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Background: Stroke survivors with impaired control of the ankle due to stiff

plantarflexors often experience abnormal posture control, which affects balance and

locomotion. Forceful stretching may decrease ankle stiffness and improve balance.

Recently, a robot-aided stretching device was developed to decrease ankle stiffness of

patient post-stroke, however, their benefits compared to manual stretching exercises

have not been done in a randomized controlled trial, and the correlations between the

ankle joint biomechanical properties and balance are unclear.

Objective: To compare the effects of robot-aided to manual ankle stretching training in

stroke survivors with the spastic ankle on the ankle joint properties and balance function

post-stroke, and further explore the correlations between the ankle stiffness and balance.

Methods: Twenty inpatients post-stroke with ankle spasticity received 20 minutes

of stretching training daily over two weeks. The experimental group used a

robot-aided stretching device, and the control group received manual stretching.

Outcome measures were evaluated before and after training. The primary outcome

measure was ankle stiffness. The secondary outcome measures were passive

dorsiflexion ranges of motion, dorsiflexor muscle strength, Modified Ashworth Scale

(MAS), Fugl-Meyer Motor Assessment of Lower Extremity (FMA-LE), Berg Balance Scale

(BBS), Modified Barthel Index (MBI), and the Pro-Kin balance test.

Results: After training, two groups showed significantly within-group improvements

in dorsiflexor muscle strength, FMA-LE, BBS, MBI (P < 0.05). The between-group

comparison showed no significant differences in all outcome measures (P > 0.0025).

The experimental group significantly improved in the stiffness and passive range of

motion of dorsiflexion, MAS. In the Pro-Kin test, the experimental group improved

significantly with eyes closed and open (P < 0.05), but significant improvements were

found in the control group only with eyes open (P < 0.05). Dorsiflexion stiffness was

positively correlated with the Pro-Kin test results with eyes open and the MAS (P < 0.05).
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Conclusions: The robot-aided and manual ankle stretching training provided similar

significant improvements in the ankle properties and balance post-stroke. However,

only the robot-aided stretching training improved spasticity and stiffness of dorsiflexion

significantly. Ankle dorsiflexion stiffness was correlated with balance function.

Clinical Trial Registration: www.chictr.org.cn ChiCTR2000030108.

Keywords: stroke, ankle, spasticity, stiffness, balance, robot

INTRODUCTION

Stroke is a leading cause of mortality, and approximately 2.5
million people experience a stroke annually in China (1). Stroke
survivors have abnormal balance function due to spasticity,
muscle weakness, sensory loss, and/or motor dysfunction (2–
4). Structural changes of muscle fibers and connective tissue in
stroke patients may result in a reduction in joint range of motion
(ROM) and a clinical contracture for lacking mobilization and
serious spasticity (5–9). Previous studies have demonstrated
that stroke patients with impaired ankle control due to stiff
plantarflexors and weak dorsiflexors often have a high fall rate
(4, 10) because the ankle is crucial to control the location of
the body’s base of support and assist in controlling balance
(11). Maintaining balance relies on well-controlled contraction
of dorsiflexors and plantarflexors and specific ankle ROM (4,
12). Therefore, alleviating ankle muscle stiffness, and improving
the muscles’ soft-tissue extensibility and viscoelastic properties
are important rehabilitation goals for stroke survivors in
reestablishing balance function (13).

Many treatments to improve balance ability in stroke
survivors are aimed at improving the posture control of the
trunk and lower limbs including the use of strengthening
exercises, functional neuromuscular stimulation, and visual
feedback balance training (14–16). Ankle stretching exercises
are also widely utilized to prevent and treat limited ankle
ROM post-stroke to improve balance ability. Previous studies
have demonstrated that higher resistance torque, increased
joint stiffness, and decreased ankle ROM characterized by
stroke survivors improved after completing passive stretching
exercises (17–21). The aims of stretching exercises are to
increase soft-tissue extensibility, normalize muscle tone,
improve function and reduce pain (17, 22, 23). Passive ankle
stretching can be manually applied by physical therapists
or by using a stretching board, or by robotic systems
(20, 23–26). Some of the factors that have limited clinic
therapeutic regimens including cost, labor-intensive manual
provision, availability of physical therapists, and limited
access to clinical facilities. In practice, there are differences
among therapies in the actual effects of manual stretching

Abbreviations: ROM, Range of Motion; COP, Center of Pressure; MAS, Modified

Ashworth Scale; DF dorsiflexion; PF, plantarflexion; FM-LE, Fugl-Meyer Motor

Assessment of Lower Extremity; BBS, Berg Balance Scale; MBI, Modified

Barthel Index; ADL, Activities of daily living; OE, Opened eyes; CE, Closed

eyes; SD, Standard deviation; AS, Average speed; M/L, Medial/Lateral; F/B,

Forward/Backward; BMI, Body Mass Index; M, male; F, female; DSP, Digital signal

processor; CI, Confidence interval.

training, such as subjective judgment about the severity of
spasticity, intensity, frequency, and duration of the manual
stretching exercises.

