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Despite the high incidence of brain injuries in children, we have yet to fully understand

the unique vulnerability of a young brain to an injury and key determinants of long-term

recovery. Here we consider how early life stress may influence recovery after an early age

brain injury. Studies of early life stress alone reveal persistent structural and functional

impairments at adulthood. We consider the interacting pathologies imposed by early

life stress and subsequent brain injuries during early brain development as well as at

adulthood. This review outlines how early life stress primes the immune cells of the brain

and periphery to elicit a heightened response to injury. While the focus of this review is

on early age traumatic brain injuries, there is also a consideration of preclinical models of

neonatal hypoxia and stroke, as each further speaks to the vulnerability of the brain and

reinforces those characteristics that are common across each of these injuries. Lastly,

we identify a common mechanistic trend; namely, early life stress worsens outcomes

independent of its temporal proximity to a brain injury.
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INTRODUCTION

According to the Centers for Disease Control (1), children (age 0–17) are more likely to sustain a
traumatic brain injury (TBI), with those 4 years and under at highest risk. Here we focus on the
young brain, due to the high prevalence of TBIs in this age group and address how early life stress
(ELS) may alter recovery after an early brain injury.

Evolution of the Injury
TBI results from both a primary insult, due to the direct tearing and shearing of brain
structures, and a secondary cascade of adverse events that begins within minutes post injury
and includes disruption of the blood-brain barrier, vasogenic and cytotoxic edema, excitotoxicity,
neuroinflammation, dysregulation of metabolism, and cell death [see reviews, Simon et al. (2) and
Potts et al. (3)]. With low antioxidant reserves, the developing brain is rendered more vulnerable
to these adverse secondary events (4–7). Moreover, injury to the developing brain disrupts
normal developmental processes, including myelination, synaptogenesis, synaptic pruning, and
gliogenesis, each of which contribute to long-term brain function [(8–12) and see review, Semple
et al. (13)]. These disruptions and subsequent progressive neurodegeneration adversely affect
normal progression of age-dependent behaviors, such as social cognition, social play, social
interaction, working memory, and skill acquisition. When these key stages are disrupted during
early childhood, risk-taking tendencies, increased social interactions, novelty seeking, emotional
instability, and impulsivity may emerge during adolescence (14–19).
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THE DEVELOPING BRAIN AND TBIs

Children and TBIs
A child is more vulnerable to a TBI than an adult due to
unique physical attributes of the young brain and body. With
a larger head to body ratio and weak musculature of the
neck (20), the child’s brain is more likely to be exposed to
greater acceleration/deceleration forces, resulting in a higher
incidence of diffuse axonal injury and cerebral edema (21–23).
Additionally, the young brain may sustain greater damage from
an impact due to a thin calvarium (24, 25). Beyond these general
physical features, recovery after an early age TBI is also influenced
by characteristics of the lesion, such as severity, location, focal or
diffuse patterns of damage, and laterality of injury, each of which
may impact outcomes (16, 26–28). Children with large, more
diffuse, and/or bilateral injuries show the poorest performance
across cognitive domains (15, 17, 18, 26, 29, 30).

Biological sex is also a determinant of recovery after an
early age TBI. Beyond genetic and endocrine differences (31),
sex differences also manifest in the timing of the closure
of sensitive developmental periods, which occurs earlier in
males than in females (32). Clinical studies of brain-injured
children likewise identify differences between sexes. For example,
females who sustain a TBI during childhood are more likely to
internalize emotional problems such as depression and anxiety,
whereas males may display emotional problems in the form of
substance abuse and criminal behaviors (33–36). Similarly, other
clinical studies have reported that females have an increased
risk for developing emotional and psychiatric disorders after
injury, while males present an increased risk for social and
behavioral problems (i.e., communication, social cognition,
attention/executive function) within the first year following an
early age TBI (26, 36, 37).

Critical Periods of Brain Development
A TBI during the early postnatal period adversely affects
maturation of key developmental processes. Brain development
spans early gestation to early adulthood (38). During early
postnatal development, the brain’s acquisition of new functions
and capabilities is highly dependent upon experiential and
environmental influences (38). Critical periods of brain
development are characterized by robust synaptic pruning,
myelination, programmed cell death, alterations in density
of neurotransmitters, gliogenesis, and white/gray matter
differentiation (16, 39–44).While some developmental processes,
including the maturation of the immune system and the blood-
brain barrier, are mostly complete by birth (45), others, including
synaptogenesis, myelination, and programmed cell death,
extend well-beyond the postnatal period, and into adulthood
(42). In the human brain, synaptogenesis begins before birth
and peaks around the age of 3 (40). A subsequent decrease
in synaptogenesis coincides with increased synaptic pruning,
which continues over the next several decades (42). Programmed
cell death peaks during gestation (40) and also extends into
adulthood (40). While myelination is most prominent during
years 2–3, this process also continues into early adulthood

(40, 46). Importantly, each of these developmental processes are
critical for normal brain function at adulthood (40).

