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Accurate identification of seizure activity, both clinical and subclinical, has important

implications in the management of epilepsy. Accurate recognition of seizure activity is

essential for diagnostic, management and forecasting purposes, but patient-reported

seizures have been shown to be unreliable. Earlier work has revealed accurate capture

of electrographic seizures and forecasting is possible with an implantable intracranial

device, but less invasive electroencephalography (EEG) recording systems would be

optimal. Here, we present preliminary results of seizure detection and forecasting with

a minimally invasive sub-scalp device that continuously records EEG. Five participants

with refractory epilepsy who experience at least two clinically identifiable seizures

monthly have been implanted with sub-scalp devices (Minder®), providing two channels

of data from both hemispheres of the brain. Data is continuously captured via a

behind-the-ear system, which also powers the device, and transferred wirelessly to a

mobile phone, from where it is accessible remotely via cloud storage. EEG recordings

from the sub-scalp device were compared to data recorded from a conventional

system during a 1-week ambulatory video-EEGmonitoring session. Suspect epileptiform

activity (EA) was detected using machine learning algorithms and reviewed by trained

neurophysiologists. Seizure forecasting was demonstrated retrospectively by utilizing

cycles in EA and previous seizure times. The procedures and devices were well-tolerated

and no significant complications have been reported. Seizures were accurately identified

on the sub-scalp system, as visually confirmed by periods of concurrent conventional

scalp EEG recordings. The data acquired also allowed seizure forecasting to be

successfully undertaken. The area under the receiver operating characteristic curve (AUC

score) achieved (0.88), which is comparable to the best score in recent, state-of-the-art

forecasting work using intracranial EEG.
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INTRODUCTION

For people with epilepsy, an estimation of total seizure burden is
fundamental to clinical management as well as for the evaluation
of new therapies, such as drugs or devices. For over a century,
clinicians have relied on their patients’ reports of their seizure
frequency, “that it may be taken as an index of the severity of
the epileptic condition” (1). Although the rate of clinical seizures
influences an individual’s perception of disease severity, the
physiological basis for this remains ambiguous (2, 3). Indeed, the
number of clinical seizures is not representative of (nor closely
correlated with) the total seizure burden (4). Rates of subclinical
epileptiform activity seen on electroencephalography (EEG) are
typically orders of magnitude higher than clinical seizures. These
subclinical events may impact cognition (5, 6) and quality of
life, and are important in epilepsy diagnosis and treatment,
particularly for syndromes that are characterized by stereotypical
discharges. Interictal epileptiform activity is also relevant for
surgical planning (7) and forecasting seizure likelihood (8).
Therefore, capturing both clinical and subclinical events, and
interictal epileptiform activity, is important for the clinical
management of epilepsy. Henceforth, we define Epileptiform
Activity (EA) as interictal and ictal epileptic activity, comprising
interictal discharges and electrographic events (clinical and
subclinical). Often we specify “interictal EA,” which refers to
interictal epileptiform discharges only.

The easiest and most common method of capturing clinical

seizure events is through patient self-reporting. Unfortunately,

the accuracy of self-reported events is unreliable (9, 10). In

addition to unawareness of subclinical events, patients are

often unaware or forgetful of their clinical seizures, and
may also report other non-epileptic symptoms as seizures.
As there have been no real alternatives, seizure diaries (both
paper and electronic) are used almost exclusively to manage
patients, and regulatory authorities assess new treatments
primarily on evidence from diaries (11). It is possible that
the unreliability of self-reporting has impeded progress in
the development of anti-seizure medications (12). In addition
to inaccurate records of seizure frequency, people with
epilepsy and caregivers typically cannot provide an objective
assessment of the time of seizure onset, seizure duration or
seizure type (11). This detailed information about seizures is
important for patient management, particularly with regard to
medication titration and safety. For this reason, capturing EEG
correlates of seizures remains the reference standard in clinical
epilepsy management.

