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Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD)

lie at opposing ends of a clinical, genetic, and neuropathological continuum. In

the last decade, it has become clear that cognitive and behavioral changes in

patients with ALS are more frequent than previously recognized. Significantly, these

non-motor features can impact the diagnosis, prognosis, and management of ALS.

Partially overlapping neuropathological staging systems have been proposed to

describe the distribution of TAR DNA-binding protein 43 (TDP-43) aggregates outside

the corticospinal tract. However, the relationship between TDP-43 inclusions and

neurodegeneration is not absolute and other pathophysiological processes, such

as neuroinflammation (with a prominent role of microglia), cortical hyperexcitability,

and synaptic dysfunction also play a central role in ALS pathophysiology. In

the last decade, imaging and biofluid biomarker studies have revealed important

insights into the pathophysiological underpinnings of extra-motor neurodegeneration

in the ALS-FTLD continuum. In this review, we first summarize the clinical and

pathophysiological correlates of extra-motor neurodegeneration in ALS. Next, we

discuss the diagnostic and prognostic value of biomarkers in ALS and their

potential to characterize extra-motor neurodegeneration. Finally, we debate about

how biomarkers could improve the diagnosis and classification of ALS. Emerging

imaging biomarkers of extra-motor neurodegeneration that enable the monitoring of

disease progression are particularly promising. In addition, a growing arsenal of biofluid

biomarkers linked to neurodegeneration and neuroinflammation are improving the

diagnostic accuracy and identification of patients with a faster progression rate. The

development and validation of biomarkers that detect the pathological aggregates

of TDP-43 in vivo are notably expected to further elucidate the pathophysiological

underpinnings of extra-motor neurodegeneration in ALS. Novel biomarkers tracking the

different aspects of ALS pathophysiology are paving the way to precision medicine
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approaches in the ALS-FTLD continuum. These are essential steps to improve

the diagnosis and staging of ALS and the design of clinical trials testing novel

disease-modifying treatments.

Keywords: amyotrophic lateral sclerosis (ALS), neuroimage, cerebrospinal fluid (CSF), biomarker (BM),

neuropathology, TDP-43 = TAR DNA-binding protein 43, frontotemporal lobar degeneration, frontotemporal

dementia (FTD)

INTRODUCTION: USING BIOMARKERS TO
REVEAL THE EXTRA-MOTOR
UNDERPINNINGS OF AMYOTROPHIC
LATERAL SCLEROSIS

Amyotrophic lateral sclerosis (ALS) is a progressive paralytic
disorder defined by the neurodegeneration of motor neurons,
while frontotemporal dementia (FTD) is the most common
presentation of frontotemporal lobar degeneration (FTLD)
and is characterized by progressive neurodegeneration of
frontotemporal structures (1, 2). The diagnosis of ALS is
based on the identification of motor signs and symptoms,
while the diagnosis of FTD is based on cognitive, language,
and behavioral features (3–5). However, recent evidence
indicates that ALS can show varying degrees of cognitive and
behavioral changes at diagnosis (6–9). In ALS, the presence
of non-motor symptoms has been linked to frontotemporal
neurodegeneration (10, 11), and current diagnostic criteria
acknowledge the existence of a continuum of cognitive and
behavioral changes between ALS without cognitive impairment
(ALSno-cbi) and full-blown FTD (12). However, the exact
mechanisms driving extra-motor neurodegeneration in ALS
remain largely unknown. Filling this gap in our knowledge is
essential to improve the diagnosis and management of patients
with ALS and may also impact end-of-life legal decisions (13,
14).

From a clinical perspective, ALS and FTLD are the
two heterogeneous diseases characterized by multiple clinical
presentations and highly variable rates of functional decline
(15, 16). The observed phenotypic and prognostic heterogeneity
hampers the diagnosis and the prediction of disease progression
at the single-subject level and the design of disease-modifying
treatments (15). These problems underscore the importance
of developing precise, objective, and reproducible biomarkers
to improve the diagnosis, prognosis, and disease monitoring
(17–19). A biomarker can be defined as objective, quantifiable
characteristics of a biological process (either physiological or
pathological) that can be objectively measured in vivo (20).
Biomarkers have proven to be powerful tools to increase
diagnostic certainty and predict disease progression in other
neurodegenerative diseases (21). Biomarkers also have the
potential to reveal the critical aspects of ALS pathophysiology
and advance the field toward the implementation of precision
medicine approaches (22).

Despite the cumulative evidence suggesting that ALS and
FTLD lie on a clinical, pathological, and genetic continuum,
the pathophysiological underpinnings of this continuum remain

largely unexplored (10). This review aims to (i) summarize
the clinical and pathophysiological correlates of extra-motor
neurodegeneration in ALS; (ii) review the diagnostic and
prognostic value of biomarkers and their potential to characterize
extra-motor neurodegeneration in ALS; and (iii) discuss how
biomarkers could improve the diagnosis and classification
of ALS.

EXTRA-MOTOR INVOLVEMENT IN ALS

Clinical Evidence for Extra-Motor
Involvement in ALS
Although the first observation of the clinical overlap between
ALS and FTD dates from the beginning of the twentieth century
(1, 7–9, 23–26), the study of this clinical continuum has been
boosted in the last decade using the emerging neuropathological,
molecular, and genetic evidence connecting the two processes
(10, 27–29).

