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Background: A reliable distinction between ischemic stroke (IS) and intracerebral

hemorrhage (ICH) is required for diagnosis-specific treatment and effective secondary

prevention in patients with stroke. However, in resource-limited settings brain imaging,

which is the current diagnostic gold standard for this purpose, is not always available

in time. Hence, an easily accessible and broadly applicable blood biomarker-based

diagnostic test differing stroke subtypes would be desirable. Using an explorative

proteomics approach, this pilot study aimed to identify novel blood biomarker candidates

for distinguishing IS from ICH.

Material and Methods: Plasma samples from patients with IS and ICH were

drawn during hospitalization and were analyzed by using liquid chromatography/mass

spectrometry. Proteins were identified using the human reference proteome database

UniProtKB, and label-free quantification (LFQ) data were further analyzed using

bioinformatic tools.

Results: Plasma specimens of three patients with IS and four patients with ICH with

a median National Institute of Health Stroke Scale (NIHSS) of 12 [interquartile range

(IQR) 10.5–18.5] as well as serum samples from two healthy volunteers were analyzed.

Among 495 identified protein groups, a total of 368 protein groups exhibited enough

data points to be entered into quantitative analysis. Of the remaining 22 top-listed

proteins, a significant difference between IS and ICH was found for Carboxypeptidase

N subunit 2 (CPN2), Coagulation factor XII (FXII), Plasminogen, Mannan-binding lectin

serine protease 1, Serum amyloid P-component, Paraoxonase 1, Carbonic anhydrase 1,

Fibulin-1, and Granulins.

Discussion: In this exploratory proteomics-based pilot study, nine candidate

biomarkers for differentiation of IS and ICH were identified. The proteins belong to

the immune system, the coagulation cascade, and the apoptosis system, respectively.

Further investigations in larger cohorts of patients with stroke using additional
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biochemical analysis methods, such as ELISA or Western Blotting are now necessary

to validate these markers, and to characterize diagnostic accuracy with regard to the

development of a point-of-care-system for use in resource-limited areas.

Keywords: mass spectrometry, blood, biomarker, differentiation, ischemic stroke, intracerebral hemorrhage

INTRODUCTION

In recent years, treatment options for patients with ischemic
stroke (IS) have largely expanded. Subsequent to the broad
implementation of intravenous thrombolysis, mechanical
thrombectomy has now become the standard of care for
patients with intracranial large vessel occlusion (1–5). Moreover,
multimodal CT- and MR-imaging techniques allow the
application of recanalizing treatment strategies even in extended
time windows (6–9). In metropolitan areas, mobile stroke
units have been released to apply thrombolysis already in
the preclinical setting with the shortest possible delays after
symptom onset (10, 11).

In contrast to these “high-tech” advances to stand by in many
high-income countries, low- tomiddle-income countries still face
immense shortcomings in medical resources. This weighs heavily
as these countries have to carry the majority of the global burden
of stroke (12). Regarding brain imaging, some countries have
only one CT unit available per 1 million inhabitants (13). Hence,
the stratification into IS and intracerebral hemorrhage (ICH) is
not possible at all or only after long transports and transfer delays
(14). This prevents acute target-orientated stroke treatment, but
also from the timely initiation of diagnosis-specific secondary
prevention (i.e., platelet inhibitors in patients with IS). However,
the effect in reducing recurrent stroke for platelet inhibition is
highest within the first weeks after the initial event (15).

Thus, in resource-limited areas, an inexpensive and easy-
to-use stratification tool to substitute CT-imaging before the
initiation of secondary prevention would be desirable. Here
recent research on blood-based brain biomarkers has revealed
interesting results. Glial fibrillary acidic protein (GFAP) has been
characterized in several prospective studies as a biomarker of
ICH. However, it reliably distinguishes ICH from IS only within
6 h of symptom onset. Its potential use has been demonstrated

Abbreviations: AGC, automatic gain control; APCS, serum amyloid

P-component; BBB, blood brain barrier; CA1, carbonic anhydrase 1;