The first several years of life are considered a sensitive
period of growth where key developmental processes shape
brain function and behavior at adulthood. The importance of
this period of development has been demonstrated in studies
of social behavior, sensory experience and cognition. Toddler-
aged children are characterized by a high level of activity and
sociability (47). Early age brain injuries may alter the shaping and
maturation of these behaviors. As sociability continues to develop
into adolescence [(48, 49) and see review, Blakemore (50)], a
disruption in the toddler aged child may interfere with the proper
sequence of age-appropriate social behaviors and increase the risk
of psychiatric disorders (51). Children, during this critical period,
are also particularly sensitive to sensory experience as it shapes
neural circuits involved in basic sensory processes. For example,
light and sound shape the formation of the visual and auditory
cortices, respectively, and dictate visual and auditory processing
(52, 53). Prolonged deprivation of either stimulus during this
period results in an impairment in sensory processing later on
in life (52–55). Similarly, early age TBI may also result in poorer
cognitive outcomes (16, 56–61). This relationship between early
age TBI and cognitive abilities is considered non-linear and
is likely sensitive to injury at critical periods of plasticity and
behavioral development (62, 63). The earlier the age of a TBI, the
higher the risk for delayed or arrested development of cognitive
and higher-level executive functioning (18, 59, 61).

Early Life Stress
Children who are exposed to early life stress are at risk for
developing long-term psychosocial impairments and chronic
illnesses at adulthood (64–69). ELS may encompass a variety of
scenarios including extreme poverty, parental loss, malnutrition,
domestic/school/community violence, trauma, child neglect,
and/or abuse, altered parental behavior (70–80), and institutional
rearing (81). ELS impacts many aspects of brain health
and development, including metabolism, circadian rhythms,
neuroendocrine function, neuro-immune interactions, and
oxidative stress (82–87). Children who experience ELS also have a
greater risk for diabetes, obesity-related problems, cardiovascular
diseases, autoimmune disease, cancer, and depression at
adulthood as well as early mortality (64–69, 88, 89).

The Social Environment and TBI
In a seminal paper, Fletcher et al. (90) questioned why
antecedent psychosocial behavior traits, such as adaptive
behavior, communication, daily living, and socialization were not
considered in studies of brain-injured children. Such questioning
has served as a catalyst for subsequent research to examine the
moderating role of the social environment before or shortly after
an early age TBI. In long term clinical studies of sociocognitive
functioning after childhood TBI (18, 19), it was found that,
at adulthood, individuals showed poorer emotional perception,
as evidenced by deficits in both recognizing and interpreting
emotions based upon facial and vocal cues (19). These findings
are thought to reflect vulnerability of the immature social
brain to this insult, with sociocognitive deficits resulting from
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disrupted brain development and inability to acquire social
skills at the appropriate developmental time (91). Importantly,
long term deficits in emotional perception may be linked to
a child’s socioeconomic status and levels of family intimacy
at the time of injury (18). Catroppa et al. (18) reported the
first prospective study that compared pre-injury and 6 months
post-injury behavioral outcomes with social participation being
predicted by both the severity of the TBI and pre-injury deficits,
including lower social participation. Subsequent longitudinal
studies support these results; children, exposed to a poor
social environment prior to a TBI, have greater impairments
in psychosocial outcomes, including social cognition and
communication compared to brain-injured children with higher
socioeconomic status and optimal home environments prior to
their injury (14, 91, 92). The results of these early studies indicate
that pre-injury demographics such as socioeconomic status and
social environment are likely determinants of behavioral recovery
after a TBI.

Pre-clinical Models of Early Age Brain
Injuries
Currently, there are two models of TBIs in rodents that have
been used to study the consequences of ELS; namely, a focal
cortical injury produced by a controlled cortical impactor device,
and a more diffuse injury, produced by a fluid percussion device
[Table 1, see reviews, Kochanek et al. (103) and Thompson et
al. (104)]. Each of these models involves a craniectomy and
exposure of the brain. A focal cortical injury is produced by
a pneumatically or electronically driven piston that impacts
the exposed dura with tightly controlled velocity, depth of
penetration and dwell time, producing a consistent injury to
proximal cortical and subcortical areas The fluid percussion
model is based upon the delivery of a defined pulse of fluid
against the intact dura, resulting in brief deformation of the
brain (104). Severity of the injury is dependent upon the strength
of the pressure wave, which is generated when a pendulum
swings from a variable height to strike a plunger in a saline-
filled reservoir. This results in delivery of a pulse of saline against
the intact dura. Depending upon the severity of the injury, each
of these models may result in deficits in learning and memory,
social behaviors, hyperactivity, and anxiety- and depression-like
behaviors (56, 103, 105–117).

PRE-CLINICAL MODELS OF ELS

There are two common models of ELS in rodents, the maternal
separation model and the limited bedding nestlet model. These
models target early brain development that spans birth to
postnatal day 21 with notable variations that include the timing
and duration of exposure to an impoverished environment
and/or maternal separation.