Neuropsychological Evidence
The development of specific tools to assess the cognitive status
of ALS patients with variable degrees of motor impairment has
led to a major breakthrough for the study of the ALS-FTD
continuum (26, 30, 31). When studied with specifically designed
instruments, such as the Edinburgh ALS cognitive and behavioral
screen (ECAS), the ALS cognitive behavioral screen, or the
Arrows and Colors Cognitive Test, up to 20% of patients with
ALS can also be diagnosed with FTD, and up to 50% of
patients with ALS have a cognitive or behavioral impairment
(ALScbi) (6, 10, 32–36). The frequency and characteristics
of cognitive and behavioral impairment resemble those noted
in FTD, and recent neuropathological studies have reported
frontotemporal involvement consistent with the diagnosis of
FTLD in more than 30% of patients with ALS (37). Among
the most common cognitive symptoms developed in patients
with ALS-FTD are executive dysfunction, language impairment,
and social cognition, all of which are linked to the frontal
and temporal lobes (6, 33). Some neuropsychological tools (i.e.,
Sydney Language Battery, Test for Reception of Grammar) have
proven to be useful for characterizing the language performance
in patients within the ALS-FTD clinical continuum. The presence
of language impairment is almost universal in patients meeting
the criteria for ALS-FTD. On the other hand, patients with
ALS who do not meet the criteria for ALS-ci or ALS-FTD may
show only subtle language deficits (38–46). From a behavioral
perspective, frontal behaviors like apathy, stereotypic behavior,
and disinhibition are the most common behavioral features in
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patients with ALS (12, 47). However, behavioral changes in
patients with ALS include subtle changes in social cognition.
These changes can be adequately measured with specific tests
such as the Reading the mind in the eyes test or the faux-pas
test (41, 48). On the other hand, up to 15% of patients initially
diagnosed with FTDmay also developmotor neuron signs during
follow-up (10, 49). It should be noted that the frequency of motor
neuron signs in patients with FTD is probably underestimated
because these signs are not always systematically investigated
during follow-up in FTD cohorts.

Neuropsychological testing has proven to be helpful
for the clinical characterization of patients with ALS, but
neuropsychological evaluations are time-consuming and may
not be well-tolerated by some patients. These limitations
reinforce the need for the biomarkers that help us to trace the
development of extra-motor manifestations (30, 35).

Clinical Evidence
As we will discuss in Section 2.3, the neuropathological correlates
of cognitive and behavioral changes in ALS are still a matter
of debate (6, 12, 33, 47, 49). Several studies have consistently
noted that patients with ALS and having a bulbar onset of
symptoms have an increased risk of cognitive and behavioral
impairment (6, 32, 50). Distal upper-limb weakness, sometimes
with no upper motor neuron signs, is also frequently observed
in patients meeting the criteria for ALS-FTD (51). Other
reports link the development of bulbar symptoms during the
disease course with cognitive and behavioral symptoms (52,
53). Interestingly, other studies have also reported a higher
presence of abnormal oculomotor findings, extrapyramidal signs,
and autonomic dysfunction in patients with ALS and having
prominent bulbar symptoms at disease onset (54).

Genetic Determinants of Extra-Motor
Involvement
Major Genetic Findings Associated With Extra-Motor

Impairment in ALS
Considerable progress has been made in unraveling the genetics
of ALS and FTLD, and it is now clear that the genetics of
these two neurodegenerative conditions overlap significantly
(55). Table 1 summarizes the main characteristics of genes
associated with both ALS and FTD etiology. These genes shed
some light on several pathophysiological processes, which are
relevant for extra-motor involvement in ALS. For instance, the
genes involved in the lysosomal function and autophagy process
may have a prominent role in both sides of the spectrum and
other neurodegenerative diseases (56).

The C9orf72 hexanucleotide GGGGCC repeat intronic
expansion is the most common genetic cause of both ALS and
FTLD. Some noteworthy studies reported that patients with ALS
and carrying C9orf72 have a 4–5-fold higher risk of presenting
with cognitive or behavioral changes than non-carriers (57).
Physiologic C9orf72 protein is normally localized in the nuclei,
and it regulates membrane trafficking. On the other hand, the
hexanucleotide repeat expansion is cytotoxic. While the precise
molecular mechanisms underlying cytotoxicity are not fully
understood, several mechanisms have been proposed, including

a loss of function through haploinsufficiency, RNA toxic gain-
of-function through the sequestration and accumulation of
toxic dipeptide repeat proteins (DRP) (10, 58–63). As noted in
Table 1, other genes causing both ALS and FTLD are related to
protein trafficking, cytoskeletal dynamics, protein degradation,
and mitophagy (12, 64). Similarly, genes such as TANK-binding
kinase-1 (TBK1) (65–69), Sequestosome-1 or p62 (SQTSM1) (70),
Optineurine protein (OPTN), and Valosin-containing protein
(VCP) that are associated with FTD, inclusion body myositis,
motor neuron disease, and Paget’s disease encode proteins related
to protein degradation (71, 72). In addition, recent studies
have suggested that the apolipoprotein E (APOE) gene may
play an important role in the development of cognitive and
behavioral impairment in ALS. The ε4 allele of the APOE gene
is a major genetic factor in Alzheimer’s disease and has also
been shown to increase the risk of TAR DNA-binding protein
43 (TDP-43) proteinopathy and hippocampal sclerosis in a large
community-based cohort. These results are in line with previous
evidence suggesting that the ε4 allele of the APOE gene may also
increase the risk of FTLD. Interestingly, recent evidence from
well-characterized cohorts of ALS showed that the ε2 allele of
the APOE gene (together with the presence of C9orf72 repeat
expansion) significantly increases the risk of FTD in participants
with ALS (73–76). Recent studies on the evaluation of the
impact of Hungtingtin (HTT) pathologic expansions in the ALS-
FTD spectrum suggest an ethiopathological link (77). Similarly,
rare variants in the GBA gene encoding glucocerebrosidase
(previously described as a potential risk factor of cognitive
impairment in Parkinson’s disease) are also overrepresented in
patients with FTD-ALS and ALScbi compared to patients with
ALS and having no cognitive impairment (78).