CPN2, carboxypeptidase N subunit 2; CT, computed tomography; EDTA,

ethylenediaminetetraacetic acid; ELISA, enzyme-linked immunosorbent assay; f,

female; FDR, false discovery rate; Fig., figure; FXII, factor XII; FBLN1, fibulin-1;

GdmCl, guanidinium hydrochloride; GFAP, glial fibrillary acidic protein;

GRN, granulins; HCl, hydrochloric acid; ICH, intracerebral hemorrhage; IQR,

interquartile range; IS, ischemic stroke; LC-MS, liquid chromatography mass

spectrometry; LFQ, label free quantification; m, male; MASP1, Mannan-binding

lectin serine protease 1; MCA, middle cerebral artery; MCAO, middle cerebral

artery occlusion; MI, myocardial infarction; MR, magnetic resonance; MS,

mass spectrometry; m/z, mass-to-charge ratio; NIHSS, National Institutes

of Health Stroke Scale; PLG, plasminogen; PON1, paraoxonase 1; Ref.,

references; SAH, subarachnoid hemorrhage; Supp., supplementary; TAFI,

thrombin-activated fibrinolysis inhibitor; TBI, traumatic brain injury; TCEP,

tris-carboxyethylphosphine; TRIS, tris(hydroxymethyl)aminomethane.

in an Indian trial, too (16–21). On the other side, comparable
markers of IS have not been identified so far (22–24).

This pilot study aimed to identify candidate biomarkers
suitable to differentiate IS and ICH within the first days
after symptom onset. Hence, in an exploratory approach, the
entire plasma/serum proteome was screened through mass
spectrometry (MS) techniques. Ensuing, an extensive literature
search was performed, to identify the relevant publications
focusing on the diagnostic value of the candidate markers in
acute stroke.

MATERIALS AND METHODS

Study Design
For this explorative pilot study, we targeted to compare the two
“prototypes” of stroke, i.e., patients with IS in the middle cerebral
artery (MCA) territory and patients with ICH in the basal ganglia
or the thalamus (“deep”) as well as in the parietal or temporal
lobes (“lobar”). Both conditions typically present as a classical
stroke syndrome, and differentiation between the entities solely
based on clinical examination alone is usually not possible. To
presume a considerable amount of brain tissue damage with
release of brain proteins in the bloodstream, only patients with
infarctions affecting at least one-third of MCA territory and
only patients with hematoma volumes higher than 20ml were
included. For doing so, we screened plasma samples collected
in the context of a prior prospective study on GFAP levels in
neurological diseases performed in our center for these criteria
(25). In total, plasma samples of three patients with IS and of four
patients with ICH, who met the above criteria, were randomly
chosen among the available samples. Ultimately, the cohort was
enriched by serum samples from two healthy controls.

The Ethics Committee of the Goethe University Frankfurt
am Main, Germany approved the protocols of the previous and
the current study. The studies were conducted according to
the principles of the Declaration of Helsinki. Written informed
consent was obtained from each patient, or if applicable of
the next-of-a-kin.

Blood Sampling
According to the study protocol, 1ml of
ethylenediaminetetraacetic acid (EDTA)-plasma was collected
during hospitalization at variable time points after stroke
symptom onset and transferred into an Eppendorf tube (25).
Within 60min after blood draw, the samples were centrifugated
at 10,000 g for 4min, and the supernatant was immediately
frozen and stored at −25◦C; for long-term storing, the samples
were transferred to −80◦C freezers. Processing and storage of
the serum samples of the two healthy controls were done in the
same way.
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Mass Spectrometry
The protein content was determined by using the method
of Lowry (26). For this, 200 µg of plasma/serum proteins
were diluted to a final volume of 20 µl with 6M GdmCl,
50mM tris(hydroxymethyl)aminomethane (TRIS)/HCl, pH 8.5,
10mM tris-carboxyethylphosphine (TCEP), and incubated at
95◦C for 5min. Reduced thiols were alkylated with 40mM
chloroacetamide and the samples were diluted with 25mM
TRIS/HCl, pH 8.5, 10% acetonitrile to obtain a final GdmCl
concentration of 0.6M. The proteins were digested with 2 µg
trypsin (sequencing grade, Promega, WI, USA) overnight at
37◦C under gentle agitation. Digestion was stopped by adding
trifluoroacetic acid to a final concentration of 0.5%. The tryptic
peptides were cleaned through reversed phase chromatography
with C18 material (3M EmporeTM SPE Extraction Disks) (27),
dried in microtiter plates, and resolved in 1% acetonitrile and
0.1% formic acid before peptide identification.