One of the earliest accounts of the maternal separation
paradigm used handling or non-handling of rat pups to
invoke an early stress (stimulation) response (118). This
foundational model examined how neonatal handling affected
plasma corticosterone levels and emotionality later on in life

(118, 119). The maternal separation model subsequently evolved
into the more modern paradigm of physically separating the
pups from the mom, resulting in a more pronounced response
of the HPA axis (118–126). While maternal separation is suitable
for an examination of acute or repeated stressors, the model
is not typically applied to chronic stress, which may result
in pup exhaustion due to malnutrition and hypothermia (87).
Additionally, the maternal separation model may result in
inconsistent results and includesmany variations of the paradigm
(i.e., timing of separation, duration of separation, measure of
stress response). The Limited Bedding Nestlet (LBN) model
was developed to examine the effects of chronic ELS, in which
rodent pups and the nursing dam are exposed to a metal mesh
cage bottom and a reduced nestlet square (87). The LBN model
produces a robust activation of the HPA axis as a result of erratic
and unpredictable maternal care with minimal observer handling
(87, 127–132).

Maternal Separation Model
In this rodent model of childhood neglect (133, 134), the
mother is separated from her pups for a defined period of
time each day during the postnatal period. The MS model is
used by a number of groups (118, 119, 121–126, 135, 136).
It results in activation of the hypothalamic-pituitary-adrenal
(HPA) axis, as evidenced by elevated corticosterone and altered
expression of corticotropin releasing-hormone (CRH) (118, 120,
123, 136, 137). The MS model also results in long-term changes
in psychosocial behaviors, including anxiety- and depression-
related behaviors. Importantly, there are several variations of this
model, including the daily duration of MS (brief vs. prolonged),
the timing of the first day of separation, the number of days of
separation, if the mother remains in the same room as the pups,
and if the pups are maintained on a warming pad while separated
from the mother. In some cases, there seems to be habituation
to the handling by the observer over an extended period of time
(87). In other cases, a brief separation may actually produce
positive physiological and behavioral effects later in development,
presumably because it replicates the repeated, short periods of
separation between mom and pups in the wild, in which the
nursing dam leaves her nest to forage for food (135, 138). The
desired adverse effects of MS seem to emerge when periods
of separation exceed 15min (139–141). While variation in MS
methods may produce some variability in outcomes, there are
some key behaviors at adulthood that are common to most,
including anxiety- and depression-like behaviors (51, 142–145).
Moreover, these models typically show an exaggerated response
of the HPA axis, a hallmark of ELS, immediately after the
separation period that extends well into adulthood (51, 146–150).

Limited Bedding Nestlet Model
In the LBN model, the mother rears her pups on an altered cage
bottom, typically metal mesh, with a reduced amount of a nesting
material during the first week of postnatal life. This model creates
a stressful environment, resulting in altered maternal behavior
toward her pups (neglect, abuse, and hypervigilance) (87, 89,
127, 129, 131, 132, 151–159) and an exaggerated response by the
HPA axis of the pups, based on changes in CRH and elevated
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TABLE 1 | Pre-clinical models of traumatic injuries to the developing brain.

Type of injury model Species Sex Description Location of

injury

Type of injury References

Controlled cortical impact Mouse, rat M Craniectomy; Impactor tip is set at

pre-determined depth and velocity to strike

cortical surface

Parietal lobe

Frontal lobe

Focal contusion (14, 74, 76, 93–98)

Fluid percussion injury Rat, mouse M, F Craniectomy; Plastic cork is struck by

pendulum dropped from a pre-defined height-

saline is delivered to cortical surface

Parietal lobe Diffuse injury (74, 93, 98)

Weight drop Rat, mouse M, F Craniectomy; Rod falls from a fixed height to

impact cortical surface

Closed head; Skull exposed, weighted

impactor drops onto intact skull

Parietal lobe Focal contusion (74, 98–101)

Impact acceleration Rat M Closed head injury; Rod free-falls from

pre-determined height onto exposed skull

Parietal lobe Diffuse injury (74, 101, 102)

While there are 4 commonly used rodent models of TBI to the developing brain (74), only 2 (controlled cortical impact and fluid percussion injury) have been studied following ELS. Male

= M; Female+ F.

corticosterone levels, that extends into adulthood (87, 129, 130,
155, 160). This paradigm, usually applied from P2-P9, produces
long-term behavioral impairments such as anxiety, fear learning,
depression, anxiety, reduced sociality (play behavior), and deficits
in spatial learning and memory later in life (87, 89, 129, 131,
132, 151, 153–155, 157–159). A key strength of this model is
that there is opportunity to continuously monitor maternal care
and interaction with her pups without any confounding effects,
resulting from handling by the experimenter.

There is reduced pup weight during and after the period of
LBN (129, 130, 161, 162), which in some cases persists into
adulthood (132). Although the LBN model shows variability in
body development, it consistently results in altered metabolism,
as evidenced by changes in brown adipose tissue and in
circulating leptin and glucose levels. The lasting metabolic effects
of LBN may be a result of the combination of the quality and
quantity of nutrition, stress hormones, and sensory stimuli from
the mother (163).