A recent transcriptome-based study of postmortem frontal
cortex tissue from patients with ALS reported a coordinated
upregulation of transcripts from a sub-population of microglia
(termed disease-associated microglia) and overexpressed
neuroinflammatory molecules, such as YKL 40 (also known
as CHI3L1) and CHI3L2. Thus, microglial and inflammatory
pathways are involved in the pathogenesis of extra-motor
impairment in ALS (79).

In summary, genes associated with both ALS and FTD point
toward the involvement of pathophysiological processes outside
the motor regions that are relevant for extra-motor involvement
in patients with ALS.

Genetic Findings Associated With Extra-Motor

Sparing in ALS
It should be noted that the overlap in genes associated with ALS
and FTLD is not complete. For example, superoxide dismutase
1 (SOD1), FUS, and TARDBP variants are most commonly
associated with ALS and only rarely cause FTLD. Similarly, GRN
is linked to the TDP-43 subtype of FTLD but not ALS (80).
Interestingly, the reduced expression of GRN has been recently
identified as a possible contributing factor in the development
of different neurodegenerative diseases including ALS (81).
In addition, experiments performed in animal models have
identified the reduced expression of GRN as a sufficient factor
to induce TDP-43 deposition (82). The gene encoding SOD1 is
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TABLE 1 | Genes in close association with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) etiologies.

Gene Location Pathway MI

C9orf72 9p21.2 Nucleocytoplasmic transport/splicing AD

TBK1 12q14.1 Autophagy/inflammation AD

TARDBP 1p36.2 Nucleocytoplasmic transport/splicing AD

SQSTM1 5q35.3 Autophagy AD/Risk

VCP 9p13.3 Autophagy/mitochondrial function AD

FUS 16p11.2 Nucleocytoplasmic transport/splicing AD/AR

UBQLN2 Xp11 Autophagy/proteasome XL

CHCHD10 22q11.2 Mitochondrial dysfunction/synaptic integrity AD

MI, mode of inheritance; AAO, age at onset; DM, disease modifier; AD, autosomal dominant; AR, autosomal recessive; XL, X-linked.

rarely related to extra-motor impairment in ALS albeit that some
mutations have been recently associated with an early cognitive
impairment (83). SOD1 is essential for antioxidant defense in the
cytosol and mitochondria (84). Non native formations of SOD1
have been detected in small granular SOD1-immunoreactive
inclusions in the motor neurons of sporadic ALS patients
without pathogenic SOD1 variants and in patients carrying other
ALS-associated genes (85, 86). These findings suggest that the
misfolding of SOD1 can be part of a joint downstream event in
motor neuron neurodegeneration.

Finally, neuropathological findings in sporadic patients with
ALS and having FUS aggregates resemble those of patients with
FTLD and having FUS deposition (87). However, mutations
in the FUS gene are related to ALS and rarely cause FTLD
(88). To date, the reasons behind the relative sparing of extra-
motor regions in patients with ALS and having FUS mutations
remain unclear.

Interestingly, some genes that are strongly associated with
FTLD have scarcely been studied in the ALS-FTD spectrum,
where their role remains unclear. This is the case for MAPT
mutations, which cause the FTLD tau subtype, and GRN and
TREM2 mutations, which have been associated with the TDP-43
subtype and Alzheimer’s disease (89–91).

Neuropathological Underpinnings of
Extra-Motor Neurodegeneration
Neuropathological Changes in ALS
From a pathological perspective, TDP-43 aggregation is a
frequent pathological feature of FTLD and the most typical
neuropathological finding in patients with ALS (92–96). The
pathological hallmarks of TDP-43 proteinopathies include
mislocalization from the nucleus to the cytoplasm, deposition of
ubiquitinated and hyperphosphorylated TDP-43 into inclusion
bodies, protein truncation leading to the formation of toxic
C-terminal TDP-43 fragments, and protein aggregation (97).
ALS and FTLD with TDP-43 inclusions can be subdivided into
different subtypes based on the anatomical distribution and
morphology of abnormal TDP-43 aggregates. Type A is observed
in patients with GRN mutations and is characterized by round
“compact” intracytoplasmic TDP-43 inclusions, dystrophic short
neurites, and occasional lenticular intranuclear inclusions,
mainly in the upper cortical layers. Type B is the most frequent

subtype in patients with motor neuron diseases and shows many
granular TDP-43 inclusions with a few dystrophic neurites in all
the cortical layers. Type C shows long dystrophic neurites and a
few intracytoplasmic inclusions. Finally, type D histopathology
is associated with a mutation in VCP, which causes familial
inclusion body myositis, Paget’s disease of bone, FTD with or
without motor neuron disease involvement (98–100). Lee et al.
reported a new histopathologic subtype for TDP-43 aggregates
(type E) with specific TDP-43 aggregates, a uniform biochemical
profile, and a rapid clinical course (101).