Liquid chromatography/mass spectrometry (LC/MS) was
performed on Thermo ScientificTM Q Exactive Plus equipped
with an ultra-high-performance liquid chromatography unit
(Thermo Scientific Dionex Ultimate 3000, Thermo Fisher
Scientific, MA, USA) and a Nanospray Flex Ion-Source (Thermo
Fisher Scientific, MA, USA). The peptides were eluted from
the trap column by a continuously increasing concentration
of organic solvent (4–50% acetonitrile and 0.1% formic acid)
over 90min at a flow rate of 250 nl/min and then, separated
on an analytical column (with 2.4µm Reprosil C18 resin from
Dr. Maisch GmbH in-house packed picotip emitter tip with
diameter 100µm, 15 cm from New Objectives). The peptides
were then ionized (2.6 kV) in the ion source and sprayed
into the mass spectrometer. MS data were recorded by data
dependent acquisition. The full MS scan range was 300–2,000
m/z with a resolution of 70,000, and an automatic gain control
(AGC) value of 3 × 106 total ion counts with a maximal ion
injection time of 160ms. Only higher charged ions (2+) were
selected for MS/MS scans with a resolution of 17,500, an isolation
window of 2 m/z, and an AGC value set to 105 ions with a
maximal ion injection time of 150ms. MS-Data were acquired in
profile mode, MS/MS data in Centroid mode. Each patient was
measured one time. The two control donors were measured in
technical triplicates and quadruplicates, respectively. All samples
were measured consecutively with the same instrumental setup
(identical analytical column, buffers, and mass calibration).

MS Data Analysis
Mass spectrometry data were analyzed by MaxQuant (Max-
Planck-Institute of Biochemistry, Martinsried, Germany)
(v1.5.3.30) using default settings (28). Proteins were identified
using the human reference proteome database UniProtKB with
71,567 entries, released in July 2017. The enzyme specificity was
set to Trypsin. Acetylation (+42.01) at N-terminus, deamidation
of N and Q (+0.98), and oxidation of methionine (+15.99) were
selected as variable modifications and carbamidomethylation
(+57.02) as a fixed modification on cysteines. False discovery
rate (FDR) was calculated using the reverse decoy database
implemented in MaxQuant. FDR was 1% for the identification
of protein and peptides. Label-free quantification (LFQ) data

were further analyzed using the bioinformatics tool Perseus
(Max-Planck-Institute of Biochemistry, Martinsried, Germany)
(v1.5.6.0) (29).

Contaminants from the internal MaxQuant list, only
identified by site and reverse hits were removed from the initial
protein ID list. The patients were grouped into ICH (n = 4) and
IS (n= 3), the control group contains all the replicates (n= 7) of
the two donors. Identified proteins were filtered to at least three
valid values in one group. Missing values were replaced by the
lowest value of the data set. A two-tailed Student’s t-test was used
to examine the levels of significance.

In addition, the statistics, correlations, and heat maps were
created with Perseus as well. Other diagrams were created
by using GraphPad Prism 8 (v.8.0.2) and an online Webtool
from Bioinformatics and Evolutionary Genomics (http://
bioinformatics.psb.ugent.be/webtools/Venn/).

Review of the Literature
After identifying the biomarker candidates, we performed a
structured literature search to identify relevant publications
focusing on the diagnostic value of these markers in acute
stroke. For doing so, a PubMed search was performed with the
following search terms: the protein’s name, its aliases, and its
abbreviations according to UniProtKB (release 2021_01) linked
(“AND”) to “stroke, apoplexy, ischemic stroke, ischaemic stroke,
intracerebral hemorrhage or intracerebral haemorrhage.” Only
studies published before August 2021 were included. Identified
reviews were screened for primary sources. The results were
filtered by the first author (DM) of this manuscript after a
review of the title and abstract of the manuscripts. Publications
relevant to the context of the present investigation were finally
selected for evaluation. Please see the flow diagram (Figure 3)
illustrating the database search for the review of the literature.
The exact search terms are listed in the Supplementary Materials

(Supplementary Table 5).

