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Pathophysiology of idiopathic Parkinson’s disease (iPD) is complex and still

misunderstood. At a time when treatments with disease-modifying potential are being

developed, identification of early markers of neurodegeneration is essential. Intracerebral

sodium accumulation could be one of them. Indeed, it may be in relation to the

mitochondrial dysfunction that early exists in iPD. For the first time, we used brain sodium

(23Na) MRI to explore sodium concentration changes that have already been reported

to be related to neurodegeneration in other diseases. We prospectively included 10 iPD

patients (mean age 52.2± 5.9 years-old) with motor symptoms that started <36 months

before inclusion and 12 healthy subjects (mean age 53 ± 6.4 years-old). Patients were

scanned in OFF medication state by using proton (1H) and 23Na MRI at 7T. We then

extracted quantitative Total Sodium Concentration (TSC) from five regions of interest

known to be early impaired in iPD [substantia nigra (SN), putamen, caudate nucleus,

pallidum, thalamus] and in one region supposed to be relatively spared in the first stages

of the disease [cortical gray matter (neocortex)]. Potential atrophy in these structures was

also investigated with 1H MRI. Relative to healthy subjects, iPD patients showed higher

TSC in the SN (43.73 ± 4.64 vs. 37.72 ± 5.62, p = 0.006 after Bonferroni correction). A

trend of increase in sodium concentrations was found within the pallidum (45.80 ± 4.19

vs. 41.07 ± 4.94, p = 0.017), putamen (48.65 ± 4.58 vs. 43.66 ± 5.04, p = 0.041)

and the cortical gray matter (56.34 ± 3.92 vs. 50.81 ± 5.50, p = 0.021). No significant

brain atrophy was found in patients compared to controls. Thus, alteration of sodium

homeostasis in the SN in the absence of atrophy could be considered as a potential

early marker of cellular dysfunction in iPD.

Keywords: Parkinson’s disease, neurodegeneration, sodium, biomarker, ultra high field magnetic resonance

imaging

INTRODUCTION

Idiopathic Parkinson’s disease (iPD) is a neurodegenerative disease affecting the central nervous
system and is a major cause of disability and dependence. By 2030, the number of parkinsonian
patients could increase by 56%, with 1 in 120 people over the age of 45 suffering from the disease
(1). To date, there is no treatment to slow or stop the progression of the disease. At a time
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when treatments with disease-modifying potential are
being developed (for example anti-synuclein antibodies
or iron chelators) (2), identification of early markers of
neurodegeneration is essential and these are urgently lacking.

Although α-synuclein misfolding is part of a significant
upstream pathway leading to dopaminergic degeneration (3, 4),
mitochondrial dysfunction is another main upstream pathway
to parkinsonism (5). Among the deleterious consequences
of mitochondrial dysfunction, increased intracellular sodium
(Na+) concentration has been reported (6) and reflects
an alteration of the cellular homeostasis. Interestingly, Na+

concentration changes in the brain have already been related to
neurodegeneration, for example in Huntington’s Disease (7) or
Amyotrophic Lateral Sclerosis (8) with brain sodium (23Na) MRI
which allows the exploration of sodium distribution through
a non-invasive procedure. Thus, we hypothesize that sodium
accumulation could be a potential early biomarker of iPD,
especially in the substantia nigra (SN) where impairment of
regulation of mitochondrial DNA copy number occurs and is
thought to be related to neurodegeneration in iPD (9). This
pathophysiological approach could lead to the identification of
new therapeutic targets such as the Na+ K+ Cl− cotransporter
isoform 1 (NKCC1) importer antagonist bumetanide, which
has been reported to attenuate motor effects of dopamine
deprivation (10).

In this exploratory study, we propose to study brain sodium
concentrations using ultra-high field (7T) MRI in iPD patients
relative to healthy subjects.

MATERIALS AND METHODS

Population Studied
We prospectively recruited 10 patients with iPD between
February and November 2020. All patients met the iPD MDS
diagnostic criteria (11) with motor symptoms that started <36
months before inclusion.

Twelve age- and gender-matched healthy subjects were also
recruited prospectively during the same period.