Recently, an intelligent robot-aided stretching device was
developed to decrease ankle stiffness of patients with neurological
impairment due to stroke, spinal cord injury, multiple sclerosis,
or cerebral palsy. Significant improvements were found in the
ROM, maximum voluntary contraction, ankle stiffness, and
comfortable walking speed (20, 27–29). The stretching velocity
of this device decreases as resistance increasing, and will hold
the ankle joint at the extreme position for a while to let
stress relaxation occur when the predefined resistance torque
is reached. By using this control strategy, the stretching device
moves quickly in the middle (non-spastic) ROM and slows down
in the stiffer part of the ROM, while never exceeding predefined
stretching torques (19). Robotic adaptive stretching may be a
quantitative stretching alternative therapy (30).

At present, there is a lack of RCT comparing the effects
of robot-aided to manual ankle stretching training on
the ankle joint properties and balance function post-
stroke. The primary aim of this study was to evaluate the
effects of the intelligent robot-aided stretching and manual
stretching therapies on the ankle properties and balance
function post-stroke. A secondary aim was to study how
ankle stretching affects balance. We hypothesized ankle
stretching would improve balance function for changing
the neural and musculoskeletal characteristics of the ankle
joint, and there may be different mechanisms between
manual and intelligent stretching. A third aim was to
investigate the relationship between ankle stiffness and balance
function post-stroke.

METHODS

Trial Design
This is an assessor-blinded, randomized controlled trial. The
aim was to compare the effects of robot-aided to manual ankle
stretching training in stroke survivors with the spastic ankle
on the ankle properties and balance function post-stroke, and
further explore the correlations between the stiffness of the ankle
and balance. The study was conducted according to the tenets
of the Declaration of Helsinki, the guidelines for Good Clinical
Practice, and the Consolidated Standards of Reporting Trials
(CONSORT), approved by the local Ethics Committee “Beijing
Tsinghua Chang Gung Hospital Medical Ethics” (18172-0-01),
and registered at clinical trial (ChiCTR2000030108).
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FIGURE 1 | A subject seated in the ankle rehabilitation robot device.

Participants
This RCT was conducted at the Beijing Tsinghua Chang Gung
Hospital in China. Inpatients with stroke in the rehabilitation
department of the hospital were recruited betweenMay 2019 and
November 2019. The inclusion criteria were: (1) ages between
18 and 75 years; (2) first-ever stroke with less than 6 months
duration of spasticity of the affected ankle (Modified Ashworth
Scale, MAS: 1-3 points); (3) medically stable; and (4) ability to
stand independently without aids for at least 1 minute. Exclusion
criteria were: communication problems, dementia based on
clinical diagnosis, comorbidities affecting motor performance
such as orthopedic, arthritic, inflammatory conditions that could
influence balance, and limited ankle movement.

Interventions
Subjects in the experimental and control group had 10-session
stretching training using the intelligent robot-aided stretching or
manual stretching respectively (five times a week over 2 weeks,
20 minutes/session). During the 2-week period, both groups
continued movement exercises for ankle mobility and strength.

Experimental Setup
An ankle rehabilitation robot (Beijing LTK Science and
Technology Co., Ltd., Beijing, China) was used for intervention
and outcome evaluations. While the subject was comfortably
seated, the leg of the subject was strapped to leg support with the
knee at 30◦ flexion and the foot was strapped onto a footplate
with ankle dorsiflexion (DF) at 0◦. The foot was secured to a
footplate at the dorsal side and the heel using adjustable straps.
The footplate was fixed to the motor shaft, and a torque sensor
was aligned with the motor shaft to measure the ankle joint
torque (Figure 1). The ankle stretching device was clamped to the
chair to avoid movement of the device during stretching (18).

Stretching Protocol
The ankle rehabilitation robot was driven by a servomotor
controlled by a digital signal processor (20). Briefly, the stretching
velocity was inversely proportional to the joint resistance torque,
with the control adjusted at 2,000Hz. The maximum stretching
velocity was set at 12◦/s (31). Typical stretching parameters were
15 to 20Nm peak resistance torque in dorsiflexion, 5 to 10Nm
peak resistance torque in plantarflexion, and a 5-second holding
period at the extreme positions. An experienced physiotherapist
adjusted the peak resistance torque for each session based on
manual stretching and feedback from the subject during the
stretching therapy. When receiving the intelligent stretching
exercises, the subjects were required to look at the display screen
where an “ankle joint” moves from dorsiflexion to plantarflexion
as the real dynamic stretching simultaneously and try to feel the
ankle movement. The control group received stretching sessions
in a clinic by the appointed physiotherapist. The positive range of
motion (PROM) of the ankle wasmeasured using a goniometer to
ensure the safety of manual stretching before manual stretching
exercises. Subjects remained as relaxed as possible while the
physiotherapist stretching the paretic ankle from plantar to
dorsiflexion in the sagittal plane slowly, and a 5-second holding
period at the extreme dorsiflexion positions. There is no break in
the process of manual or intelligent stretching training.