RESULTS

Mass spectrometry analysis comprised plasma samples of three
patients with MCA infarction, four patients with ICH, and serum
samples of two healthy controls (as outlined above in more
detail). The baseline characteristics of the study population are
depicted in Table 1.

Among the 495 identified protein groups, a total of 368
protein groups exhibited enough data points to be entered into
quantitative analysis. Noticeably more proteins are expected to
be present in human blood samples, however, proteins with
low expression are strongly underrepresented in such analyses.
Albumin, immunoglobulins, and transport proteins make up a
large part and are increasingly represented in peptide analysis.
Therefore, the tryptic peptides were separated by cation exchange
chromatography. The serum/plasma amount of thus identified
proteins is comparable with those reported in the literature (30).
To validate the quality of data, the total results of all proteins were
compared with those of all samples (Supplementary Figure 1).
The determined correlation coefficients (> 0.88) show that the
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TABLE 1 | The baseline characteristics of the study subjects.

Diagnosis Sex Age (years) NIHSS Time (days) between symptom onset and blood withdrawal Protein content of the sample (mg/ml)

Control m 24 – – 76.9

Control m 27 – – 69.5

IS m 75 11 12 days 67.2

IS m 69 10 8 days 60.8

IS m 42 23 15 days 62.6

ICH f 59 4 9 days 50.6

ICH f 79 19 3 days 66.2

ICH m 89 12 2 days 74.0

ICH m 75 18 3.5 h 63.8

IS, ischemic stroke; ICH, intracerebral hemorrhage; NIHSS, National Institute of Health Stroke Scale.

FIGURE 1 | Venn diagram: significant proteins with at least 2-fold change in the patient group ICH vs. Control and IS vs. Control. We identified 25 proteins that were

significantly changed in both the patient groups compared with Control. In total, 29 proteins were significantly different only in the ICH group and 18 only in the

IS group.

mass spectrometric analysis provides very homogeneous data
(Supplementary Figure 2).

Taking into account these 368 proteins, we then
compared the amount of each protein in the patients
group (P) as a whole (IS and ICH together) with the
healthy (C) controls. Here, 91 proteins could be identified
with significantly different amounts (P vs. C) (as shown in
Supplementary Table 1; Supplementary Figure 3). In the next
step, we compared the number of proteins in each disease
entity, IS respectively ICH, with the healthy controls (C)

(as shown in Supplementary Tables 2, 3). To create a top
list of potential promising biomarkers, only proteins with
significant differences with a fold change of at least ±2 between
the groups (IS vs. C and ICH vs. C) were selected. Here,
25 proteins could be found both in the IS as well as in the
ICH group with significant differences in abundance to the
healthy controls, 18 individual proteins were differentially
expressed only in the patients with IS, and 29 individual
proteins only in the patients with ICH (as shown in Figure 1,
Venn diagram).
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Since the primary aim of the study was to identify differentially
expressed proteins in patients with symptoms of stroke having
either ICH or IS (and not necessarily in comparison with
controls), we then screened for differences between ICH and IS,
irrespective of differences to the control group and independent
of the fold change, starting again from the original 368 proteins
with enough data points (Supplementary Table 4). Here, 21
additional proteins could be identified (not part of the Venn
diagram). After eliminating general structural and functional
proteins, such as transport proteins, myosin chains, hemoglobin
subunits, and components of immunoglobulins which are
unsuitable as biomarkers due to their ubiquitous abundance,
according to the literature (31, 32), 22 proteins remained and
listed in Table 2.