Short-term (up to 10 days) inpatient video-EEG assessment
can be used to assess treatment efficacy, for surgical planning,
and has been proposed as an objective metric for randomized
controlled trials. However, short-term monitoring has major
limitations. The spatiotemporal organization of interictal EA,
including epileptiform spikes and high frequency oscillations
(HFOs), changes over long time scales (months to years), so
short-term capture of interictal EA is unreliable (13, 14). In
addition, seizure rates show high natural variability and require
long-term recording to identify clinically relevant improvements
(15, 16). Short-term monitoring is particularly inadequate for

people with lower seizure frequencies and cannot detect multiday
cycles of interictal EA that occur in most individuals (17, 18).

Ultra-long term monitoring is required for better diagnosis,
management and treatment of epilepsy, including seizure
forecasting. Currently, scalp EEG is not suitable for ultra-long
term monitoring due to limited data quality and the need
for external electrode maintenance (19). Invasive intracranial
systems, such as the RNS System (NeuroPace) and the Percept
PC (Medtronic), are available but are built for neurostimulation,
do not store sufficient data and are too invasive for diagnostic
applications (19). Alternatively, sub-scalp EEG systems are
minimally-invasive tools that may address the need for
objective ultra-long term EEG recordings (19, 20), allowing for
personalized and accurate epilepsy management.

Our earlier work with an implantable intracranial device (4)
demonstrated that continuous EEG permitted characterization
of EEG features (21, 22), epileptic activity (18, 23) and sleep
(24, 25), and enabled successful seizure forecasting (26–28). As
similar data could be acquired from a less invasive (sub-scalp)
EEG recording system, we have developed a minimally invasive
device that is inserted into a sub-scalp location to continuously
record EEG. This work reports on the feasibility of the system to
detect interictal EA and seizures in five subjects. Therefore, the
primary aim of this manuscript was to report on the preliminary
results of interictal EA and seizure detection using the sub-
scalp device, and to qualitatively compare these recordings to
reference-standard 7-day ambulatory video-EEG monitoring. As
a secondary aim, we also present a case study to illustrate the
potential for seizure forecasting using sub-scalp EEG. The case
study provides a proof-of-concept on how cycles can be derived
from event detections in the EEG and how these cycles can
be used to forecast epileptic seizures. The presented forecasting
method builds on previous work in seizure cycles (20, 29–31) and
interictal EA cycles (17, 18, 32).

MATERIALS AND METHODS

Patient Selection and Criteria
Data used in this work were acquired during a registered
trial (ACTRN 12619001587190). Subjects participating in the
Minder R© sub-scalp system (Table 1) trial were 18-75 years of
age at the time of implantation, had an established clinical
diagnosis of epilepsy (33) with a minimum of two clinically
identifiable epileptic seizure events per month, and otherwise
were medically and neurologically stable as defined by their
clinician. All participants had EEG profiles that were consistent
with epilepsy diagnosis, and had prior neuroimaging. Subjects
were excluded if they had a neurostimulation implant device for
epilepsy or another condition, or had any other condition that
may impact the study outcome or safety of the device.

All participants wore the sub-scalp system for at least 8
months during both wake and sleep. Subjects were also expected
to maintain a seizure diary, if necessary with the assistance
of a caregiver, and attend regular study appointments. All
participants gave written, informed consent and the study
protocol was approved by St Vincent’s Hospital Melbourne
Human Research Ethics Committee (HREC 063/15).
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TABLE 1 | Participant demographics.

Participant Gender Age

(years)

Epilepsy

type

Epilepsy etiology Seizure onset

localization

Seizure types Antiepileptic

medications

1 F 49 Multifocal Periventricular nodular

heterotopia

Multifocal Focal impaired

Aware-ness

Lacosamide sodium

Valproate, Pregabalin,

Brivaracetam

2 M 60 Focal Cortical dysplasia Right temporo-parietal

junction

Focal impaired

Aware-ness

Carbamazepine,

Lacosamide

4 F 44 Focal Hypothalamic

hamartoma

Hypo-thalamus Focal impaired

Aware-ness

Carbamazepine,

Brivaracetam,

Phenobarbital,

Clonazepam

5 F 47 Focal Non-lesional temporal

lobe epilepsy

Right temporal lobe Focal impaired

aware-ness

Lamotrigine

6 M 45 General-ized Genetic generalized

epilepsy

Generalized Absence, general-ized

tonic-clonic

Sodium valproate,

levetiracetam,

lamotrigine, zonisamide

FIGURE 1 | Data flow throughout the system. Dotted arrows indicate system components under development.