Misfolded TDP-43 propagation is believed to follow a “prion-
like” mechanism, seeding of the native protein misfolding in
vitro and synaptic transmission to the next neuron (93, 94, 102–
105). This protein deposition is associated with neuronal and
synapse loss and affects the different brain regions in ALS and
FTD, at least initially. In patients with ALS, the phosphorylated
TDP-43 inclusions spread initially from motor neurons located
in the motor cortex, spinal cord, and brainstem motor nuclei
to other neocortical areas, cerebellum, and striatum (93). In
contrast, in FTLD with TDP-43 inclusions, this spread begins in
the amygdala and orbitofrontal cortex, spreading to the temporal
and frontal non-motor cortex first and motor cortex later, and
finally reaching the visual cortex (10, 93–95) (Figure 1). Most
studies have shown moderate TDP-43 inclusions before synapse
and neuronal loss in animal models (94); however, an intriguing
minority of neurons may lack detectable nuclear TDP-43 despite
the apparent absence of a cytoplasmic TDP-43 inclusion. These
cells show neuronal atrophy comparable to inclusion-bearing
neurons, suggesting that the loss of nuclear TDP-43 function
promotes neurodegeneration even when TDP-43 aggregation is
inconspicuous or absent (106).

Neuropathological Correlates of Cognitive and

Behavioral Changes in ALS
Pathological aggregates of TDP-43 in extra-motor cortical and
subcortical areas are believed to play an essential role in
cognitive impairment in ALS. The burden of pathological TDP-
43 pathology in extra-motor regions is higher in patients
with ALScbi and ALS-FTD than those with ALSno-cbi (39,
107, 108). Also, synapse loss has been identified using high-
resolution imaging of postmortem brain tissue samples in extra-
motor cortical areas, such as the prefrontal cortex of sporadic
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FIGURE 1 | Neuropathological staging schemes in: (A) FTLD-TDP (104) and (B) ALS-TDP (93). Adapted from Burrell et al. (10). FTLD-TDP, frontotemporal lobar

degeneration with TAR DNA-binding protein inclusions; ALS-TDP, amyotrophic lateral sclerosis with TAR DNA-binding protein inclusions. BF, basal forebrain; A,

Amygdala; H, Hippocampus; PC, precerebellar nuclei; C/P, Caudate nucleus and putamen; MD, Mediodorsal nucleus of the thalamus; T, Thalamus; LT, Lateral

thalamus; R, Red nucleus; SN, Substantia nigra; RF, Reticular formation; IOC, Inferior olivary complex; XII, Hypoglossal nucleus.

patients with ALS (109). Notably, the degree of synapse loss
correlated with the severity of the patients’ cognitive impairment
independent of cortical atrophy, supporting the idea that synapse
loss precedes neuronal loss (109, 110). Finally, Tau pathology
and hippocampal sclerosis may also play a secondary role in the
presence of cognitive impairment in patients with ALS (37, 111,
112).

Neuroinflammation
Neuroinflammation in ALS and FTD is primarily characterized
by the activation of innate immune sensing pathways inmicroglia
and astrocytes resident to the central nervous system but also
with the involvement of peripheral-derived inflammatory
cells, such as T-lymphocytes, mast cells, monocyte-derived
macrophages, and dendritic cells (113–116). As part of the
innate immune system, some components of the innate
complement system have been identified in postmortem studies
and their eventual role in disease progression (117, 118).
Also, microglial density and microglial activation measured
using immunostaining for glial fibrillary acidic protein
(GFAP) and CD6, show an increase in patients with ALS
and FTD and correlate well with synaptic, axonal, and
neuronal loss and faster motor and extra-motor disease
progression (119–121). There is also a higher presence of
reactive astrocytes, which are believed to have neurotoxic
properties and have been described involving the gray matter
of motor and non-motor cortex in patients with ALS and
also in affected cortical areas in FTD (122–124). In addition,
oligodendrocytes pathology mediated by phosphorylated

TDP-43 deposition in postmortem tissue is a common finding
in multiple cortical and subcortical areas of patients with
ALS, but its significance remains uncertain (125, 126). Taken
together, these findings highlight the importance of concurring
neuroinflammatory processes in the pathophysiology of both
ALS and FTD.

Other Neuropathological Hallmarks of ALS: C9orf72,

FUS-FET
As aforementioned (refer to Genetic determinants of extra-
motor features), patients carrying C9orf72 mutation have been
associated with more cognitive impairment and more extensive
TDP-43 deposition following predominantly a Type B or a
Type A + B pattern (93, 127). A p62 and ubiquitin negative
intracytoplasmic and intranuclear inclusions corresponding to
dipeptide repeat are found in extra-motor areas, such as the
frontal cortex, hippocampus, and cerebellum (12, 62, 110, 128).
Interestingly, some reports have also identified C9orf72 patients
with ALS and FTD presenting with cognitive impairment but
with minimally TDP-43 inclusions underscoring the influence of
other physiopathological mechanisms such as dipeptide repeat
accumulation and RNA foci in the appearance of cognitive
impairment (63, 108).

Conversely, in the case of FUS protein deposition
neuropathology, it is believed that the pathological processes
underlying the aggregate formation and cell death between FTD
and ALS differ. While ALS with FUSmutations seems to be more
restricted to the dysfunction of FUS protein, a more complex
dysregulation that includes the deposition of all FET proteins
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(TAF15 and EWS) and Transportin-1 (Trn1) is thought to be
involved in the subtypes of FTLD with FUS pathology (88).

BIOMARKERS

Biomarkers can be used for four primary purposes: (i) to
guide clinical diagnosis by identifying the key pathophysiological
changes of a particular disease (so-called diagnostic markers),
(ii) to estimate the risk or speed of progression of a particular
disease (prognostic markers), (iii) to monitor the progression
or response to therapy (theragnostic markers) (129), and (iv)
to characterize the relevant aspects of disease pathophysiology
(i.e., inflammation). Section Fluid Biomarkers will describe the
currently available biomarkers for the study of extra-motor
neurodegeneration in the ALS-FTLD continuum and their
diagnostic and prognostic value.