Candidate Proteins for Differentiating IS
and ICH
Focusing on significant differences between the patients with
ICH and IS, Figure 2 shows the nine most promising candidate
proteins from the top list. Carboxypeptidase N subunit 2 (CPN2)
and the coagulation factor XII (FXII) showed strongly increased
(p < 0.01) protein amount in the patients with IS as compared
with the patients with ICH. Both proteins play a role in the kinin-
kallikrein-system and are involved in thrombus formation (33–
36). Significantly increased (p < 0.05) protein amount in IS as
compared to ICH patients were found for plasminogen (PLG), a
central regulator in the fibrinolytic system, and Mannan-binding
lectin serine protease 1 (MASP1), which was attributed a role
in the blood clotting system by its thrombin-like activity (37,
38). Other proteins with a considerably increased amount of
protein in IS in comparison to ICH patients, whose functionality
is mainly not related to the blood coagulation system, were
Amyloid P-component (APCS), Paraoxonase 1 (PON1), and
Carbonic anhydrase 1 (CA1). Vice versa, only two proteins
showed higher values in ICH patients as compared to IS patients
[Fibulin-1 (FBLN1) and Granulines (GRN)].

Review of the Literature and Integrative
Evaluation
After identifying the above outlined biomarker candidates, we
reviewed the literature to figure out which proteins have already
been investigated in human or animal studies relating to stroke
and to integrate the current knowledge with our findings (as
shown in Table 3; Figure 3). Overall, these studies analyzed
patients with IS and ICH compared with controls, but not IS and
ICH patients compared with each other. Moreover, the largest
proportion of the available and identified studies analyzed serum
and not plasma samples.

Serum levels of CPN2 were not investigated in patients with
stroke, but increased concentrations were found in patients
with acute myocardial infarction (41). For FXII, studies showed
high concentrations in patients with chronic cerebrovascular
diseases (42), and FXII inhibition, as well as FXII deficiency
improved outcome in experimental IS (45–49). In our study,
FXII-levels were decreased in plasma of the patients with ICH
compared with both controls and IS. For PLG, increased as

well as decreased plasma levels in IS compared with controls
have been described in the literature (50–53). We did not
find differences between IS patients and controls, but ICH
patients had significantly lower PLG protein amounts. MASP1
concentration was increased in myocardial infarction, however,
in IS was reported to be either increased or decreased, whereas
in ICH and SAH, lower levels were found (56–58). In our
study, we detected higher MASP1 protein amount in IS than
in healthy controls as well as in ICH. Consistent with our
findings, one study showed higher APCS values in ICH than in
controls (61). However, we additionally found higher values in
IS compared to ICH patients. Among the identified proteins,
PON1 seems to be best validated in human stroke patients,
especially for several gene polymorphisms leading to higher
susceptibility for IS. For PON1, reduced serum levels are
described in IS (64–67, 69, 116). We did not find significant
differences between IS and controls but within the patient groups
elevated PON1 concentrations were found in IS compared
to ICH. CA1 was found to be released from erythrocytes
due to ICH in animal experiments but studies to evaluate
blood levels of CA1 in patients with stroke are not available
(101, 102). FBLN1 showed reduced serum concentrations in
myocardial infarction (106). Comparable data for IS—except
for the certain subgroup of IS caused by cervical artery
dissection (107)—could not be identified. GRN was reported
to be increased in the serum of patients with IS (108). It
is expressed in the microglia in ischemic tissue (110–113).
Increased GRN levels have not been confirmed in IS patients in
our study.

Most Promising Biomarker Candidates
Based on our data, we suggest that CPN2, FXII, PLG, MASP1,
APCS, PON1, and CA1 for IS and FBLN1 and GRN for
ICH should be further scientifically pursued as potential stroke
blood biomarkers.

DISCUSSION

This exploratory pilot study identified nine proteins by
means of mass spectrometry which showed different
protein abundance in patients with IS and ICH. These
nine proteins alone or in combination may now be
evaluated in future prospective studies regarding their
diagnostic accuracy to discriminate between those
two subtypes of stroke. Moreover, detailed analyses of
release kinetics of these markers after IS and ICH onset
are mandatory.

At a closer look at the (patho-)physiological function of
the identified proteins, it becomes apparent that all proteins,
except APCS1 and CA1, are involved in the immune and/or
coagulation system. This is not surprising because of previous
findings on the pathophysiology of IS described as a “thrombo-
inflammatory” disease (36, 117). The individual components of
both systems influence each other. Besides its involvement in the
coagulation cascade FXIIa activates the kinin-kallikrein system,
which mediates, i.e., the activation of PLG and carboxypeptidases
(35). Moreover, CPN seems to be involved in the kinin-kallikrein
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TABLE 2 | Protein “top list.”