Implantable System
The Minder R© sub-scalp system (Epi-Minder Pty Ltd) is an
investigational device comprising an implanted device, which
communicates with an external wearable unit, a mobile phone
and a secure cloud (Figure 1). The implanted device is positioned
under the scalp, with a small burrhole to recess the telemetry
device and includes an electrode array that is passed superiorly
with two contacts located over each parietal bone. The electrodes
record differential EEG signals across two contacts at 250Hz,
which are captured by the telemetry unit. The telemetry unit
communicates with an external behind-the-ear (BTE) processor
via an inductive radio frequency (RF) link, which allows data
and power transfer between the external wearable device and
the implant. The BTE processor communicates with a mobile
phone via Bluetooth. The mobile phone application (Minder
app) facilitates the transfer of EEG data from the implant to
the phone, and ultimately to a secure cloud for processing. The
Minder app also captures audio and accelerometry data from the
phone and stores it together with the EEG data in the Seer Cloud
(Seer Medical Pty Ltd). Data captured by the implanted device

is reviewed and curated on the Seer Cloud platform. Curated
events are used for training a machine learning algorithm that
detects EA and whose output is used for seizure forecasting. In
future, seizure forecasting will be delivered to patients through
the Seer App.

Surgical Procedure and Follow Up
Assessments
The device is implanted under general anesthetic in a specific
position for the implanted receiver located in the mastoid
bone. The electrode array is passed subcutaneously and over
the pericranium, posterior to the vertex and over the parietal
regions. The location of the sub-scalp electrode was chosen
to optimize EA detection rates (modeling from scalp data
indicated this produced the highest yield of event capture) and
minimize artifact from nearby temporalis muscles. The surgical
procedure for implantation of the Minder implant housing
and coil was modeled closely on that used for commercial
cochlear implants. Regular check-ups (every 2–6 weeks) were
conducted in person and participants communicated with
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study doctors and coordinators between in-person visits. In
addition, 7-day scalp EEG was performed at weeks 4 and 24
after implantation. The scalp EEG recordings consisted of a
standard 10–20 electrode placement with an additional four
scalp electrodes placed as close as practically feasible to the
underlying implanted sub-scalp electrodes. The purpose of the
scalp EEG assessment was to compare the sub-scalp EEG signal
to the scalp EEG, particularly during seizures and interictal
EA, and as well activities including sleep, and potential sources
of artifact. Subjects were asked to keep their seizure diaries
during monitoring so that the three modalities of seizure
detection (sub-scalp implant, scalp EEG and seizure diary) could
be compared.

Epileptic Activity Detection
For both sub-scalp EEG and ambulatory EEG, the detection
of EA was aided by a machine learning algorithm designed to
detect relevant events in the EEG (34, 35). The algorithm was
designed to label suspect EA with high sensitivity to ensure that
all interictal and ictal events were detected.

EEG recordings and suspect events highlighted by the
algorithm were accessed from the cloud through an online
portal and reviewed by expert neurophysiologists, who
marked interictal EA and seizures. Interictal EA marked by
the neurophysiologists consisted of typical epileptiform EEG
activity such as spike discharges. EEG seizures consisted
of EEG activity substantially larger than background
and lasting a minimum of 10 s. Seizure morphologies
were first confirmed in each participant by observing
correlated seizures in the ambulatory scalp video-EEG,
however ambulatory scalp EEG and sub-scalp EEG were
reviewed independently when compared qualitatively in
this manuscript.

Seizure Forecasting Case Study
In this case study, we demonstrate the potential for forecasting
using sub-scalp EEG in participant 1. This participant was chosen
because of their comparatively larger amount of reviewed data
and high seizure count relative to the other participants.