ELS AND IMMUNE PRIMING

While the immune response to a TBI contributes to secondary
damage (113, 164–167), we have yet to fully understand the
interaction between ELS and TBI in this context. ELS may
prime the immune system, leaving it sensitized to inflammatory
reactions later in life.

Causes and Effects of Immune Priming
Exposure to a wide variety of early-life insults may elicit a
persistent immune-sensitized condition in the brain, such that a
subsequent insult produces a heightened inflammatory response.
This phenomenon is referred to as “immune priming.” Early
life insults that have been shown to cause immune priming
include infections (168, 169), seizures (170), early postnatal
alcohol exposure (171), in utero stress (172), and as discussed
in detail below, ELS (99, 173–175). Insults in the early period
of life may produce life-long sensitization, creating immune
cells that remain primed for many months in rodents and

decades in humans (99, 176). Immune priming typically involves
circulating immune cells, peripheral macrophages, astrocytes,
or even neurons, but the most heavily implicated cells in
immune priming of the CNS are the brain’s resident immune
cells, microglia, which undergo a phenotypic shift, producing
much faster and more robust responses to subsequent immune
signals (177–179).

The HPA Axis and Inflammation
In response to a stressor, the body activates the HPA axis. The
hypothalamus, initially stimulated by the sympathetic nervous
system, releases corticotropin-releasing hormone into the nearby
pituitary gland, which in turn releases adrenocorticotropic
hormone (ACTH) into the blood stream. Upon reaching the
adrenal glands, ACTH causes release of glucocorticoids (GC),
namely corticosterone in rodents and cortisol in humans. GCs
then act on cells expressing glucocorticoid receptors throughout
the body including the brain. In this way the stress signal
is amplified and extended to enable a whole-animal response
in the minutes and hours following a stressor. In general,
GCs have an anti-inflammatory effect, inhibiting lymphocyte
proliferation, reducing expression of pro-inflammatory cytokines
and inhibiting production of anti-inflammatory cytokines (93,
180–183). This is especially true when GC levels are high, since,
of the two GC receptors, the one that predominates in response
to elevated levels of GC has a distinctly more anti-inflammatory
signaling profile (94, 95). How then, does ELS lead to chronic
inflammation and immune priming? One part of the puzzle may
be that GCs elicit responses in the brain that are quite different
than the primarily anti-inflammatory effect in the periphery.
In addition to microglia, neurons and astrocytes in the brain
also express GC receptors and elevated GCs can weaken these
cells, compromising their ability to withstand further insult (96–
98, 100, 101). Frank et al. have recently demonstrated that either
stress or exogenous GCs produces immune-primed hippocampal
microglia that, when challenged with lipopolysaccharide (LPS)
ex vivo, secrete increased proinflammatory cytokines (102, 184).
Furthermore, this effect is long-lasting, with these microglia
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still exhibiting a primed phenotype 28 days after a single
stressor. One intriguing potential mechanism for GC-mediated
priming of microglia is the nod-like receptor protein 3 (NLRP3)
inflammasome. This protein complex is induced by GCs, is
capable of regulating proinflammatory cytokine release, and has
been implicated in microglial immune priming (102, 184–187).

The HPA Axis and TBI
TBI results in a suppression of the HPA axis [see review, Tapp
et al. (188)]. As described above, the HPA axis responds to
stressors by releasing corticotropin-releasing hormone (CRH) to
the pituitary gland, which releases ACTH into the bloodstream.
ACTH causes a release in glucocorticoids, like corticosterone
(CORT). Under normal conditions, HPA axis activity is regulated
by glucocorticoid receptors (GR) in the hypothalamus, pituitary,
and adrenal glands. In addition to damage to subcortical areas
(189), TBI causes a release of CORT in the brain. GR involved in
the HPA axis negative feedback loop also become damaged from
TBI, resulting in an excess of CORT. The pituitary is particularly
vulnerable to injury-induced dysfunction, which results in a
decreased release of ACTH and cannot stimulate the adrenal
glands. The lack of stimulation results in decreased CORT
release from the adrenal glands, resulting in an aberrant altered
stress response. Experimental models of TBI have examined
HPA axis suppression in rats, in which CORT was diminished
in injured mice at 7 and 21 days after injury (190, 191).
Excessive glucocorticoid release and a suppressed HPA axis
response after TBI causes microglial priming and increases
inflammatory cytokine expression, resulting in neuronal death
(192, 193). This maladaptive chronic inflammatory response
contributes to the development or worsening of psychiatric
disorders later in life, such as depression (194, 195). The aberrant
interaction between the persistent neuroendocrine response and
compromised psychiatric behavior illustrates the importance of
HPA axis dysfunction and long-term TBI recovery.