Protein P vs. C IS vs. C ICH vs. C IS vs. ICH

Carboxypeptidase N subunit 2 ns ** ns **

Coagulationfactor XII ** ns *** **

Plasminogen ** ns *** *

Mannan-binding lectin serine protease 1 ns * ns *

Serum amyloid P-component ** *** * *

Paraoxonase 1 ns ns ns *

Carbonicanhydrase 1 ns ns ns *

Fibulin-1 ns * ns *

Granulins ns ns ns *

Inter-alpha-trypsin inhibitor heavy chain H3 ** * *** ns

Coagulationfactor IX *** ** ** ns

Protein S100-A8 * * ns ns

Platelet factor 4 ns * ns ns

C-reactive protein ** ns ** ns

Lipopolysaccharide-binding protein * ns ** ns

Mannose-binding protein C ns ns * ns

Beta-2-microglobulin * ns ** ns

PDZ and LIM domain protein 1 ns ns * ns

Tubulin beta-4B chain * ns * ns

Pregnancy zone protein ** ns ** ns

Lamin-A/C ns ns * ns

Vinculin * ns * ns

IS, ischemic stroke; ICH, intracerebral hemorrhage; C, healthy control; P, group of ICH + IS patients. ns (non-significant) p ≥ 0.05, *p < 0.05, **p < 0.01, and ***p < 0.001; gray shaded

are those proteins without significant difference between IS and ICH.

system and is able to reduce the cell binding capacity for
PLG (33, 34, 37, 118). However, CPN itself is activated by
plasmin as a negative feedback mechanism, ultimately leading
to increased antifibrinolytic activity (119, 120). CPN, as well as
FBLN1, have also been detected in fibrin clots (39, 106). By
interaction of FBLN1 exposed after vascular injury with plasma
fibrinogen, a linkage to a platelet integrin is formed and results
in the formation of a platelet plug (105). CPN in the fibrin
clot seems to act as a fibrinolysis inhibitor and belongs to the
same family of zinc metalloproteinases as thrombin-activated
fibrinolysis inhibitors (TAFI) (121). In turn,MASP1, traditionally
attributed to the complement system, should interact with TAFIs,
is conversely activated itself by activated platelets and fibrin
and leads to fibrin clot formation and activation of thrombin
and platelets, which seems to be essential for obstructive
thrombosis at least in a mouse model of arterial injury (38,
60, 122). The formation of reactive oxygen species (ROS) in
the context of ischemia/reperfusion processes with the influence
of antioxidant components is reflected in the altered activity
of associated proteins, such as PON1 (123, 124). Furthermore,
the release of pro-inflammatory factors during IS leads to the
activation of neuroprotective factors, such as GRN especially in
viable neurons and endothelial cells in the ischemic penumbra
(110, 112).

APCS and CA1 are not directly involved in coagulation
or inflammatory pathways. APCS binds to apoptotic cells,
is involved in chromatin degradation, and acts toxic to

cerebral neurons (125, 126). CA1 is one of the 14 isoforms
of carbonic anhydrases and occurs mainly in the cytosol
of erythrocytes. In the context of ICH, erythrocyte lysis
occurs around the hematoma, causing the release of iron and
CA1 and subsequently increased tissue damage through
edema formation and neuronal cell death. In addition,
extracellular CA1 should promote the destruction of the
blood-brain barrier by activating the kinin-kallikrein system
(101, 127).