Outcomes
Clinical and demographic data were collected at enrollment.
Subjects were evaluated before and after the interventions by
a designated physiotherapist blinded to the group assignment.
The primary outcome of the study was the change of stiffness of
the ankle after the training, due to its relevance in physiologic
control of the ankle. The secondary outcomes of the study
were divided into three categories: biomechanical evaluations,
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clinical evaluations, and the Pro-Kin balance test (Pro-Kin254P,
TecnoBody Company, Italy). The assessments included pre-
assessment (baseline, before the first exercise session), post-
assessment (after the tenth exercise session). The assessment
sessions were done at the same time of the day with the
assessments in the same order.

Biomechanical Evaluations
Evaluations included the DF PROM (passive ranges of motion
measured in dorsiflexion direction movement), DF and PF
stiffness (stiffness measured in dorsiflexion and plantarflexion
direction movement), and dorsiflexor muscle strength. ROM and
muscle strength were measured using the HogganMicroFET3
portable device (Hoggan Health Industries, Inc. Salt Lake City,
USA). The Stiffness is defined as the ratio of ground reaction
moment to angular deflection of the specific joint. Ankle stiffness
measured in DF or PF passive movement was assessed as K =

1T/1θ, where K (Nm/◦) was the quasi-static stiffness and 1T
was the passive torque increment during a certain amount of
ankle angular movement (1θ). As 1θ becomes infinitely small,
the quasi-static stiffness approaches the slope of a tangential line
of the torque-angle curve at a specific ankle position (32, 33).
The peak stretching velocity in this study was set at 5◦/s to avoid
inducing reflex responses (21). The biomechanical evaluations
using the ankle robot have been used and validated in several
previous studies (34, 35). Quasi-static stiffness of the ankle
plantarflexor (DF stiffness) was evaluated at 10◦ of DF and
that of the ankle dorsiflexor (stiffness measured in PF direction
movement, PF stiffness) at 30◦ of PF for the PROMof the subjects
in the two groups all meet this criterion.

Clinical Evaluations
Each subject completed the following functional assessments
during clinical evaluation sessions. MAS (0–5 points, with higher
scores indicating worse spasticity) was used to measure the calf
muscle hypertonia (36). Fugl-Meyer Motor Assessment of Lower
Extremity (FMA-LE) (0–34 points) was used to evaluate the
sensorimotor function of the lower limbs (37). The Berg Balance
Scale (BBS) (0–56 points) was used to evaluate the balance
function (38). The Modified Barthel Index (MBI) (0–100 points)
was used to measure the activities of daily living (ADL) (39).

Balancing Test
This study also used a Balancing Instrument (Pro-Kin254P,
TecnoBody Company, Italy) to assess balance function, based on
the instantaneous data of postural sway using the force platform
frommovements of the center of pressure (COP) (16) (Figure 2).
The COP is a weighted average of all the pressures over the
surface area in contact with the ground. This is a valid and
reliable device that measures static and dynamic balance function
(40, 41). The force platform consists of multiple strain gauges
placed under a circular surface of 50 cm of diameter at 120◦

to each other and has a 20Hz sampling frequency (42). When
subjects were standing on the platform, the COP sway was
documented. The COP measures demonstrate where a subject’s
pressure is located in both the x- and y-axes. An increase in
COP in either the F/B or M/L direction is indicative of postural

FIGURE 2 | Static Balance Assessed by the Pro-Kin System.

disturbance. Subjects were required to stand statically on the
force platform, and maintain visual focus on an “X mark” placed
on an eye-level screen from their face. The position of the feet
on the platform was standardized using a V-shaped frame. Each
subject performed two standing tests lasting 30 seconds each:
One test with eyes open (EO) and one with eyes closed (EC).
There were six outcome variables: trajectory lengths (measured in
mm), elliptical trajectory (measured in mm2), standard deviation
medial/lateral (M/L SD measured in mm), standard deviation
forward/backward (F/B SD measured in mm), average speed
medial/lateral (M/L AS measured in m/s), and average speed
forward/backward (F/B AS measured in m/s). Smaller values of
the six parameters indicated the subject had a better balance
function (43).