Written informed consent was obtained from all participants.
The study was approved by the local Ethics Committee (Comité
de Protection des Personnes Sud Méditerranée 1), in accordance
with the Declaration of Helsinki.

Clinical Data Collection
All patients had been examined in a standardized manner
within a half-day by a movement disorders specialist working
in the Department of Neurology and Movement Disorders,
Marseille University Hospital. We collected scores using different
scales to evaluate the severity of symptoms [i.e., UPDRS
III, Schwab & England, Hoehn & Yahr, SCOPA-AUT and
REM-sleep behavior disorders (RBD) Screening Questionnaire
(12)], cognition (MoCA, Lexical and semantic fluency, Benton
Judgment of Line Orientation Test-15 items), mood disorder
[Hospital Anxiety and Depression (HAD) scale] and apathy
(Starkstein motivation scale). Levodopa equivalent dose was
calculated (13). The clinical data are summarized in Table 1.
After receiving the patient’s agreement, dopaminergic treatment

TABLE 1 | Patients’ characteristics.

Mean SD

Age (years) 55.2 5.9

Disease duration (months) 20.3 11.2

Schwab & England 97 4.8

Hoehn & Yahr 1 0

UPDRS III 12.9 3.8

MoCA 27.9 1.3

Total Lexical fluency (number in 2min) 20.2 7.4

Total Semantic fluecny (number in 2min) 28.8 3.9

Benton Test (15-items) 30 2.7

Starkstein motivation scale 19.9 5.7

HAD 11.8 5.9

SCOPA-AUT 9.7 7.8

RBD screen questionnaire 3.7 2.2

Levodopa (md/day) 80 188.9

Levodopa Equivalent Dose (mg/day) 175.5 259.2

Number of subjects (%)

Gender 8M (80%) and 2 F (20%)

Orthostatic hypotension 2 (20%)

Dopamine agonist 4 (40%)

Levodopa 3 (30%)

IMAO-B 6 (60%)

ICOMT 0 (0%)

Anticholinergic 0 (0%)

Levodopa Responsivness Good for 10 (100%)

UPDRS, Unified Parkinson’s Disease Rating Scale; MoCA, Montreal Cognitive

Assessment; HAD, Hospital Anxiety and Depression scale; SCOPA-AUT, Scales for

Outcomes in Parkinson’s disease - AUTonomy; RBD, REM Sleep Behavior Disorder

Screening Questionnaire; SD, standard deviation.

was suspended 72 h before scanning to evaluate the severity of
the disease and levodopa responsiveness (good if >50%/bad).
Indeed, the effect of exogenous dopaminergic intake on a
possible modification of sodium concentrations and metabolism
is unknown.

MRI Acquisition and Post-processing
MRI acquisition was performed with a 7-T Magnetom system
(Siemens, Erlangen, Germany). For 23Na MRI exploration, we
used a dual-tuned 23Na/1H QED birdcage coil and a multi-echo
density adapted 3D projection reconstruction pulse sequence (TR
= 120ms, 5,000 spokes, 384 radial samples per spoke, 3mm
nominal isotropic resolution; to ensure a sufficient number and
distribution of TEs, while taking into account the 5ms readout
of the sequence, we applied the sequence three times within the
same exam in order to obtain 24 TEs ranging from 0.2ms to
70.78 ms: 1st acquisition: 0.20 - 9.70 - 19.20 - 28.70 - 38.20 -
47.70 - 57.20 - 66.70ms, 2nd acquisition: 1.56 - 11.06 - 20.56
- 30.06 - 39.56 - 49.06 - 58.56 - 68.06ms, 3rd acquisition: 4.28
- 13.78 - 23.28 - 32.78 - 42.28 - 51.78 - 61.28 - 70.78ms, total
acquisition time = 3 × 10min) adapted from (14). Six tubes
with known sodium concentrations (from 25 to 100 mmol/L
within 2% of agar gel) were placed within the field of view to
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TABLE 2 | Mean Total sodium concentration (TSC) (wet tissue volume, mmol/l) and normalized volumes of brain regions of interest.