ELS Animal Models and Immune Priming
To date, only a handful of studies have examined immune
priming or markers of chronic inflammation in the context of
either the MS or LBN model of ELS (Table 2). Most of these
have reported robust and long-lasting effects of ELS on cytokine
expression. Reus et al. used an MS model in rats (P1-P10, 3
h/day), and quantified multiple cytokines at P20, P30, P40, and
P60 in 3 different brain regions (99). They found persistently
increased levels of the proinflammatory cytokines IL-1β, IL-
6, and TNFα, as well as decreased levels of anti-inflammatory
cytokine IL-10 (see Table 2 for details). Wang et al. employed
a rat MS model (P2-P20, 4 h/day) and reported elevated pro-
inflammatory IL-1β, IL-6, and TNFα protein in the hippocampus
and elevated TNFα protein in the prefrontal cortex at P60
(173). Three studies, all from the same group and using an MS
model in mice (P2-P14), reported similar results at between
P50 and P60; that is, elevated hippocampal mRNA for pro-
inflammatory cytokines IL-1β and TNFα, as well as for the
inflammasome protein NLRP3 (196–198). Saavedra et al., using
a rat MS model (P1-P14, 3 h/day) did not examine cytokines but
found an increased proportion of hippocampal microglia that
maintained an activated phenotype when examined long after

ELS, at between P140 and P170 (174). Sagae et al. utilizing an
LBN model (P3-P9) in rats, also reported elevation in circulating
pro-inflammatory cytokines TNFα and IL-6 at P98 (175).

Other studies have found smaller or more subtle impacts
of ELS models on cytokines. Hoejimakers et al. used a
LBN model from P2-P9 in mice and reported increased
hippocampal expression of IL-1β at P9, immediately after stress,
but decreased hippocampal IL-6 mRNA at 4 months and no
differences in any pro-inflammatory cytokines at 10 months
(199). Additionally, these investigators reported an increase in
CD68 immunoreactivity, characteristic of activated microglia, at
4 months after stress, but not at 10 months. Delpech et al. (200)
used a brief MS model (P1-P21, 15 min/day) in mice, following
ELS at P21 and at P28 and demonstrated an elevation of serum c-
reactive protein, a marker of immune activation. At P28 however,
there was no effect of ELS on the number and morphology of
hippocampal microglia, that had been seen at P21. They also
reported elevated IL-6 mRNA from microglia isolated from the
hippocampus at P28.

Perhaps the variability of results from ELS models is not
surprising given the differences both in the details of the
stress paradigms and in the methodology employed to measure
cytokines and other features of immune priming. In explaining
the differences between the MS studies (99, 173, 174, 196–198), it
seems that the duration of the separation may underly the stark
differences in results between Delpech et al. (200) (15 min/day)
and the rest (3–4 h/day). In the case of the two LBN studies
(175, 199), differences may arise from the quite disparate means
of cytokine quantification [protein in serum for Sagae et al. (175)
vs. hippocampal mRNA for Hoeijmakers et al. (199)]. There may
also be species differences in how the immune systems of mice
and rats respond to ELS, as several of the studies that found the
most robust signs of immune priming were in rats (99, 173–175),
while the two with the weakest evidence of immune priming were
both evident in mice (199, 200).

Immune Priming by ELS in Humans
In humans, childhood adversity has been linked to a chronic
inflammatory state (201–204), as well as to diseases associated
with inflammation, such as cancer, cardiovascular disease,
diabetes, and arthritis (64–69, 88, 89). Many studies have
examined the relationship between socioeconomic status during
childhood and inflammation, typically measured by plasma c-
reactive protein (205). Such studies may be complicated by
controlling for covariates, such as adult socioeconomic status.
A recent meta-analysis examined 35 such studies and found a
significant relationship between childhood socioeconomic status
and the profile of adult inflammation, but this relationship did
not survive when adjusted to factor out adult socioeconomic
status (205). Ehrlich et al. (201) examined whether teens’ early-
life adversity scores, generated from interviews, were associated
with differences in their inflammatory profiles. Rather than rely
on cytokine or c-reactive protein expression, inflammation was
quantified by ex vivo challenge of monocytes, obtained from
blood samples, with either lipopolysaccharide alone or with
lipopolysaccharide in combination with varying concentrations
of GC. IL-6 secreted into the culture media was quantified, and
a cluster analysis was performed. ELS was associated with higher
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TABLE 2 | Pro-inflammatory cytokines after ELA in rodents.

ELS model Cytokines Time of cytokine

measurement

Findings References

Maternal separation (P4-11) • IL-1β

• IL-6

• TNFα

P20, P30, P40,

P60

IL-1β

• P20: ↑HPC, no change in serum or

PFC

• P30: ↑HPC, PFC, Serum

• P40: ↑HPC, no change in serum or

PFC

• P60: ↓HPC, ↑Serum, no change in

PFC

IL-6

• P20: ↑HPC, no change in serum or

PFC

• P30: ↑HPC, no change in serum or

PFC

• P40: ↑HPC, Serum, PFC

• P60: ↑HPC, PFC, no change in

serum

TNFα

• All time points: ↑HPC, Serum, PFC

(142)

Maternal separation (P2-20) • IL-1β

• IL-6

• TNFα

P65 • IL-1β: ↑HPC, no change in PFC

• IL-6: ↑HPC, no change in PFC

• TNFα: ↑HPC, ↑PFC

(143)