Sample Size
The sample size calculation was conducted using G∗Power 3.1.7
(http://www.gpower.hhu.de/). The effect size was estimated using
our pilot data regarding decreases in DF stiffness after training
(experimental group vs control group: 0.61 ± 0.21 vs. 0.31 ±

0.27) would be able to reveal a large effect size of Cohen’s d =

1.24, at a power of 0.8 and an α level of 0.05 assuming a non-
directional hypothesis. Thus, in the current study, a large effect
size f = 0.4 was assumed in the Mann–Whitney U test model,
with an α value of 0.05, power of 0.8, and an attrition rate of
10%, the minimum required sample size was estimated to be 18
subjects for this study.

Randomization and Blinding
After recruited subjects presented written informed consent, they
were randomly assigned into the experimental group or control
group in 1:1 ratio by drawing lots. The lots were designated
as “experimental” or “control” by stratified randomization
with random numbers generated from statistical software and
presented in sealed opaque envelopes. Each subject received a
sealed envelope that indicated the group they were assigned to.
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FIGURE 3 | CONSORT patient flow throughout the study.

The researchers in charge of recruitment and randomization
procedures were different, and the designated therapist was
responsible for the assessment was kept blinded to the group
allocation throughout the trial.

Statistical Analysis
Baseline characteristics were compared between the two groups
by using Fisher’s exact test for categorical variables and the
Mann-Whitney U test for continuous and ordinal variables. The
continuous variables were tested using the Shapiro-Wilk test to
verify whether they met the normal distribution and using the
homogeneity of variance test. Change with each intervention
and during an observation period of two weeks were examined
between the groups with a Mann-Whitney U test. Bonferroni
corrections were applied to account for multiple comparisons
(α = 0.0025) to reduce the probability of Type-I error. The
Wilcoxon Signed Rank test was used to compare pre-and post-
intervention measurements in each group. Furthermore, to more
deeply understand the effects of ankle stiffness on balance
function, the Spearman correlation analysis was performed for
testing the association between stiffness and the Pro-Kin test, and
the Kendall rank correlation coefficient (τ ) for the correlation
between MAS and ankle stiffness (effects were considered
significant if P < 0.05). Under a small sample size, T-distribution
was used to compute a 95% confidence interval (95% CI). All
statistical analyses were performed with SPSS version 21.0. (IBM
Corporation, Armonk, NY, USA).

RESULTS

The Flow of the Trial and Baseline
Characteristics of Subjects
From May 2019 to November 2019, all inpatients in the
rehabilitation department were screened. Of these, 43 stroke
patients with ankle spasticity were eligible for evaluation. Among
these subjects, 20 subjects did not meet the inclusion criteria, and
3 subjects declined to participate in this study (see Figure 3 for
more details). A total of 20 subjects were recruited to the study,
including 10 subjects randomized to the experimental group, and
10 subjects randomized to the control group. All enrolled subjects
completed the 2-week training, and there were no dropouts or
adverse events. There were no significant differences in subjects’
characteristics between the two groups (Table 1).

Biomechanical Evaluations: DF PROM, DF
Muscle Strength and Joint Stiffness
Before training, there were no significant differences in DF
PROM, DF muscle strength, or DF and PF stiffness between the
two groups. The DF muscle strength increased significantly after
the 2-week training period in the control group and experimental
group (P = 0.005, and 0.005, respectively). Besides, significant
decreases in DF stiffness and improvements in DF PROM were
found for subjects in the experimental group (P = 0.008, and
0.041, respectively), but not in the control group (P = 0.139, and
0.157, respectively). No significant differences in biomechanical
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TABLE 1 | Baseline Characteristics of the Subjectsa.

Parameters Experimental group Control group P

(n = 10) (n = 10)

Age (year) 61.90 ± 9.62 60.00 ± 6.62 0.288c

Duration post-stroke (day) 54.20 ± 33.85 58.10 ± 50.20 0.650c

Sex (M/F) 9/1 9/1 1.00b

Cerebral infarction/cerebral hemorrhage (case) 10/0 10/0 1.00b

Side of lesion (right/left, case) 7/3 7/3 1.00b

Height (m) 1.68 ± 0.05 1.69 ± 0.04 0.568c

Weight (kg) 74.70 ± 9.71 70.40 ± 5.40 0.120c

BMI (kg/m2) 26.33 ± 3.65 24.45 ± 1.72 0.082c

BMI, Body Mass Index; M, male; F, female. aValues are mean ± standard deviation, or number. bFisher’s exact test. cMann–Whitney U tests between groups for baseline values. There

were no significant differences between groups at baseline for clinical characteristics.

TABLE 2 | Biomechanical Properties at pre- and post-training between two groups.