Brain areas Group TSC ± SD p Normalized volume ± SD p

Substantia Nigra iPD 43.73 ± 4.64 0.006* 0.07 ± 0.01 0.149

Healthy subjects 37.72 ± 5.62 0.08 ± 0.01

Putamen iPD 48.65 ± 4.58 0.041 0.62 ± 0.14 0.187

Healthy subjects 43.66 ± 5.04 0.69 ± 0.11

Caudate nucleus iPD 54.22 ± 4.36 0.055 0.48 ± 0.07 0.553

Healthy subjects 52.35 ± 5.50 0.50 ± 0.07

Pallidum iPD 45.80 ± 4.19 0.017 0.23 ± 0.03 0.461

Healthy subjects 41.07 ± 4.94 0.24 ± 0.04

Thalamus iPD 50.60 ± 5.92 0.129 0.97 ± 0.14 0.468

Healthy subjects 46.29 ± 5.14 1.01 ± 0.15

Cortical Gray Matter iPD 56.34 ± 3.92 0.021 42.53 ± 5.67 0.714

Healthy subjects 50.81 ± 5.50 43.37 ± 4.98

*Survive after multiple comparisons. TSC, Total sodium concentration; SD, standard deviation; iPD, idiopathic Parkinson’s Disease.

serve as a reference for quantification (14). A 32-channel phased-
array 1H head coil (1Tx/32 Rx; Nova) was used to acquire a
sub-millimeter 1H three-dimensional Magnetization-Prepared 2
Rapid Acquisition Gradient-Echoes (MP2RAGE) sequence (TR
= 5,000 ms/TE= 3 ms/TI1= 900 ms/TI2= 2,750ms, 256 slices,
0.6mm isotropic resolution, acquisition time= 10min 12 s).

Sodium images were reconstructed offline, fitted using a bi-
exponential model, and finally normalized relative to signal
from reference tubes to obtain quantitative Total Sodium
Concentration (TSC) maps of the whole brain. We followed
the methodology previously described in (14). This multi-
echo approach allows to account for the complex relaxation
processes of 23Na through a bi-exponential fitting enabling to
determine the ordinate at TE = 0ms of the curve corresponding
to the TSC. In the present preliminary study with limited
sample size and in order to minimize the statistical type II
error, we decided to focus the analysis solely on TSC, the
metric mainly expressed in the literature. Increase in sample
size will allow to evaluate relative variations of short and
long T2∗ pool fractions of 23Na. The first 23Na echo (TE =

0.20ms) and the 1H images were coregistered using a rigid
transformation (15). 1H images were segmented into GrayMatter
(GM), White Matter (WM) and cerebrospinal fluid (CSF) (0.9
tissue probability threshold) using the Statistical Parametric
Mapping 12 “New Segment” tool (16), into deep gray matter
(DGM) using FSL-FIRST tool (accumbens, amygdala, caudate,
hippocampus, pallidum, putamen and thalamus) (17) and into
substantia nigra by registering the 1H images to the Montreal
Neurologic Institute (MNI) 152 space and bringing back the
SN-AAL3 mask to the subject space (15). without resectioning
(SPM8; https://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The
1H images were then segmented and normalized into the MNI
template, and the resulting transformation was applied to the
quantitative 23Na maps. Quantitative TSC values were extracted
from five regions of interest known to be early impaired in
iPD (SN, putamen, caudate nucleus, pallidum, thalamus) and in
one region supposed to be relatively spared in the first stages
of the disease, the cortical gray matter (neocortex). Cerebral

volumes were normalized for head size using the intracranial
volume (18).

Statistical Analysis
Categorical variables are presented as numbers and percentages,
and the quantitative results as a mean with standard deviation.
Comparisons between groups were made with Chi2 or Fisher
tests for categorical data and Wilcoxon for continuous data,
as appropriate. Correlations between clinical features and
MRI parameters were looked for with Spearman correlation
analysis. A two-sided p-value < 0.05 was considered statistically
significant in univariate analysis and p < 0.008 after Bonferroni
correction. Statistical analyses were performed using JMP
software JMP 9.0.1 (SAS Institute).