From a clinical point of view, until now no single biomarker
identified in the context of stroke is suitable to certainly
distinguish IS from ICH (21–24, 128). The most promising
results so far have been published for GFAP. However, the
different release kinetics of GFAP in IS and ICH exist only
within the first 6 h after symptom onset (18, 129, 130).
Thus, this protein is likely not helpful to differentiate strokes
at any time point after symptom onset in resource limited
settings. Moreover, GFAP release is strongly linked to the
extent of damage to astroglial tissue. Thus, smaller ICH or
expanding ICH may not always present with increased blood
concentrations. More likely for this purpose, a combination
of several markers may be favorable (131, 132). However,
ischemic stroke is a heterogeneous disease comprising patients
with large territorial infarctions and small lacunar strokes, as
well as a large diversity of underlying etiologies. This makes
it difficult to identify a biomarker panel that copes with
all the facets of ischemic stroke. Interestingly, most of the
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FIGURE 2 | Selected proteins from the “top list” with the most significant differences within each group. The y-axis is transformed logarithmically. The scatter plots

show the measured values with mean value and SD. Above the scatter plots, the differences between IS and ICH, respectively between the patients and control group

are shown. Below the scatter plots, the differences between IS and control group are shown, as well as between ICH and control group. ns p ≥ 0.05, * p < 0.05, ** p

< 0.01, and *** p < 0.001.

proteins identified in our pilot study play pivotal roles in the
immune and coagulation system. Thus, it is likely that they
are directly involved in the pathophysiology of stroke and are
not just an epiphenomenon. They are interesting candidates

that add to the existing portfolio of potential biomarkers
in stroke.

A shortcoming of this explorative pilot study is the very
limited sample size. Reconfirmation of the core findings
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TABLE 3 | Literature search.

Protein Species Methodology Collective Summary of findings References

CPN2 Human Mass

spectrometry

Healthy CPN is a component of fibrin-clots (39, 40)

Western blot

Human Spectrophotometry MI Elevated CPN serum levels are detected in acute MI (41)

FXII Human ELISA IS and chronic

cerebrovascular

diseases

Patients with chronic cerebrovascular disease show higher

FXII levels in serum than patients with IS

(42)

Human Medical

hypothesis

IS Via raised epinephrin levels due to chronic stress platelets activate

pre-bound FXII which leads to hypercoagulability and together

with essential hypertension favor atherosclerosis and ultimately IS

(43)

Human Case-control-

study

IS A certain gene polymorphism is a risk factor for IS (44)

Rat and

Mouse

Neurological

performance test

MCAO Pharmacological inhibition of FXII reduces extent of infarction and

improves neurological outcome after ischemia/reperfusion

(45, 46)

Histopathology

Mouse Histopathology MCAO FXII is essential for thrombus formation (47–49)

Immunofluorescence

Neurological

performance test

Model of thrombo-

embolism

Deficiency or inhibition of FXII protects from ischemic brain injury

MR

PLG Human Mass

spectrometry

IS IS patients show higher plasminogen blood levels than

healthy subjects

(50–52)

Coagulation assay

Human Chromozym assay IS IS patients show lower plasminogen activity compared to

healthy subjects

(53)

Human Bioinformatical

database research

IS PLG was identified as critical protein for all subtypes of IS (54)

Mouse Histopathology Model of thrombo-

embolism

Higher PLG levels attenuate brain infarction, endogenous

fibrinolysis, microvascular thrombosis, inflammation, and BBB

breakdown

(55)

Immunofluorescence

MASP-1 Human Immunofluorimetry IS and MI MASP1 shows higher levels in MI and lower levels in IS

compared to controls

(56)

Human Immunofluorescence IS MASP-1 activity in IS patients is higher than in healthy

subjects

(57)

Human Immunofluorimetry ICH and SAH MASP-1 levels decreased significantly in ICH and SAH

patients during 24h after symptom onset

(58)

Human Immunofluorimetry SAH Cerebral blood concentration of MASP-1 is lower than in

peripheral blood

(59)

Mouse Immunofluorescence (FeCl3)-induced

arterial thrombosis

MASP-1 has thrombin-like activity and is a significant regulator of

thrombus formation in vitro and in vivo

(60)

Immunostaining

APCS Human Mass

spectrometry

ICH Plasma APCS is higher in ICH than in healthy controls (61)

Western Blot

Human ELISA Cardiovascular

diseases

Increased APCS serum levels in the elderly are associated with

angina pectoris and myocardial infarction but not with stroke

(62)

Human Mass

spectrometry

Healthy APCS is a component of fibrin-clots (40)