Experimental group Control group Between-Group

Difference in Change

Variable Pre Posta Change Pre Posta Change Pb

Mean ± SD Mean ± SD Mean (LB; UB) 95%CI Mean ± SD Mean ± SD Mean (LB; UB) 95%CI

DF PROM (◦) 15.50 ± 2.17 16.70 ± 1.42* 1.20 (−0.14;2.54) 17.00 ± 1.15 17.20 ± 1.23 0.20 (−0.10;0.50) 0.108

DF Strength (N) 102.50 ± 44.54 132.82 ± 43.44** 30.32 (10.73;49.91) 101.4 ± 59.71 123.80 ± 58.55** 22.46 (6.55;38.37) 0.596

DF Stiffness (Nm/deg) 1.62 ± 0.24 1.19 ± 0.24** −0.43 (−0.61;−0.24) 1.32 ± 0.41 1.10 ± 0.42 −0.22 (−0.53;0.08) 0.472

PF Stiffness (Nm/deg) 0.21 ± 0.04 0.19 ± 0.03 −0.02 (−0.05;0.02) 0.21 ± 0.07 0.24 ± 0.09 0.03 (−0.05;0.10) 0.622

SD, standard deviation; CI, confidence interval. DF or PF stiffness is stiffness measured in dorsiflexion or plantarflexion passive movement. aComparison between pre- and post-training

values in each group with Wilcoxon signed rank test: *P < 0.05, **P < 0.01. bP values indicate significance level of between-group differences in change with Mann-Whitney U test:

according to the Bonferroni correction, ***P < 0.0025.

FIGURE 4 | Biomechanical and Clinical evaluations between groups. DF PROM (A), DF Stiffness (B), Ankle MAS (C). White and brown bars indicate pre-, and

post-assessment. Error bars indicate standard error of the corresponding average (*p < 0.05 and **P < 0.01). DF, dorsiflexion; PROM, positive range of motion; MAS,

Modified Ashworth Scale.

evaluations were found between the two groups after training (P
> 0.0025) (Table 2) (Figure 4).

Clinical Evaluations
There were no significant differences in MAS, FMA-LE, BBS,
or MBI before training between the two groups. The FMA-
LE, BBS, and MBI increased significantly after the 2-week

training period in the control group (P = 0.005, 0.007, and
0.041, respectively). We also found significant improvement
in FMA-LE, BBS, and MBI in the experimental group (P
= 0.007, 0.012, and 0.007, respectively). Besides, significant
decreases were found in MAS for subjects in the experimental
group (P = 0.046) but not in the control group (P = 0.317).
No significant differences in clinical evaluations were found
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TABLE 3 | Clinical evaluations at pre- and post-training between two groups.

Experimental group Control group Between-Group

Difference in Change

Variable Pre Posta Change Pre Posta Change Pb

Mean ± SD Mean ± SD Mean (LB; UB) 95%CI Mean ± SD Mean ± SD Mean (LB; UB) 95%CI

MAS 1.30 ± 0.48 0.90 ± 0.57* −0.4 (−0.77;−0.03) 1.10 ± 0.32 1.00 ± 0.47 −0.10 (−0.33;0.13) 0.131

FM-LE 26.50 ± 5.36 29.30 ± 4.42** 2.8 (1.50;4.10) 24.80 ± 7.25 27.60 ± 6.31** 2.80 (1.02;4.58) 0.587

BBS 41.40 ± 13.74 45.00 ± 13.87* 3.60 (0.28;6.93) 43.40 ± 10.23 46.70 ± 9.93** 3.30 (1.33;5.27) 0.644

MBI 59.50 ± 15.89 75.00 ± 14.14** 15.50 (8.06;22.93) 75.50 ± 19.21 80.00 ± 17.95* 4.50 (0.56;8.44) 0.015

SD, standard deviation; CI, confidence interval; MAS, Modified Ashworth Scale; FMA-LE, Fugl-Meyer Motor Assessment of Lower Extremity; BBS, Berg Balance Scale; PASS, Postural

Assessment Scale for Stroke Patients; 6 MWT, 6-minute walk test; MBI, Modified Barthel. aComparison between pre- and post-training values in each group with Wilcoxon signed

rank test: *P < 0.05, **P < 0.01. bP values indicate significance level of between-group differences in change with Mann-Whitney U test: according to the Bonferroni correction, ***P

< 0.0025.

between the two groups after training (P > 0.0025) (Table 3)
(Figure 4).

Balancing Test Results
There was no significant difference between the two groups
in the Pro-Kin balance test before training. The ellipse area,
trajectory length, M/L SD, and F/B AS with closed eyes and F/B
SD with opened eyes decreased significantly after the 2-week
training period in the experimental group (P = 0.005, 0.013,
0.012, 0.005, and 0.041, respectively). The trajectory length and
M/L AS with opened eyes decreased significantly after the 2-
week training period in the control group (P = 0.022, and 0.042,
respectively). No significant difference in the Pro-Kin balance test
results was found between the two groups after training (P >

0.0025) (Table 4).