RESULTS

Patients’ and Healthy Subjects’
Characteristics
Eight males and 2 females with iPD were included in this study
with a mean age of 55.2 ± 5.9 years-old and a mean disease
duration of 20.3 ± 11.2 months. All of them were completely
independent in their daily life as shown by scores of Schwab &
England (97 ± 4.8) and Hoehn & Yahr (1 ± 0). No cognitive
impairment was identified (MoCA score at 27.9 ± 1.3). Mean
UPDRS III OFF anti-parkinsonian drugs was 12.9± 3.8. Clinical
data are summarized in Table 1.

iPD patients were comparable with healthy subjects
concerning age (mean age of 53.0 ± 6.4, p = 0.35) and
gender (6 F and 6M, p= 0.20).

Sodium Brain Accumulation and Brain
Volume
As shown in Table 2, Figures 1 and 2, relative to healthy subjects,
patients with iPD showed higher TSC in the SN (43.73± 4.64 vs.
37.72 ± 5.62, p = 0.006 after Bonferroni correction). A trend of
increase in sodium concentrations was foundwithin the pallidum
(45.80± 4.19 vs. 41.07± 4.94, p= 0.017), putamen (48.65± 4.58
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FIGURE 1 | Illustration of regions of interest with coronal and sagittal brain MRI slices at 7T. (A) 1H T1-weighted MP2RAGE slices. (B) 23Na MRI slices. In this

illustration, can be seen the substantia nigra (pink), putamen (blue), pallidum (red) and the thalamus (green).

vs. 43.66± 5.04, p= 0.041) and the cortical gray matter (56.34±
3.92 vs. 50.81± 5.50, p= 0.021).

No significant difference in ROI normalized volumes was
found between patients and controls.

There was no correlation between clinical features, levodopa
equivalent doses and MRI parameters.

DISCUSSION

Despite the limited number of subjects included in this study,
we have been able to demonstrate an accumulation of sodium in
patients with iPD. This accumulation is significant in the SN at
this early stage of the disease.

SN is recognized as the origin of the nigro-basal ganglia-
thalamic-cortical motor pathway dysfunction in iPD. Indeed, the
most consistent finding of the neuropathology of iPD is a loss of
dopaminergic neurons in the SN pars compacta whichmodulates
activity of neurons in the basal ganglia. In the end, inadequate
facilitation of the corticospinal tracts produces akinesia and
bradykinesia which are part of parkinsonian syndrome (19).
Pathophysiology of iPD is still misunderstood but along with α-
synuclein misfolding, mitochondrial dysfunction is considered
to have an important role in neurodegeneration (5). Changes
in mitochondrial gene expression, well-documented in the SN
(9), seem to contribute to cellular energy failure, which in turn
leads to loss of function of Na+/K+ ATPase and impaired ability
of the cell to maintain resting potential and to export Na+ (6).
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FIGURE 2 | Violin plots of Mean Total sodium concentration (TSC) (wet tissue volume, mmol/l) for iPD and HC. *Survive after multiple comparisons. iPD, idiopathic

Parkinson’s Disease; HC, Healthy Controls; TSC, Total sodium concentration.

Frontiers in Neurology | www.frontiersin.org 5 September 2021 | Volume 12 | Article 715618

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Grimaldi et al. Increased Sodium Concentration in SN

Then, the significant sodium accumulation in the SN is believed
to be a sign of early dopaminergic neurons dysfunction in iPD.
Also, the trend of increase in sodium concentrations within the
pallidum corroborates the early SN-basal ganglia neural circuits
impairment in iPD but more investigations are warranted to
support these results.

The trend of sodium accumulation in cortical gray matter
was not fully expected at this stage, in the absence of obvious
cognitive impairment. However, early changes in personality and
mild cognitive impairment have been described in iPD (20).
Characteristically, these changes are often subtle at the beginning
and difficult to detect without specific neuropsychological tests.
Deficits mainly affect executive function including working
memory and visuospatial capacity. Here, 3 patients had a
MoCA score at 26/30 which is the limit for normal values
(21). Lewy pathology, hallmark of iPD, in the cerebral cortex
does not correlate with cognitive impairment. Nevertheless,
recent studies have shown abnormal mitochondria content and
function, and increased oxidative stress and oxidative responses
in the frontal cortex in iPD (22) that could be related to
the tendency of sodium accumulation associated with early
cortical dysfunction.