This retrospective case study was designed using training and
testing datasets. To train the forecasting algorithm, we utilized
cycles in both machine-detected suspect events and manually
confirmed electrographic seizures to forecast seizure likelihood
per hour. During testing, the forecaster attempted to predict
human confirmed electrographic seizures.

Data Pre-processing and Feature Extraction

Two features were incorporated into the forecaster: significant
cycles based on rates of machine-detected events and significant
cycles based on seizures. To compute event-based cycles, we
used a similar approach to a previously published method
for extracting rhythms of EA (17). Briefly, a Morlet wavelet
transform was computed on the z-standardized hourly event
rates to produce a global wavelet spectrum of power for each
scale (cycle period). The cycle periods considered were every
1.2 h between 2.4 and 31.2 h, every 2.4 h between 33.6 and 48 h,
every 4.8 h between 52.8 and 4 days and every 12 h between 5

days and up to a maximum period of a quarter of the recording
duration. At least four cycle periods had to be present to confirm
a cycle. Peaks in the wavelet spectrum were found by comparing
neighboring values. Peaks above the global significance (99%
confidence) level were determined to be significant EA cycle
periods using a time-averaged significance test (36).

Once significant cycle periods were computed, event
rates were filtered at each significant cycle period using a
zero-order Butterworth bandpass filter. The bandpass filter
used cut-off frequencies at ±33% of the cycle frequency
[consistent with (17)]. These cut-off frequencies were chosen
to account for phase shifts in the cycle over the recording
time. To account for bandpass overlap in significant cycle
frequencies, we introduced a sparsity criterion whereby only
the strongest peak (greatest power in the wavelet spectrum)
within any cycle’s bandpass filter pass band was considered.
The instantaneous phase of the cycle at each timepoint was
then estimated using a Hilbert transform. Filtered cycles
in event rates were used as features for the forecaster if
seizures were significantly phase-locked to the cycle [p
< 0.05, according to the omnibus/Hodges-Ajne test for
circular uniformity (37)].

Cycles in seizure times were detected using a similar approach
to our previous work (29, 38). We assessed the phase locking
of seizure times to a range of possible cycles using both the
Omnibus test (p < 0.05) and the synchronization index (SI ≥
0.4) value to quantify phase locking. The SI value–a measure
of the magnitude of the resultant vector–ranges from 0 to 1,
where 0 represents a perfectly uniform circular distribution and
1 represents perfect alignment with respect to an underlying
cycle (30). To account for multiple cycle periods meeting the
criteria within close proximity, we used only the strongest cycle
period (based on the highest SI value) within ±33% of any other
cycle period.

All features were transformed from cyclical to linear features
by normalizing the signals from 0 to 2π and computing the sine
and cosine of the normalized signal.

TABLE 2 | Clinically relevant EEG events during the two 7-day EEG sessions.

Participant Interictal EA

discharges

Seizures Patient reported seizures

(confirmed events)

1 S1: 1476 S1: 27 S1: 7 (6)

S2: 5981 S2: 17 S2: 1 (1)

2* S1: 245 S1: 3 S1: 6 (0)

4 S1: 179 S1: 3 S1: 4 (3)

S2: 52 S2: 0 S2: 0

5 S1: 519 S1: 0 S1: 3 (0)

S2: 110 S2: 0 S2: 0

6 S1: 5783 S1: 5 S1: 1 (0)

S2: 2084 S2: 0 S2: 0

Confirmed events are seizures confirmed through clinical review.

S1 - 7-day monitoring at 4 weeks post-implant.

S2 - 7-day monitoring at 24 weeks post-implant.

*: Note participant 2 did not have monitoring at 24 weeks.
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FIGURE 2 | Sample EEG recordings. (A) Sample seizure in participant 1 and examples of (B) vertex waves and spindles during sleep, (C) chewing and (D) blinking

artifacts (*) in participants 6, 2 and 4, respectively. C0 and C1 channels represent the bipolar recordings from the additional scalp electrodes placed over the sub-scalp

electrodes. Blue traces (EEG 0 and EEG 1) represent the sub-scalp recordings. r0,0 and r1,1 represent the Pearson correlation coefficient between C0 and EEG 0, and

C1 and EEG 1, respectively. p0,0 and p1,1 represent the respective p values. Ambulatory scalp EEG and sub-scalp EEG recordings were reviewed independently.