Maternal separation (P2-14) • IL-1β

• TNFα

P50 • IL-1β: ↑HPC mRNA

• TNFα: no change HPC mRNA

(158)

Maternal separation (P2-14) • IL-1α

• TNFα

P60 • IL-1β: ↑HPC mRNA

• TNFα: ↑HPC mRNA

(160)

Maternal separation (P2-14) • IL-1β

• TNFα

P60 • IL-1β: ↑HPC mRNA

• TNFα: ↑HPC mRNA

(159)

Maternal separation (P1-21) • C-Reactive protein

• IL-6

P21, P28 • C-Reactive Protein

• P21 + 28: ↑Plasma

IL-6

P28: ↑HPC mRNA

(162)

Limited bedding nestlet (P2-9) • IL-6

• TNFα

P98 • IL-6: ↑Serum

• TNFα: ↑Serum

(145)

Limited bedding nestlet (P2-9) • IL-1β

• IL-6

• TNFα

P9, 4mo, 10mo IL-1β

• P9: ↑HPC mRNA

• 4 mo: no change

• 10 mo: inflammation resolved

IL-6

• P9: no change

• 4 mo: ↓HPC mRNA

• 10 mo: inflammation resolved

TNFα

• All time points: No change

(161)

HPC, Hippocampus; P, Postnatal day; PFC, Prefrontal Cortex; P, Postnatal day; IL-1β, Interleukin-1β; IL-6, Interleukin-6; TNα, Tumor necrosis factor alpha.

inflammation clusters, indicating persistent immune priming by
early life adversity in this population.

ELS AND BRAIN INJURY

Despite the clinical relevance, there are few preclinical studies
that have examined brain injuries after exposure to LBN,
brief maternal stress (BMS) or prolonged maternal stress
(PMS) [Table 3, (133, 134, 206–210)]. Thus, there is substantial

opportunity to build upon what has been reported, focusing
on the unanswered questions, with the end goal of optimizing
recovery in brain-injured children who have experienced
prior ELS.

ELS + Stroke
Although risk of stroke increases with age, incidence of stroke
may occur at any age, including children (211). To date
there is only one preclinical study that has examined the
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TABLE 3 | ELS prior to neonatal hypoxia-ischemia, stroke or TBI.

Species and sexAges at separation

and duration

Injury typeAge at injuryTiming

and outcomes

ELS + injury

behavioral findings

Findings References

Mouse/F P1-14: 15 min/day

BMS

Stroke P100-110 • 24, 72 h, 7 d: Behavior CBF

• 24 or 72 h: CORT

• 48 h: Edema, Histology

• 12 h: RT-PCR

• Locomotion: No

change

• Paw Preference:

↓Contralateral paw

• Histology: ↑infarct

volume

• RT-PCR: ↑IL-1B

↑TNFα

• CBF: No Change

• CORT:

↓intra-ischemia

• Edema: ↑Edema

(158)

Rat/M+F P3-7: 30 min/day BMS

OR 8 h/day PMS

HI P7 or P135 • P7-Adult: CORT

• P13+P120: Histology

• P10+P120:

Physiologic measures

Not measured • CORT: ↑P7, P9-17,

P135

• Histology: ↑Atrophy

• Injury Scale:

Worsened score

• Physiology: ↑Hyperglycemia

(159)

Rat/M+F P1-6: 180 min/day

PMS OR 15 min/day

BMS

HI P7 Adult: Behavior, Histology • ↓Spatial acquisition

memory

• No change in object

recognition

• ↓No change in

motor behavior

• Infarct Size: No

change

• CC: No change

(160)

Rat/M+F P1-6: 180 min/day

PMS OR 15 min/day

BMS

HI P7 Adult: Behavior, Histology • ↑Anxiety

• ↑Spontaneous

movement

• No

change depression

• Histology:

↓Synaptophysin in

HPC

↓BDNF in HPC

(161)

Rat/M P2-14: 180 min/day

PMS

TBI (Mild) Adult Adulthood: Behavior, Histology,

CORT

• ↓Memory retention

• ↓Spatial

working memory

• Histology: ↑Cortical

atrophy, ↑HPC

atrophy

• CORT: ↑Level

(87)

Mouse/M P1-21: 180 min/day

PMS

TBI (Mild) P21 Adolescence: Behavior,

Histology

↓Spatial learning +

memory

Histology: ↓Cell

proliferation, ↑Iba-1

(88)

Mouse/M P1-21: 180 min/day

PMS

TBI (Mild) P21 Adolescence: Behavior, ELISA,

RT-PCR

No Change in

executive functioning

• ELISA: ↑IL-1β,

↑CORT

• RT-PCR: ↑CRH, No

Change AVP

(162)

AVP, Antidiuretic Hormone; P, Postnatal day; CC, Corpus Callosum; HPC, Hippocampus; BDNF, Brain-derived neurotrophic factor; CBF, Cerebral blood flow; CORT, Corticosterone; HI,