Correlations Between the Stiffness of the
Ankle and the Balance Function
Regarding the two groups as a whole, we further explore the
correlations between ankle stiffness and balance. The DF stiffness
was significantly correlated with the results of the Pro-kin balance
test with opened eyes, including the trajectory length, M/L SD,
F/B AS, M/L AS (γ = 0.464, P = 0.003; γ = 0.313, P = 0.049; γ
= 0.386, P=0.014; γ = 0.466, P = 0.002, respectively). The DF
stiffness was also significantly correlated with MAS (τ = 0.265, P
= 0.041) (Table 5) (Figure 5).

DISCUSSION

The RCT showed significant within-group improvements in
DF muscle strength, motor function of lower limbs, balance
function, and activities of daily living after a 10-session
training in two groups. However, the experimental group
showed additional improvements in the DF stiffness, DF
PROM, and MAS. Between-group comparisons represented
no differences in all outcome measures. We believe the
intelligent stretching robot could be an effective and safe
alternative to manual stretching for therapists. Also, the
intelligent stretching robot has the potential to use in
stretching the ankle with spasticity and/or contracture

regularly without the daily involvement of clinicians
or physiotherapists.

Several studies have already been shown that continuous
passive stretching can effectively reduce ankle stiffness (18,
20, 44). Another study further demonstrated that the repeated
passive stretching can decrease spasticity through a combination
of reflexive and mechanical factors for stroke survivors (45).
Previous studies have shown that the change in mechanical
properties of tendons depends on the stretching protocol (46).
Stretching exercise under intelligent control has been effectively
used to decrease ankle contracture and/or spasticity in stroke
survivors (18, 20, 47). The intelligent stretching device was
driven by a servomotor controlled by a digital signal processor
(20). Briefly, the stretching velocity was inversely proportional
to the joint resistance torque. The torque limits of plantar
and dorsiflexion were preset before the stretching exercises.
Once reaching the predefined resistance torque peak, the joint
will be held at the extreme position for stress relaxation in a
preset period (18, 32). This method may overcome potential
viscoelastic responses and alter the muscle-tendon properties
(48). Since the outcome of manual stretching might depend
on the ability of the therapist to measure the limits of the
ROM or “end feel” (19), which could not provide lasting
and effective stretching. In addition, high-intensity stretching
can induce a physiological response within the muscle-tendon
unit and enhance neuroplasticity (49–52). Thus, the intelligent
stretching robot can offer ideal exercise intensity, frequency,
and duration (53, 54), while it is not feasible for the limited
availability of physical therapists to deliver laborious manual
therapy. This study demonstrated that improvements after the
intelligent stretching of the spastic ankles post-stroke were
consistent with previous research, including increased ROM and
muscle strength, decreased ankle stiffness and spasticity (19,
55).

In this study, the Pro-Kin was used to quantitatively evaluate
the static balance of subjects, excluding the influences of the hip
and stride strategy, and further explore the role of ankle strategy
in posture control independently (56). The experimental group
had significant improvements in balance tests with eyes open and
closed, while the control group only improved with eyes open,
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TABLE 4 | Pro-Kin balance test results at pre- and post-training between two groups.

Experimental group Control group Between-Group

Difference in Change

Variable Pre Posta Change Pre Posta Change Pb

Mean ± SD Mean ± SD Mean (LB; UB) 95%CI Mean ± SD Mean ± SD Mean (LB; UB) 95%CI

Eyes Closed

Ellipse Area mm2 1, 396.10 ± 1, 085.48 847.70 ± 486.15** −548.40(−1024.58;−72.22) 2, 431.50 ± 2, 569.09 1, 371.00 ± 1, 236.41 −1, 059.50(−2, 748.31;629.31) 1.000

Trajectory Length mm 962.40 ± 344.94 820.80 ± 280.43* −141.60(−254.13;−29.07) 1, 141.30 ± 6, 13.22 918.00 ± 522.08 −223.30(−705.04;258.44) 0.821

F/B SD 7.40 ± 1.90 6.80 ± 2.53 −0.60(−2.19; 0.99) 10.20 ± 4.76 7.60 ± 2.72 −2.60(−5.87; 0.67) 0.340

L/M SD 10.10 ± 5.34 6.10 ± 2.77* −4.00(−7.05;−0.95) 10.50 ± 6.00 9.10 ± 4.79 −1.40(−6.04; 3.24) 0.068

F/B AS mm/sec 22.30 ± 8.37 18.60 ± 7.11** −3.70(−5.49;−1.91) 23.50 ± 14.87 19.30 ± 14.12 −4.20(−13.77; 5.37) 0.381

L/M AS mm/sec 18.90 ± 7.94 17.50 ± 7.86 −1.40(−6.21; 3.41) 19.50 ± 13.30 15.40 ± 11.11 −4.10(−15.70; 7.50) 0.909

