has important implications about disease pathogenesis and
treatment. Clinical trial data indicates that there is likely
a subset of patients with PPMS, typically younger, newly
diagnosed patients with gadolinium enhancing lesions on
MRI, who have active inflammation contributing to their
progressive disability who would benefit from a high potency
anti-inflammatory medication. These qualitative differences in
subgroups of PPMS patients have implications for the way
we classify patients with PPMS. The recent revisions to the
classification of MS to include new qualifiers for active disease
and presence of progression represents an effort to further
delineate PPMS into more clinically useful groups (27). Clinical
trials examining the effect of anti-inflammatory treatments on
PPMS in patients with or without active disease and with
or without progression would shed light on further clinically
meaningful phenotypic differences within the PPMS subtype.
Leptomeningeal inflammation, given that it is more prevalent
in the subset of patients with PPMS who had active disease
and that it can be visualized on MRI (60, 61), may serve
as a potential biomarker to identify patients with PPMS who
may benefit most from B cell therapy. The clinical data also
implies that for the majority of patients with PPMS, specifically
those older patients without evidence of active disease, further
anti-inflammatory treatment is unlikely to influence disease
progression. Dedicated research in patients with PPMS without
evidence of active inflammation and refinement of MS animal
models of neurodegeneration in the absence of inflammation
may help elucidate the non-inflammatory, neurodegenerative
processes contributing to PPMS disease progression.

Broadening our understanding of disease pathogenesis in
PPMS and harnessing that knowledge to develop new and
effective treatments represents the next frontier in MS research.
This goal carries with it unique challenges given the reduced
prevalence of PPMS compared to RRMS and SPMS, making
clinical trial recruitment more difficult. Additionally, the EAE
mouse model, the most widely studied animal model for
MS, is of questionable utility in PPMS given the lack of
progressive MS pathologic features (94). Dedicated clinical
studies of progressive disease, expanded and novel animal
models for progressive disease, and shifting treatment paradigms
will hopefully lead to future breakthroughs for patients
with PPMS.
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