Hypoxia Ischemia; M, Males, F+, Females; TBI, Traumatic Brain Injury; BMS, brief maternal separation; PMS, prolonged maternal separation.

relationship between ELS and stroke [Table 3, (206)]. In this
study, mothers were briefly separated (BMS) from their pups
on a daily basis from P1-P14, a sensitive period of brain
development. After reaching adulthood, animals were subjected
to an occlusion of the middle cerebral artery followed by
reperfusion. There were several findings that distinguished BMS
in combination with stroke from controls. These animals showed
a pronounced elevation of proinflammatory cytokines IL-1β and
TNFα, vasogenic edema, and higher mortality compared to BMS
alone. Such findings build upon other studies showing enhanced
expression of pro-inflammatory cytokines IL-1β, TNFα, and
IL-6 as a result of ELS exposure (99, 175, 199, 200). BMS
in combination with stroke also resulted in an impairment of
sensorimotor function compared to controls, based upon paw
preference using the cylinder test (212, 213). It is noteworthy
that there were no changes in corticosterone, either pre- or
post-injury compared to relevant controls. While others have
reported elevated levels of corticosterone at adulthood after
BMS alone (87, 99, 175, 199, 200), the duration of maternal

separation may, at least in part, account for these differences.
In this stroke study, the duration of BMS was 15 min/day over
a period of 2 weeks. In contrast, those studies that detected
elevated levels of corticosterone at adulthood after BMS alone
(146–150, 214–221), reported a duration of 180 min/day or
longer. Collectively, these findings provide the first evidence
that ELS in combination with stroke at adulthood elicits a
pronounced immune response and adversely affects post-stroke
sensorimotor recovery.

ELS + Perinatal Brain Injury
Neonatal hypoxia ischemia (HI), the most common form of
perinatal brain injury, results in neonatal encephalopathy and
long-term disabilities (222).

Several preclinical studies have examined the consequences of
ELS in combination with HI [Table 3, (207–209)]. Early studies
evaluated ELS using BMS (15 min/day) or PMS (180 min/day)
exposure to MS on P3-P7, followed immediately by HI, and then
studied shortly after HI or at adulthood (207). Prior exposure to
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PMS and neonatal HI resulted in elevated levels of corticosterone
shortly after the time of injury. Histological findings, based upon
pathological scoring of hematoxylin stained sections, suggested
enhanced damage to white matter in the thalamus and internal
capsule. Studies of HI at adulthood showed altered metabolism,
as evidenced by elevated levels of glucose and insulin compared
to BMS or PMS alone.

A later study focused on the long-term consequences of BMS
or PMS in combination with HI on hippocampal functioning
at adulthood [Table 3, (208)]. After BMS or PMS from P1-P6,
animals were exposed to HI shortly thereafter and then were
evaluated at adulthood. While ELS in combination with HI
showed no differences in non-spatial recognition (novel object
recognition and novel placement test), there were impairments in
spatial learning and memory, as measured by the Morris Water
Maze, compared to either insult alone.

Lastly, a follow up study focused on the interaction of ELS and
HI in the context of synaptic integrity in the hippocampus and
metrics of emotionality [Table 3, (209)]. Animals were exposed to
PMS and subsequentHI and thereafter evaluated at adulthood for
anxiety- and depressive-like behaviors, based upon performance
in the elevated plus maze and the forced swim test, respectively.
While HI followed by PMS resulted in a more pronounced
anxiety-like phenotype, compared to either insult alone, there
was no evidence of depressive-like behavior across any groups.
Subsequent histological analyses of the dentate gyrus revealed
altered long-term synaptic plasticity as evidenced by a reduction
in levels of brain-derived neurotrophic factor and synaptophysin
in the hippocampus compared to either PMS or HI alone. These
results indicate that cell survival and synaptic density in the
hippocampus are particularly vulnerable to the additive effect of
MS and HI (209).

ELS + TBI
ELS has been evaluated in pre-clinical models of TBI with
variables that include the type of injury (focal vs. diffuse), the
age at time of injury, and the timing of outcomes. Sanchez
et al. (133) (Table 3), examined how prolonged ELS influences
hippocampal-related function after a TBI at adulthood. Animals
were exposed to daily PMS (180 min/day) from P2-P14 followed
by a mild fluid percussion injury at adulthood. Behavioral
assessments were conducted 2, 3, and 4 weeks after injury.
Based on contextual fear learning (2 weeks post injury), brain-
injured animals, reared in PMS, showed less freezing after the cue
compared to controls. Animals were subsequently tested using
the Morris Water Maze at 3–4 weeks post injury. The group with
PMS in combination with TBI showed deficits in spatial learning
as well as greater cortical and hippocampal atrophy compared
to other conditions. At 8 weeks post injury, corticosterone levels
were highest in PMS in combination with TBI.