Eyes Open

Ellipse Area mm2 755.50 ± 659.29 518.90 ± 224.25 −236.60(−654.05;180.85) 713.20 ± 450.40 533.40 ± 201.92 −179.80(−478.82;119.22) 0.734

Trajectory Length mm 585.30 ± 188.54 458.70 ± 122.65 −126.60(−277.81;24.61) 539.30 ± 182.93 459.40 ± 126.06* −79.90(−169.86;10.06) 0.705

F/B SD 5.80 ± 2.15 4.50 ± 0.85* −1.30(−2.47;−0.13) 5.80 ± 1.75 5.10 ± 0.88 −0.70(−1.92; 0.52) 0.301

L/M SD 7.10 ± 4.38 6.10 ± 1.73 −1.00(−3.92; 1.92) 6.10 ± 2.08 5.90 ± 2.13 −0.20(−1.78; 1.38) 0.817

F/B AS mm/sec 13.60 ± 5.46 10.80 ± 2.62 −2.8(−7.59; 1.99) 11.30 ± 5.06 10.20 ± 3.97 −1.10(−3.25; 1.05) 0.939

L/M AS mm/sec 11.00 ± 2.91 9.10 ± 4.31 −1.90(−5.07; 1.27) 11.10 ± 4.12 9.00 ± 2.00* −2.10(−4.40; 0.20) 0.539

SD, standard deviation; CI, confidence interval; AS, Average speed; F/B, Forward/Backward; M/L, Medial/Lateral direction. aComparison between pre- and post-training values in each group with Wilcoxon signed rank test: *P < 0.05,

**P < 0.01. bP values indicate significance level of between-group differences in change with Mann-Whitney U test: according to the Bonferroni correction, ***P < 0.0025.
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which suggested that two kinds of stretching models might take
different mechanisms to improve balance function.

Balance disorders of stroke survivors have various causes, such
as muscle weakness, limited range of motion, spasticity, sensory
changes, loss of coordination, and impaired central integration.

TABLE 5 | Correlations Between stiffness and Pro-Kin balance test results when

open eyes.

DF stiffness P PF stiffness P

MAS 0.265 0.041* −0.133 0.317

Ellipse Area 0.262 0.102 −0.285 0.074

Trajectory Length 0.464 0.464 −0.308 0.053

F/B SD 0.155 0.339 −0.228 0.157

M/L SD 0.313 0.049* −0.277 0.084

F/B AS 0.386 0.014* −0.206 0.202

M/L AS 0.466 0.002** −0.264 0.100

Spearman’s coefficient (γ) was used to estimate the correlation between stiffness (K) and

the Pro-Kin system results, and the Kendall rank correlation coefficient (τ ) was used to

estimate the correlation between stiffness (K) and MAS. Values are γ or τ . *P < 0.05, **P

< 0.01.

In particular, stiff plantar flexors and weak dorsiflexors on the
affected side increasing the risk to cause the muscular imbalance
of the ankle (57). In our study, M/L SD in the experimental group
and M/L AS in the control group decreased significantly. We
assumed that two kinds of stretching exercises could change the
ankle properties, and can improve balance in the M/L direction,
for improving the symmetry of weight-loading on the lower
limbs by increasing the contribution of the paretic limb in stroke
survivors. The intelligent stretching could forcefully, safely, and
repeatedly stretch the ankle to its extreme positions in the sagittal
plane resulting in structural changes in the viscoelastic properties
of the muscles and connective tissues. This method can further
reduce ankle stiffness and increasing ROM and improving the
stability of the ankle joint (19–21), therefore the movement of
COP decreased significantly in sagittal planes with eyes closed
and opened in our experimental group. Adequate balance relies
on an accurate perception of physical input from the visual,
proprioceptive, and vestibular systems (58). Stroke survivors
exhibited obvious decreased postural stability, especially without
visual feedback. Proprioception around the ankle joint resulting
from sensory inputs (e.g., from cutaneous receptors, muscle-
spindle receptors, and Golgi tendon organ located in muscles,

FIGURE 5 | The Spearman correlation analysis between DF stiffness and outcomes of the Pro-Kin test with eyes open. Trajectory length (A), M/L SD (B), F/B AS (C),

M/L AS (D), Circle and Square indicate control, and experimental group. EO, Eye Open; F/B, Forward/Backward; M/L, Medial/Lateral; AS, Average Speed; SD,

Standard Deviation.
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tendons, and ligaments) is damaged post-stroke, which impairs
the ankle strategy (59). In this study, the M/L SD and F/B
AS decreased significantly in the experimental group with eyes
closed. We hypothesized the robot-aided cyclic stretching could
enhance proprioception of ankle joints effectively, and the
balance of patients with eyes closed is also improved even in
the visual feedback removal (60). While the control group did
not have significant improvements in balance function with
eyes closed. Compared with manual stretching exercises, the
intelligent stretching device can provide feedback for patients.
The strength of stretching force and range of motion of the
ankle were displayed in the interface accompanied by a real-
time ankle animation. This visual feedback might provoke the
recovery of the damaged central nervous system (CNS) (61).
Besides, this system contains different user-friendly modes,
such as the evaluation of biomechanical properties, and the
trainingmode. Those user-friendly featuresmight attract patients
to participate in the training and accelerate the recovery of
balance function.