A variety of consequences of Na+ accumulation may be
relevant in PD pathophysiology. Mitochondrial dysfunction,
ionic disturbances and neurodegeneration are interrelated
biological processes already described iPD (5). Mitochondrial
dysfunction may result in intraneuronal sodium overload
through reversed activity of the sodium-calcium exchanger and
axonal calcium import (6). In turn, this calcium overload may
force the opening of mitochondrial permeability transition pore,
leading to retrograde electron flux through the electron transport
chain, resulting in increased reactive oxygen species production,
release of cytochrome c, and activation of apoptosis (23, 24)
particularly in SN dopaminergic neurons which project their
axons on basal ganglia nuclei (25). We hypothesize that this
accumulation of Na+ may affect the activity of other structures
in the SN-basal ganglia-thalamic-cortical circuit. For example,
sodium ions are essential for spike generation in midbrain
dopaminergic neurons (26) and pallidum neurons (27). A
computational modeling study recently demonstrated a reduced
availability of sub-threshold activated sodium and potassium
channels, resulting in a decrease in firing regularity in pallidum
neurons (28). Also, dopamine transporter (DAT) is a sodium-
coupled transmembrane protein that mediates the reuptake of
dopamine from the synaptic cleft, and is localized to presynaptic
nigrostriatal terminals (29). It operates by coupling transport
of Na+ along its concentration gradient from the extracellular
compartment to the intracellular compartment allowing the
transport of the substrate in the same way (30). Intracellular
Na+ overload might deteriorate its functioning and worsen
neurological symptoms.

From a therapeutic point of view, interestingly, it has
been shown that the neuronal Na+ K+ Cl− cotransporter
isoform 1 (NKCC1) importer antagonist bumetanide, which
reduces intracellular Cl− levels (but also reduces Na+ and
K+ intracellular import) attenuates motor effects of dopamine
deprivation by restoring GABAergic inhibition including the

cortico-striatal pause-rebound response (31). Damier et al. (10),
reported an improvement of iPD motor symptoms in the 4
patients treated with bumetanide which also improved gait and
freezing in 2 of these patients calling for double-blind, placebo-
controlled, randomized trials to confirm the therapeutic efficacy
of bumetanide. NKCC1 importer antagonist has been postulated
to have also a neuroprotective effect in iPD through its action
on astrocytes, microglia and oligodendrocytes by limiting the
intracellular accumulation of NA+, Cl− and K+ (32).

We did not find any significant atrophy when we compared
the volumes of brain structures in iPD patients and healthy
subjects although sodium concentration was abnormally elevated
in patients. This suggests that abnormal elevated sodium
concentration more likely reflects cellular dysfunction rather
than cell death. This finding is in favor of the hypothesis that
elevated sodium concentration could be a potential marker of
early processes of neurodegeneration before neuronal death.

Our study has some limitations. The main one is the limited
number of participants. This preliminary study has therefore
allowed us to demonstrate the feasibility and relevance of
assessing brain sodium accumulation in iPD. Unfortunately,
several structures implicated in iPD pathophysiology are too
small to be evaluated individually in sodium imaging such as
locus coerulus, subthalamic-nucleus or SN pars compacta and SN
pars reticulata separately due to the limited spatial resolution of
sodiumMRI even at high field.

CONCLUSION

To our knowledge, this is the first study using sodium MRI
at 7T providing evidence of abnormal sodium concentration
in SN which is a region known to be particularly impaired
early in iPD. The evidence of such an alteration of sodium
homeostasis in the absence of atrophy could be considered as
a potential marker of early processes of cellular dysfunction
and neurodegeneration before neuronal death in iPD. Further
investigations are needed to confirm these results and to explore
mapping of sodium homeostasis that might be different in other
parkinsonian syndromes.
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