Human Multiplex assay IS Increases in plasma levels of APCS are associated with worse

clinical outcomes after IS

(63)

PON1 Human ELISA IS Serum PON1 activity is reduced in IS patients compared to

controls

(64–68)

Spectrophotometry

Human Multiplex assay IS and ICH Serum PON1 activity is lower in IS patients than in ICH and

controls

(69)

(Continued)
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TABLE 3 | Continued

Protein Species Methodology Collective Summary of findings References

Human Spectrophotometry IS PON-activity affects the outcome after IS (70, 71)

Human Genetic

engineering

IS Particular gene polymorphisms (above all Q192R and L55M but

also less common variants) and potentially the related enzyme

activity raise the susceptibility for IS

(72–100)

CA1 Rat Western Blot ICH model Erythrocyte lysis due to ICH may lead to CA release with tissue

damaging and edema formation; Inhibition of CA reduces brain

damage after ICH

(101)

Rat Mass

spectrometry

ICH model CA1 is upregulated in an ICH model compared to sham (102)

Human Mass

spectrometry

TBI & SAH CA1 is elevated in CSF of TBI and SAH compared to controls, but

no difference could be identified between TBI and SAH

(103)

FBLN1 Human Mass

spectrometry

IS Serum FBLN1 is higher in a monozygotic twin suffering from IS (104)

Human ELISA Healthy FBLN1 binds to Fibrinogen and is incorporated in Fibrin clots (105)

Human Histopathology Coronary heart

disease

FBLN1 was detected in coronary atherosclerotic lesions and

patients with unstable angina pectoris and acute MI show lower

FBLN1 serum levels compared to controls

(106)

Immunofluorescence

Human Mass

spectrometry

Cervical artery

dissection-IS vs.

Non-cervical artery

dissection-IS

FBLN1 is significantly upregulated in IS due to cervical artery

dissection compared to non-cervical artery dissection

(107)

ELISA

PGRN/GRN Human ELISA IS Serum Progranulin levels are increased in IS compared to

healthy controls

(108)

Human ELISA IS GRN concentration affects outcome after IS (109)

Neurological

performance test

Rat Histopathology Transient acute

focal cerebral

ischemia

Increased levels of PGRN expression in microglia within the

ischemic core, increased levels of PGRN expression in viable

neurons, induction of PGRN expression in endothelial cells within

the ischemic penumbra

(110)

Immunofluorescence

Rat Histopathology Transient acute

focal cerebral

ischemia

PGRN overexpression and artificial administration reduce cerebral

infarction volume, edema, suppress hemorrhagic transformation

and improve functional outcome

(110–114)

Immunofluorescence

Mouse Western Blot MCAO

Mouse Flow cytometry MCAO PGRN deficiency in mice leads to early BBB disruption and

increased areas of hemorrhage in the ischemic territory

(115)

Western Blot

Histopathology

Immunofluorescence

Investigation of protein levels in patients with stroke is highlighted in bold letters.

in larger patient cohorts is mandatory. In addition, other
detection methods, such as ELISA or Western Blotting
need to be applied to verify the proteins identified by
mass spectrometry.

Furthermore, plasma samples were used for the primary
comparison between IS and ICH. The control group, however,
consisted of serum samples, thereby increasing the heterogeneity
of the study.

Another limitation with the risk of a possible selection
bias is the imbalance of baseline variables (such as age and
sex) between the diagnosis groups. However, we focused
on comparing “prototype” strokes as described above, and
other exploratory studies based on the mass spectrometry
techniques were designed in a similar way, nevertheless
allowing the successful identification of novel biomarker
candidates (133–135).
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FIGURE 3 | Flow diagram illustrating the database search for review of the literature.

In summary, in this exploratory proteomics-based study, nine
candidate blood biomarkers for differentiation of IS and ICH
were identified. The proteins belong to the immune system, the
coagulation cascade, and the apoptosis system, respectively. Due
to the exploratory nature of the study, further investigations in
independent, well-matched, and large-scaled cohorts of stroke
patients are now necessary to validate these markers, and to
characterize diagnostic accuracy with regard to the development
of a point-of-care-system differentiating IS and ICH in resource-
limited areas.
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