Forecasting Algorithm

To forecast the likelihood of a seizure on an hourly basis, we
used an ensemble machine learning algorithm that combined
a random forest (RF) regressor and a logistic regression
(LR) classifier. The output of the model was the final
likelihood of a seizure (risk value), which was represented
as a continuous value between 0 for no seizure and 1
for a guaranteed seizure within the next hour. Note that
a likelihood was given every hour based on “clock hours”
(e.g., 12 a.m., 1 a.m., etc) rather than just an arbitrary moving
time window.

The RF regressor with the bootstrap aggregating technique
was trained on all features. In the model, the number of decision
trees was 80 and the minimum number of samples required to be
at a leaf node was 15. From observation, these model parameters
achieved the highest accuracy on the training dataset. Since
seizures typically account for <1% of daily life (4), the dataset is
usually imbalanced, with non-seizure hours occurring far more
frequently than seizure hours. RF models typically performed
better on balanced datasets (39), so oversampling of seizure hours
was undertaken before training the RF model. The output of
the RF model was used as an input to the LR classifier. The LR
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classifier was trained on all features, including the output of the
RF model. For simplicity, the default logistic regression model
was used from Python’s sklearn library. The output of the LR
model was the final likelihood of a seizure (risk value) within the
next hour.

Using the likelihood values, the forecaster classified hours as
either low, medium or high risk. The medium and high risk
cut-off thresholds were computed by optimizing (26):

(C1) time spent in low risk > time spent in medium risk >

time spent in high risk;
(C2) seizures in high risk> seizures inmedium risk> seizures

in low risk;
If C1 or C2 could not be satisfied, the optimisation algorithm

maximized the product of the time in low risk and the number of
seizures in high risk (C3 and C4):

(C3) maximize the time spent in a low risk state;
(C4) maximize the number of seizures occurring in the high

risk state.
Note that the likelihood is distinct from a traditional

probability value where all outcomes sum to 1. This distinction
is caused by oversampling the seizure class in the RF model,
which generates synthetic seizure-hours such that the number
of seizure hours is equal to the number of non-seizure hours.
The result is that the likelihood values are higher than the true
probability values.

Training and Testing Datasets

After preprocessing and feature extraction, the dataset was split
into training and testing datasets. Initial algorithm training
occurred using seizures captured over the first 14 days (15
seizures) but using cycles derived from the entire dataset. After
the initial training, re-training occurred after each new seizure
was observed. Re-training occurred on all past data, which
recomputed the algorithm coefficients and risk thresholds for
future predictions.

All analyses were executed in Python (version 3.7.9) using
pandas (v1.2.0), numpy (v1.19.2), matplotlib (v3.3.2), datetime
(v3.7.9), scipy (v1.5.2), pycwt (v0.3.0), sklearn (0.23.1), imblearn
(v0.6.2) and pycircstat (v0.0.2) libraries.

RESULTS

The surgical procedure and devices were well tolerated. No
significant complications have been reported in the five
participants. Overnight use of the system was well tolerated and
the BTE processor was worn either on the ear or attached to
the clothing during sleep. The 7-day EEG recordings revealed
interictal EA in all participants and seizures in four of the five
participants (Table 2).

Seizures were identified on the sub-scalp system, as confirmed
by periods of concurrent conventional scalp EEG recordings
(Figure 2A). Many other neurological events and artifacts were
also present in the sub-scalp recordings. In all participants, clear
sleep-related transients were visible in the sub-scalp recordings
(Figure 2B). Head scratching and muscular artifacts, such as
chewing or jaw clenching artifacts, typically appeared very large

across the sub-scalp recordings (Figure 2C), while other artifacts,
such as blinking, were largely invisible (Figure 2D).