Fluid Biomarkers
The cerebrospinal fluid (CSF) represents an invaluable sample for
studying neurodegenerative diseases due to its close relationship
with brain parenchyma (130). However, the study of CSF
biomarkers may be limited because of their invasive nature.
Recently, blood biomarkers have shown promise as minimally
invasive clinical tools in neurodegenerative diseases (129, 131).
Compared to CSF, the accessibility and cost-effectiveness of blood
samples make them more suitable for first-line clinical use and
facilitate clinical trial recruitment and monitoring.

Neurodegeneration Biomarkers
Neurofilaments are the principal constituents of the neuro-
axonal cytoskeleton and play an essential part in axonal transport
and the synapse (132). Neurofilament light chain (NfL) is the
most abundant and soluble neurofilament subunit, and increased
levels in CSF and blood reflect axonal damage in the CNS. The
CSF and plasma levels of NfL are highly correlated and have been
found to increase in a wide variety of diseases (133, 134). Both
CSF and plasma levels of NfL are increased in patients with ALS
and have proven helpful to differentiate between patients with
ALS and other ALS mimics (135–137). Importantly, multimodal
biomarker studies have shown that the CSF and plasma levels
of NfL correlate well with frontotemporal cortical thickness and
white matter microstructure in patients within the ALS-FTD
continuum (138–140). The CSF and blood levels of NfL also
correlate with measures of disease severity, disease progression
rate, and the prediction of longitudinal clinical deterioration
and survival (21, 137, 138, 141–148). The CSF NfL levels seem
to increase over time but further longitudinal data are needed
(149, 150). Moreover, the combination of plasma NfL with other
measurements of neuroinflammation in plasma may improve
disease progression at the single-subject level (151–153). Because
biofluid levels of NfL are strongly correlated with age, recent
multicenter studies have determined highly specific age-adjusted
cut-offs (154). Overall, both CSF and plasma levels of NfL may be
helpful to support the diagnosis in clinically relevant scenarios,
disease staging, and the prediction of disease progression. In
addition to NfL, neurofilament heavy chain (NfH) has also been
studied in patients with ALS and can discriminate between ALS,

ALS mimics, and healthy controls with similar accuracy to NfL
(155). Of note, a recent study showed that the difference in
the abundance of NfH between ALS and FTD was markedly
stronger for NfH than that of NfL (155). On the other hand,
studies have reported a better correlation between the serum and
CSF for NfL compared to NfH, albeit that NfL has been more
widely investigated (156). Overall, CSF NfL and NfH as well as
serum NfL are equally suited for the differential diagnosis of
ALS, whereas serum NfH performs less well (155). Other serum
biomarkers, such as peptides linked with eating behavior and
metabolism, for instance, leptin and neuropeptide-Y, have been
recently studied in the ALS-FTD continuum and show a promise
as neurodegeneration biomarkers, but further investigations are
needed to clarify their role in the pathophysiology of ALS and
FTD (157).

Patients within the ALS-FTD clinical continuum also show
increased levels of total tau (t-tau) in CSF but the diagnostic
and prognostic value of this biomarker is lower than NfL
(145, 158). Some studies have reported that low levels of both
phosphorylated tau at threonine 181 (p-tau) and the p-tau:t-tau
ratio in CSF may differentiate TDP-43 and tau subtypes of FTLD
(159–162), but these findings seem to be driven by the higher
levels of t-tau in patients with ALS (162–164) and not by lower
levels of p-tau in FTLD-TDP (165).

Synapse Degeneration Markers
The amyloid precursor protein (APP) is a type I single-pass
transmembrane protein with a large extracellular domain and a
short cytoplasmic tail that undergoes very complex proteolytic
processing, yielding biologically active fragments (166). These
include the full-length Aβ1–42 and other N-terminal and C-
terminal truncated forms of Aβ, sAPPα, sAPPβ, etc., that
can be detected in human CSF (167–169). Numerous studies
suggest that reduced neuronal-synaptic activity may also lead
to less Aβ production (170, 171) and that Aβ may also
have an important role in synaptic function (172). Recent
studies on autopsy-confirmed cases have reported reduced CSF
concentrations of sAPPβ in FTLD in the absence of comorbid
Alzheimer’s pathology (173). Interestingly, CSF concentrations
of sAPPβ are decreased in ALS and FTD compared to healthy
controls and correlate with frontotemporal cortical thickness
and cognitive impairment suggesting that sAPPβ levels may
reflect the neuronal loss in frontotemporal areas (140, 174).
Unfortunately, plasma concentrations of sAPPβ poorly correlate
with CSF concentrations (175), potentially due to a confounding
effect of abundant non-CNS-derived sAPPβ in the blood. On
the other hand, CSF concentrations of neurogranin, the most
studied synaptic marker to date, were not elevated in patients
with ALS (176). In another study, label-free mass spectrometry-
based proteomic analyses of CSF from patients with ALS
revealed a concomitant decrease in proteins from biological
pathways related to synapse organization and inflammation-
related proteins (177). Recently, other synaptic markers have
been identified by unbiased proteomics-based approaches. Still,
more studies are needed to clarify the role of these new
biomarkers and their potential use for the diagnosis, staging, and
prognosis of patients with suspected ALS (178, 179).
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Biomarkers Linked to Neuroinflammation and Glial

Activation
A variety of systemic inflammatory responses (pro- and
anti-inflammatory cytokine profiles, altered immune cell
populations) have been consistently reported in patients with
ALS and FTD (113, 180). These responses do not seem to
be a mere passive phenomenon and may contribute to the
neurodegeneration/neuroprotection balance (181, 182). For
instance, increased CSF and serum levels of some monocyte-
derived cytokines linked with the inflammatory response such as
TNF-α, IL-1β, IL-17, and TGF-β reveal a microglial and white
blood cell participation in the ALS-FTD pathologic continuum
(113, 182, 183). In addition, increased CSF levels compared to
controls of Matrix Metalloproteinase-10 and decreased CSF
levels of some chemokines and growth factors (such as IL-8,
IL-12B, TGF-α among others) have been recently reported in a
multicentric study (184). Other surrogate markers of acute-phase
systemic inflammation have been reported in ALS, including
lipopolysaccharide-binding protein, C reactive protein, and
soluble CD14 (181, 185).