An ankle strategy is typically used on a solid base supporting
a small amount of body sway (56, 62). This study further
explored the correlation between ankle stiffness and the Pro-Kin
balance test results with opened eyes. The findings showed that
the stiffness of dorsiflexion was positively related to trajectory
length, M/L SD, F/B AS, and M/L AS when opened eyes.
However, those tests showed no significant correlation between
PF stiffness and the Pro-Kin balance test results due to the
mechanism was unclear. We suppose the possible mechanisms
of how the ankle stiffness affected balance function are
as follows.

The central controller uses sensory information to generate
descending commands that produce corrective muscle forces to
stabilize the body (63). The central nervous system (CNS) injuries
post-stroke leads tomuscle weakness and spasticity of the affected
limb(s) post-stroke, often accompanied with drop and varus
foot (64, 65), and lack of mobilization and prolonged spasticity
may be accompanied by structural changes of muscle fibers and
connective tissue, whichmay result in reductions in ROMand the
contact area between the sole and the ground (66). Several studies
have demonstrated that higher resistance torque, increased joint
stiffness, and decreased ankle ROM characterized by stroke
survivors improved after completing passive stretching exercises
(18–20, 22, 67, 68). One previous study reported that the weaker
inter-limb coordination in the sagittal plane (DF-PF) after stroke
would cause imbalance (66). The intelligent stretching decrease
ankle stiffness in the sagittal plane (DF-PF), which improved
inter-limb coordination post-stroke in the F/B direction. Stroke
survivors usually load more over their non-paretic limb than
the paretic one when standing (69), as the re-establishment of
ankle strategies, balance inM/L direction was also improved (67).
After stretching, loosening of stiff muscle fascicles tendon and/or
aponeuroses might facilitate force generation among fascicles
and increase their overall force output, which increases the
passive stability of the ankle joint by limiting ankle movement
in both the frontal and sagittal planes (18, 67). Alterations in
muscle-tendon unit stiffness and length induced by continuous

stretching could improve the fidelity of ankle proprioception
(50, 60), which might improve balance. In conclusion, we
assumed that the decreased DF stiffness might improve balance
by activating the muscles and increasing proprioception and
ROM of the ankle joints. Further studies are necessary to verify
this hypothesis. Overall, in this study, a significant correlation (τ
= 0.265, P= 0.041) was observed betweenMAS and DF stiffness,
which is consistent with the previous studies (19). This measure
of stiffness can be used to obtain a more quantitative evaluation
of ankle properties in the future.

LIMITATIONS

This study had limitations in methodological. First, given
the number of samples available, between-group comparisons
represented no differences in the biomechanical properties or
balance function. Future studies with more subjects involved
might show further group differences and increase the power
of the study. Second, this study lacks a quantitative assessment
of proprioception of the ankle joint, which is important in
exploring the mechanisms of balance control recovery after
stretching exercises. Third, the long-term effects of stretching
training were unknown due to the absence of a follow-up period.
Besides, our study only investigated the correlations between
ankle stiffness and static balance in stroke survivors. The effects of
ankle properties on dynamic balance need further investigation.
Furthermore, muscle activations around the ankle joint will be
collected using EMG for analysis as a function of ankle ROM,
balance control, etc. Another limitation is the lack of a third
group treated without stretching exercises. We plan to add one
group of patients without stretching exercises to eliminate the
improvement of ankle joint properties and balance function
due to the natural history of stroke and better evaluate the
effectiveness of the stretching therapy in the future. Future
studies will further address these issues.

CONCLUSIONS

The robot-aided and manual ankle stretching training provided
similar significant improvements in the ankle properties,
balance, motor function, and ADL post-stroke. The robot-
aided stretching devices provided labor-saved, high-intensity,
and well-controlled passive stretching to stroke survivors with
ankle impairments, which showed additional improvements
across more parameters including the spasticity and stiffness
of the ankle. Findings in this study suggested that robot-
aided rehabilitation may be a beneficial addition to current
rehabilitation programs. As an important part of posture control,
the ankle joint properties were important in keeping the upright
stance. In particular, ankle stiffness was correlated with balance
function post-stroke. As a biomechanical property of the ankle
joint, dorsiflexion stiffness may be a sensitive indicator for
evaluating the balance ability post-stroke and predicting the risk
of falls in the future.
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