Seizure Forecasting Case Study
We conducted a proof-of-principle analysis of seizure forecasting
for Participant 1. This participant had a total of 134 seizures over
a 6 month period. Figure 3A shows the hourly rate of detected
events from amachine learning algorithm (seeMethods: epileptic
activity detection) over the 6 month period. Shaded blue regions
represent the two 7-day EEG sessions recorded at weeks 4 and
24. The purple region represents an extended period where data
was not collected (device was removed). Note that the device was
removed during this period to undertake a physical examination
of the scalp for any changes to the skin before reapplication of the
system, as part of our safety assessment process.

Figure 3A highlights the presence of multi day cycles
(approximately monthly). The hourly event counts were used
to identify significant periodic cycles ranging from 12 h to 40
days, as shown in the wavelet spectrum in Figure 3B. Confirmed
seizures were only phased locked to some of these cycles
(quantified by significant SI values). Two examples of seizure
phase locking to cycles of hourly event count (18 days and 29
days) are shown (Figures 3C,D).

A practical forecaster minimizes the amount of time the
forecaster displays a high risk warning while maximizing the
number of seizures occurring during high risk. Alternatively, an
opposite, suboptimal forecaster would always show high risk,
achieving perfect predictive performance but of no utility to
the end-user. Figure 3E demonstrates seizure likelihood over 6
months in participant 1, where risk levels have been optimized
to be of highest utility to the user. The likelihood trace peaks in
a cyclical manner, with seizures typically occurring close to the
peaks (Figure 3F). The participant had 134 seizures during this
period, 15 of which occurred in the first 14 days (initial training
phase) and 119 of which occurred during the testing period.

The time spent in low, medium and high risk warnings and
seizures that occured during these periods are given in Table 3

for the testing phase. The distribution of seizure likelihoods
can also be visualized in Figure 3G. The forecast resulted in
the participant spending 26% of time in a high risk state, 11%
of time in a medium risk state and 63% of time in a low
risk state. Of 119 testing seizures, 99 (83%) occurred during
high risk, 8 (7%) occurred during medium risk and 12 (10%)
occurred during low risk. The median time spent in the high
risk state before a seizure occurred was 28 h. The Area Under
the Receiver Operating Characteristic Curve (AUC score), which
demonstrates how good the model is at distinguishing non-
seizure hours from seizure hours during testing, was 0.88. These
results underscore the feasibility of seizure forecasting using data
from the sub-scalp EEG device.

DISCUSSION

Here, we have successfully shown that a sub-scalp system can
accurately record ultra-long term EEG (>12 months) and detect
focal seizure activity (Figure 2). The device was well tolerated in
all five participants, with no serious adverse events to date. This
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FIGURE 3 | Seizure forecasting case study for patient 1. (A) Hourly rate of machine-learning detected events using the sub-scalp EEG device. Verified seizures (red

markers) from manual review of sub-scalp EEG device are shown. The blue regions represent scalp video-EEG assessment periods and the purple region represents

a period where the device was removed. (B) Cycle detection in EA using a Morlet wavelet approach. The wavelet spectrum is shown for a range of time periods

(Continued)
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FIGURE 3 | (x-axis), with cycles reaching significance denoted by a black or colored marker. The two colored markers indicate the two cycles shown in the circular

histograms (C,D). (C,D) Circular histograms showing the phase distribution of event cycles (transparent bars) and seizure occurrence (colored bars). Seizures were

strongly locked onto 18 day (C) and monthly cycles (D) of detected events. Seizures only occur in a narrow phase of the periodic activity suggesting a strong

relationship between the cycle and seizures (p < 0.05 with Omnibus test and high SI values). (E) Hourly likelihood of seizures. The likelihood of seizures occurring

within the next hour is given by the black line and seizures are shown by the red markers.The training cut off date (day 14) is indicated by the blue dotted line. The

orange and red lines represent the medium and high risk thresholds, respectively. (F) Inset of (E): hourly likelihood (x-axis, log scale) of seizures for the month of May,

with seizures and threshold lines shown. (G) Frequency (x-axis, log scale) of each seizure likelihood value [y-axis, shared with (E)].

suggests that continuousmonitoring of EA chronically is possible
with a minimally invasive and discrete device. The benefits of
this are ubiquitous, not only for seizure forecasting, but also
for medication management, anti-seizure medication trials and
surgical planning. It is highly likely that accurate and objective
quantification of seizures and interictal EA will become essential
for future drug trials to provide more objective assessments of
therapeutic benefit; sub-scalp EEG would be highly suitable for
this purpose.