In addition to a systemic inflammatory response, several
biomarkers in the blood and CSF have been found to be
consistently altered in the ALS-FTD continuum (186). Some of
these biomarkers may be useful to predict disease progression
and survival (140, 187). Increased CSF levels of YKL-40 (also
known as Chitinase like-3 protein 1) in ALS were first observed
in a small study (188), a finding that has been later replicated
in larger studies involving participants along the ALS-FTD
continuum (140). Recent proteomic studies confirmed that three
macrophage-derived chitinases (YKL-40, chitotriosidase, and
chitinase like-3 protein 2) were increased in ALS and predicted
a faster disease course but only YKL-40 levels increased over
time in those with low initial levels (187). These results support
a crucial role for microglial activity in ALS (152), offering
novel target engagement and pharmacodynamic biomarkers for
neuroinflammation-focused ALS therapy. However, YKL-40 is
not specific to the central nervous system, and their levels
in the CSF and blood are poorly correlated, thus limiting
its use as a non-invasive biomarker. Conversely, GFAP is a
brain-specific protein and an established marker of astrogliosis.
This protein can also be accurately measured in the blood
with new ultrasensitive technology (189). Interestingly, different
neuroinflammatory profiles between ALS and FTD have been
recently reported, with increased CSF levels of the chitinase
chitotriosidase 1 in ALS and high levels of GFAP in FTD (190).

The microglial transmembrane receptor (TREM2) represents
another important molecule linked to microglial activity. One
study reported that the TREM2 p.R47H genetic variant may
represent a risk factor for sporadic ALS (191), but this finding
has not been replicated in subsequent studies (192, 193). In
addition, the soluble part of the microglial transmembrane
receptor (sTREM2) is measurable in the blood and CSF, but the
information regarding its role within the ALS-FTD continuum
is scarce (194). Finally, immune innate complement factors
involved in the inflammatory process have been studied in the
CSF of patients with ALS finding an upregulation of C3 in CSF

and increased levels of C3 cleavage products in the serum of
patients with ALS (195, 196).

Biomarkers Linked to Abnormal TDP-43 Aggregation
Cytoplasmic aggregation of ubiquitinated, phosphorylated, and
truncated TDP-43 is a unifying pathologic observation across
the neuropathological continuum of ALS and FTLD. However,
standard immunoassays of TDP-43 have not proven to be useful
to identify patients with pathological TDP-43 aggregation, and it
is not yet clear whether TDP-43 would be expected to increase in
the CSF due to the degeneration of nerve cells and the release
of intracellular proteins or whether it would be expected to
be low in the CSF due to aggregate formation (197–199). This
is because most currently available techniques for quantifying
TDP-43 use commercially available antibodies, which only detect
the full-length form of TDP-43 rather than the disease-specific
forms of TDP-43 (200, 201). However, several recent advances
hold promise to the detection of abnormal TDP-43 aggregation
in vivo. A recent study used immuno-IR sensors to study the
secondary structure of all TDP-43 isoforms in the CSF (202). In
addition, a recent study showed that real-time quaking-induced
conversion reaction (RT-QuIC) antemortem prion detection was
a robust technique for prion amplification of TDP-43 (203).

Some promising biomarkers like truncated Stathmin-2
(STMN2) are linked to TDP-43 function and deposition. The
expression of STMN2 is increased in the frontal cortex of patients
with the TDP subtype of FTLD, which makes it a good candidate
biomarker related to TDP pathology (204). Finally, in C9orf72
carriers, high CSF levels of DRPs can be detected even in pre-
symptomatic stages, suggesting a role of DRPs early in ALS-FTD
pathogenesis in early stages (145, 205). Although not currently
relevant as clinical fluid biomarkers, DRPs may become more
widely used in detecting the C9orf72 expansion prior to genetic
screening or in prodromal stages, which would make a valuable
addition to the biomarker arsenal in the future clinical trials.

Image-Based Biomarkers
Macrostructural and Microstructural Changes in MRI
Routine structural MRI has a limited utility in ALS as signal
intensity, and gross volume changes in T1- and T2-weighted
images are not typically observed in most ALS cases. On the
contrary, quantitative analysis of MRI can improve the detection
of neurodegeneration-related abnormalities by measuring small
changes in cerebral structure. The in vivo quantification of
motor and extra-motor cortical cerebral changes with MRI
analyses is of great value in monitoring disease progression
in the ALS-FTD continuum (Figure 2) (206–208). In sporadic
ALS cases, recent meta-analyses of neuroimaging studies report
consistent graymatter loss in the precentral gyrus, inferior frontal
gyrus, cingulate/paracingulate gyrus, and rolandic operculum
(209, 210). This cortical thinning in extra-motor cortical
areas correlates with cognitive and behavioral impairment in
the neuropsychological test (211, 212). On the other hand,
C9orf72 cases and a subgroup of sporadic cases without the
C9orf72 expansion are characterized by widespread cortical
changes characterized by cortical thinning involving bilateral
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FIGURE 2 | Group comparisons between those with amyotrophic lateral sclerosis (ALS) without cognitive or behavioral impairment (ALSno-cbi; left column), those