An alternative approach examined how PMS (P1-P21) is
influenced by a mild TBI at P21 [Table 3, (134)]. In these
experiments, a mild focal injury was produced by a controlled
cortical impact. Deficits in spatial learning and memory were
most pronounced in brain-injured adolescent rodents exposed
to both PMS and TBI. Although there was no difference in the
lesion volumes across all groups, PMS prior to TBI resulted in an

increase in activated microglia and a reduction in proliferation
of the markers bromodexoyuridine and the nuclear protein
Ki67 in the hippocampus. Taken together, these findings suggest
that PMS prior to an early age mild TBI, results in more
profound activation of microglia, which, in turn, adversely affects
neurogenesis and hippocampal-dependent behaviors (223).

A follow-up study, using the same model of PMS and TBI,
examined cognitive flexibility and thereafter measured pro-
inflammatory cytokines, IL-1β, TNFα, and IL-6 in the prefrontal
cortex and hippocampus. Cognitive flexibility was measured
using the attentional shift task in early adolescence, whereby
mice learned how to discriminate between positive odors and
associate this experience with a cue (210, 224, 225). Mild injury
had a significant impact on the first reversal of the attentional
shift task. However, this was not worsened by prior exposure to
MS. IL-1β, elevated in the hippocampus, was highest in those
animals exposed to both PMS and TBI compared to controls.
These findings suggest that PMS in combination with a mild
TBI results in a heightened inflammatory response compared to
either condition alone. Although there was no additive effect seen
on cognitive flexibility or in IL-1β in the prefrontal cortex, the
authors suggest that IL-1β may be involved in crosstalk between
hippocampal and cortical-related cognitive impairments seen
after an early age mild TBI.

WHERE DO WE GO FROM HERE?

There are a number of research opportunities that could build
upon our current knowledge of the interactions between ELS
and recovery after a brain injury. Here we address several
basic directions.

Consider Alternative Models of ELS
ELS has profound adverse effects on brain development and
results in both physical and psychological sequelae at adulthood.
Few preclinical studies have addressed how ELS may influence
recovery after brain injury. And, of these studies, ELS has only
been studied in the context of MS (133, 134, 206–210). As ELS
represents a broad spectrum of adverse conditions including
physical, sexual and emotional forms of abuse and neglect
(226), there is a need to address alternative models of ELS,
including LBN, as well as others that capture a broader range of
adverse exposures.

Injury Severity as a Modifier of Recovery
After ELS
Two of the most commonly used rodent models of TBI,
controlled cortical impact and fluid percussion injury, have been
studied in the context of ELS (133, 134, 210). The severity of
the injury likely influences recovery after ELS. This raises the
possibility that very mild forms of TBIs, such as concussions,
which present with nominal changes at structural and behavioral
levels, may, in fact, be sensitive to prior ELS and, as such, result in
broader pathological and behavioral findings. Understanding the
relationships between ELS and mild TBIs has broad implications,
including how we manage concussions in youth sports.
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Sex as a Biological Variable
There are few studies of ELS in combination with TBI
that include both males and females in the experimental
design (Table 3). There is evidence that speaks to the
complexities of TBIs, where variables such as the severity
and type of insult may be differential modifiers between
sexes. Thus, from simply the perspective of TBI alone,
sex as a biological variable should be a key element in
the experimental design [see review, Gupte et al. (227)].
Importantly, in a scoping review of both clinical and preclinical
studies, Gupte et al. (227) have indicated that variables
such as injury severity and nature of the injury interact
differently based upon sex and that these differences influence
long-term outcomes.

Genetics and Epigenetics
Genetics, including both gene variants and epigenetics, play
a central role in how a brain recovers after ELS [see review,
Fogelman and Canli (226)]. Similarly, genetics, and in particular
epigenetics, also contribute to heterogeneity in recovery after
a TBI, as evidenced in both preclinical models and in human
studies [see reviews, Bennett et al. (228), Cortes and Pera (229),
Treble-Barna et al. (230), and Kurowski et al. (231)].

Immune Function
ELS results in persistent immune priming (201) [and see reviews,
Neher and Cunningham (232), and Fagundes et al. (233), von
Leden et al. (234)]. We have yet to address how this priming
may alter the immune response after a TBI. We and others
have reported that the developing brain is sensitive to early
cytokine exposure and, in fact, an early age TBI results in
an enhanced immune response that is, in part, related to the
prolonged recruitment of leukocytes to the injured brain (234).
Thus, these collective findings support a further investigation

into inflammatory responses, mediated by ELS, that may be
magnified after a subsequent TBI.

ELS, TBI, and Plasticity
There are varying thoughts regarding plasticity after an early
age lesion [see review, Giza and Prins (235)]. One viewpoint
is that a younger brain has the ability to undergo significant
reorganization and recovery after an injury and that ongoing
brain development may support recovery processes. This is
in contrast to others who consider the vulnerability of the
young brain, where growth and formation of circuitry may
be compromised by injury during critical periods of brain
development. To address these differing viewpoints, further
studies are needed to address factors that may influence
outcomes, including age at time of injury in the context of brain
development, severity and location of the injury, and the type
of injury (focal and/or diffuse), as well as a broader viewpoint
on plasticity that takes into account both its beneficial and
adverse consequences.
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