Our results demonstrate that sub-scalp devices record high

quality neurological signals that are similar to scalp EEG.

Sub-scalp recordings are also sensitive to other small neurological

events such as sleep transients (Figure 2B). Lack of sleep and

deviations from normal sleep patterns are known risk factors
for seizures. Conversely, the treatment of seizures and seizures
themselves can disrupt normal sleep patterns (40, 41). Sub-scalp
devices provide an opportunity to investigate the complex
relationship between sleep and seizures and can aid in patient
management and seizure forecasting (39). The sub-scalp EEG
was less noisy compared to scalp EEG. Sub-scalp EEG contained
much less interference from electrical line noise (50Hz in
Australia) and was not affected by movement artifacts typically
observed in scalp EEG due to the movement of wires. Sub-scalp
devices are, however, susceptible to other noise and artifacts, such
as muscle activity recorded by electromyography (EMG). While
jaw EMG artifacts may obscure the underlying EEG activity
(Figure 2C), it can also identify jaw activity that is a feature of
the seizures. In contrast, blinking artifacts could not be seen in
the sub-scalp recordings, most probably because of the parietal
positioning of electrodes (Figure 2D).

The sub-scalp device can be used to continuously
monitor interictal and ictal events, which may provide better
understanding of the burden of disease. This information is also
of importance for clinical trials of novel therapies and for routine
patient management. Currently, clinical trials of novel therapies
rely on patient seizure diaries, which are known to be unreliable
in most people (11). The inconsistency of patient seizure diaries
impacts the estimate of disease burden and distorts the estimated
benefit of new therapies. Our case study demonstrates long-term
fluctuations in detected events which were linked to seizures
(Figure 3A).The detected events are likely to represent similar
fluctuations in EA, which have been implicated in cognition and
memory performance (5, 6). Understanding how EA changes
over time is important for tailoring treatments that not only
reduce seizures but ultimately improve quality of life.

The Minder R© sub-scalp system demonstrated utility in
capturing seizure cycles. In the current work, there was

TABLE 3 | Forecast results based on electrographic seizures.

In high risk state In medium risk state In low risk state

Seizures 99 (83%) 8 (7%) 12 (10%)

Time 26% 11% 63%

Number of electrographic seizures occurring in and time spent in high, medium and low

risk states during testing. Training was performed on electrographic seizures. AUC= 0.88.

clear rhythmicity in the detected events (Figure 3A), which is
concordant with previous work with invasive EEG showing the
prevalence of circadian and multiday cycles in interictal EA
(17, 18) and seizures (20, 29, 31). Using a similar approach
to previous work (20, 40), cycles were detected at circadian
and multiday periodicities for one individual (Figure 3B), with
18-day and 29-day cycles in the detected events showing
the strongest relationships with seizure timing (Figures 3C,D).
Interestingly, multiday cyclesin this subject were stronger than
the circadian rhythm. Capturing multiday cycles requires long
term monitoring and, in addition to demonstrated utility for
forecasting, an understanding of seizure cycles may be critical for
the development of new therapies.

We have also demonstrated the potential for seizure
forecasting with sub-scalp systems. In this example, a forecaster
achieved high accuracy (83%) and spent 26% of time in a high
risk state, despite the high probability of seizures (2.2%) in this
participant. These results are comparable to the only prospective
seizure forecasting trial to-date, where patients spent 23% of
their time in the warning state on average, but had a lower
sensitivity of 66% (4). The AUC score (0.88) was also comparable
to recent, state-of-the-art forecasting using interictal EA cycles
derived from intracranial EEG (26, 32).