with ALS with cognitive or behavioral impairment (ALScbi; middle column), and those with the behavioral variant of frontotemporal dementia (bvFTD; right column)

compared to controls for (A) cortical thickness and (B) cortical mean diffusivity. Regions in blue represent thinner cortex; regions in green represent higher cortical

mean diffusivity; and regions in purple represent lower cortical mean diffusivity. All analyses were adjusted for age, sex, education, and MRI equipment. Only clusters

that survived family-wise error correction p < 0.05 are shown. ALSno-cbi, Amyotrophic Lateral Sclerosis without cognitive and behavioral impairment; ALScbi,

Amyotrophic Lateral Sclerosis with cognitive and behavioral impairment; bvFTD, Behavioral variant of frontotemporal dementia.

pars opercularis, fusiform, lingual and parietal cortex, and also
smaller volumes in the right hippocampus and bilateral thalamus
(213, 214).

Interestingly, Dadar et al. were able to replicate the
neuropathological stages of TDP-43 in vivo with a novel
neuroimaging technique (215). However, some neuroimaging
methods, which quantify brain atrophy (i.e., gray matter loss or
cortical thickness), show limited sensitivity to the earliest cortical
changes related to cortical dysfunction (158, 216). Diffusion
tensor imaging (DTI) is a diffusion weighted imaging sequence
that measures the diffusion of water molecules in the different
directions of space (217). The main advantage of DTI is that it is
able to detect subtle changes at themicrostructural level reflecting
the breakdown of biological barriers and neuroinflammation
(218, 219). Thus, DTI studies allow the study of microstructural
changes of the cerebral cortex (i.e., cortical mean diffusivity) and
the white matter (i.e., microstructural changes in different white
matter tracts). Several studies on neurodegenerative diseases,
including FTD, have shown that DTI can reveal pathology
that is not detected with cortical thickness measurements
(216, 219–223). A recent cross-sectional study showed that
ALScbi displayed cortical mean diffusivity changes in extra-
motor regions in the absence of cortical thinning and showed
a better correlation with cognition than with cortical thickness.
These results suggest that cortical mean diffusivity may be more
sensitive than cortical thickness to detect extra-motor cortical

changes in ALS, but more studies are needed to characterize
the longitudinal changes of cortical microstructure in ALS (158).
On the other hand, longitudinal studies using DTI to study the
white matter microstructure in ALS have shown the usefulness of
this approach to detect extra-motor changes and monitor disease
progression (222, 224–226).

Functional Magnetic Resonance
fMRI based on the measurements of the fluctuation in
blood flow and blood oxygen level as a consequence of
neuronal activity helps us to trace the underlying networks
between the areas that coactivate simultaneously. Assessing
the resting-state brain connectivity in patients with ALS has
revealed either decreased or increased connectivity in premotor,
sensorimotor, and basal ganglia (227, 228). Advanced network-
based neuroimaging techniques based on connectomics and a
whole-brain connectivity analysis have shown different patterns
of motor and extra-motor involvement between different MND
phenotypes (229).

Magnetic Resonance Spectroscopy
MRS provides a means of measuring cerebral metabolites
relevant to neurodegeneration in vivo [for a review, Kalra
et al. (230), Ernst et al. (231)]. In ALS, neurochemical changes
reflecting neuronal loss or dysfunction (i.e., decreased N-
acetylaspartate) are mostly significant in the motor cortex and
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corticospinal tracts. Other neurochemical changes observed
include increased myo-inositol, a putative marker of gliosis.
Some studies also reported cerebral metabolite changes in extra-
motor regions. Previous studies performed in asymptomatic
genetic carriers of mutations associated with FTLD using MRS-
derived markers exhibit an encouraging discriminatory ability to
identify patients from healthy controls; however, more data are
needed to determine their ability to assist with the diagnosis in
early stages and in distinguishing from diseasemimics (232–239).

PET: 18F-Fluorodeoxyglucose Radiotracer
PET represents a powerful imaging biomarker for the study of
neurodegenerative dementias (240, 241). An increasing number
of 18F-labeled tracers are not available for use at the clinical
site without the requirement of an on-site cyclotron, thus
turning brain PET scans into a widely applicable tool. Brain
hypometabolism can be detected with PET and the 18F-
fluorodeoxyglucose radiotracer (18F-FDG-PET). Of note, 18F-
FDG-PET imaging has some advantages over MRI as it can be
performed in patients needing mechanical ventilation. Cerebral
metabolism reflects the local intensity of brain glutamatergic
synaptic and astrocyte activity, and cerebral hypometabolism is
considered an indirect marker of neurodegeneration (240, 242).
In ALS, previous studies investigating 18F-FDG-PET revealed
a marked frontal and prefrontal relative hypometabolism in
ALScbi when compared to patients with ALSno-cbi (243, 244).
Unexpectedly, previous studies also reported hypermetabolism
in the midbrain, temporal poles, and hippocampus (245). It
has been hypothesized that hypermetabolism in patients with
ALS may be related to microglial activity in these areas but
more multimodal biomarker studies are needed to understand
the pathophysiological underpinnings of cortical and subcortical
metabolism in ALS (206, 245, 246). Overall, previous studies
support the view that 18F-FDG-PET could be a useful tool to
assess the spread of brain pathology in vivo.