The case study demonstrates the high performance that can
be achieved through an event-based seizure forecaster. This
forecaster may be used to generate powerful prior probabilities
for a more advanced seizure forecaster that combines other
features, such as non-invasive information (e.g., medication
adherence, heart rate etc.) and continuous features derived from
the EEG (e.g., spectral power, autocorrelation etc.). Additionally,
the forecast was able to continue making predictions despite
the missing data during the period the device was not
connected. Whilst cycles were attenuated during this period,
seizure cycles were still utilized, as they rely on a fitted
sinusoid of fixed period-length. The relative low likelihood
of seizures during April compared to other months suggests
that cycles in the detected events were stronger predictors
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of seizures than seizure cycles. This is in line with previous
work, which suggests seizures are more robustly synchronized to
cycles of a continuous biomarker than fitted sinusoids of fixed
period-length (41).

Cyclic features in the EEG were stable and no adaptation
period was required to start forecasting in this participant. The
lack of implantation effect of sub-scalp systems (42) is in contrast
to intracranial devices, which require a craniotomy and often
a substantial time period before the signal stabilizes (21). This
may require months of data to be discarded prior to training
forecasting algorithms (28, 32). In this case, forecaster training
was undertaken immediately, and only 14 days of training data
were required to generate forecasts (although this will depend
on seizure frequency). Further work will investigate the utility of
forecasting using sub-scalp recordings in a prospective study.

There are limitations with sub-scalp EEG systems. First,
despite the limited invasiveness of subcutaneous electrodes, this
surgical procedure may not be acceptable to all people with
epilepsy (43). Hence, patient seizure diaries will remain a useful
tool in clinical settings, and non-invasive forecasting systems
based on mobile and wearable devices are desired by the epilepsy
community (43, 44). Wearable sensors and non-invasive features
may be useful to forecast seizure likelihood (25, 45, 46), and
self-reported events and biomarkers derived from wearables also
demonstrate cycles that are co-modulated with seizure likelihood
(30, 38, 40). However, the correlation between self-reported
events and electrographic events is patient-specific. In cases
where the accuracy is less than perfect, it is unlikely that forecasts
using self-reported events will perform as well as forecasts
using chronic EEG. Despite advances in wearable technology
for seizure detection, there remain significant false positives and
many seizure types are missed (47). It is likely that chronic sub-
scalp EEG recordings will prove to be a critical “ground-truth” to
develop wearable seizure detection and forecasting.

Second, validating electrographic seizures also remains a
significant challenge, even with the aid of an algorithm detecting
suspect events. A short 24-h segment of continuous EEG alone
can take hours for a trained neurophysiologist to review, which
is not viable for large scale use of sub-scalp devices, and so
optimizing seizure detection algorithms will be critical. The
time taken for clinical review placed several limitations on the
validation of the signal quality and the algorithms used in this
preliminary study. Qualitatively, EEG signals between scalp and
sub-scalp were found to be similar (Figure 2). Furthermore,
the algorithm presented in this work highlighted strong cycles
in detected activity, which are similar to cycles of epileptiform
activity observed in previous studies (8, 17, 18). However, a more
comprehensive assessment of signal equivalence and algorithm
performance is required and will be addressed in future work.

Third, the retrospective forecasting case study was only
presented in one participant. We acknowledge that a larger
cohort study is necessary to demonstrate the generalisability of
our forecasting results. Finally, it should be noted that the highly
clustered nature of the electrographic seizures in participant 1
may have aided the algorithm in achieving a high AUC score.
On the other hand, clusters tend to result in short cycles, but
the long 18d and 29d event cycles were the strongest predictors

in this algorithm, and these are present irrespective of clusters.
To understand this further, future work may investigate the
forecasting performance on lead seizures only.

This study has demonstrated the feasibility of using a
continuous sub-scalp EEG device to record data of sufficient
resolution to capture relevant events, detect the events
algorithmically, and use the events in a seizure forecasting
algorithm. This data is extremely valuable for the assessment of
epilepsy, and could be linked to systems to improve safety and
independence, potentially changing fundamentally our approach
to the management of the condition.
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