PET to Detect Neuroinflammation
Multiple imaging studies have reported in vivo microglial
activation in motor and extra-motor regions in both ALS and
FTD using different radiotracers with affinity to the translocator
protein or TSPO (which is expressed in the mitochondria
of activated microglia) (247–250). Nevertheless, some caveats
of those radiotracers might influence their usefulness; the
most used radiotracer 11C-PK11195, which labels peripheral
benzodiazepine binding sites, has a low signal-to-background
ratio and binding of the subsequent generation of radiotracers
(11C-PBR28, 18F-DPA714, and 18F-FEPPA) is influenced by the
TSPO polymorphism (247, 250–252). Thus, more work is needed
for the validation of radiotracers that can detect and monitor
microglial activation in vivo.

PET to Detect TDP-43 Pathology
The development of a radiotracer able to bind phosphorylated
TDP-43 and allow the in vivo visualization of pathological
TDP inclusions would be a major breakthrough in the field.
Unfortunately, such a biomarker is not available at this
moment (251).

OTHER BIOMARKERS

Neurophysiological Biomarkers
Neurophysiological studies have shown that hyperexcitability
of the frontotemporal cortex is an early feature of ALS that
may precede motor neuron degeneration and can be assessed
using transcranial magnetic stimulation with single or multiple
pulses (253). Transcranial magnetic stimulation with multiple
pulses evaluating the short-interval intracortical inhibition is
one of the most robust tests developed for assessing cortical
hyperexcitability and has shown good sensitivity and specificity
for ALS diagnosis and a good correlation with other biomarkers
of peripheral neurodegeneration (254, 255). Recent studies
have demonstrated a more prominent cortical hyperexcitability
in patients with ALS presenting with cognitive symptoms
than in cognitively unimpaired patients with ALS (256).
Hyperexcitability in the sensory cortex may induce increased
amplitudes that can be detected early in ALS and correlate
with a shorter disease survival (257). Some groups have tried
to assess cortical connectivity and the interaction between the
motor and non-motor network using other techniques, such as
electroencephalography and fMRI, but the clinical utility of these
techniques is still limited (258, 259).

Genetic Biomarkers
MicroRNAs are short (about 22 nucleotides in length) non-
coding RNA molecules that play a relevant role as endogenous
regulators of gene expression (260). Emerging studies have shown
that circulating microRNAs can serve as potential biomarkers in
ALS. However, there are still many problems to be solved before
microRNAs could be used in clinical practice [for a detailed
review please refer to Wang and Zhang (261)].

DISCUSSION: ADVANCING ALS
CLASSIFICATION WITH BIOMARKERS

Phenotypic classification of ALS relies on clinical observations
such as site and region of onset and predominance of upper or
lower motor neuron signs, while the diagnosis of FTD is based
on clinical criteria (2, 24). Although ALS and FTD share partially
overlapping patterns of neurodegeneration, the generation of
clinically defined subtypes is not straightforward due to the
observed clinical and prognostic heterogeneity. The definition of
precise and reproducible classification systems for both ALS and
FTD is urgently needed to guide present and future treatments,
provide an indication of prognosis and enable the analysis in
clinical trials of homogenous groups for a more personalized
approach to therapy (24, 262). These refined classification
systems would ideally consider the etiology (i.e., proteinopathy
responsible for the patient’s symptoms), other clinical, or
biological features for robust disease staging at the single-subject
level (i.e., scales measuring a motor or cognitive function, or
frontotemporal atrophy burden on neuroimage) and finally the
quantification of other pathophysiological processes that are
relevant for prognosis (i.e., microglial activation at diagnosis).
In the following section, we will discuss how biomarkers (alone
or in combination with multimodal biomarkers studies) could
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be integrated into multidimensional classification systems to
further improve the diagnosis and prognosis of these complex
neurodegenerative diseases.

Etiology: Early Identification of TDP-43
Proteinopathies
There is no definitive diagnostic test for ALS or due to
abnormal TDP-43 aggregation (1). Because clinical-pathological
correlations are imperfect, biomarkers, which can detect
abnormal TDP-43 aggregates in vivo, are needed to provide an
early etiological diagnosis (i.e., ALS caused due to abnormal
TDP-43 vs. FUS or tau aggregates in FTD). Recently developed
RT-QuIC assays for TDP-43 are promising (203). Concomitant
TDP-43 pathology can also be seen in a significant number of
patients with Alzheimer’s disease neuropathological changes,
as well as in a smaller proportion of other neurodegenerative
diseases (263–268). Thus, an understanding of how abnormal
TDP-43 aggregates impact brain function may also be
valuable to understanding its role in other neurodegenerative
dementias. Of note, pathological TDP-43 aggregates are
a key neuropathological finding in the recently described
neuropathological entity named “Limbic predominant Age-
Related TDP-43 pathology encephalopathy” or simply “LATE”
(269). This new neuropathological construct may account for
up to 22% of the attributable risk of developing dementia of
the Alzheimer’s type and has shown to impact the clinical
presentation and prognosis in patients with Alzheimer’s disease
neuropathological changes. However, it is unclear whether
“LATE” is the underlying pathology in cases with the FTLD
TDP-43 subtype (263, 270).

A recent study on neuropathologically confirmed FTLD
suggests the existence of disparate patterns of gray and white
matter involvement in FTLD subtypes, with more prominent
involvement of white matter in tauopathies than in TDP-
43 proteinopathies (271). We envision that the combination
of cortical mean diffusivity with additional measures of
subcortical white matter microstructure and the use of fluid-
based biomarkers of neurodegeneration and synaptic loss (i.e.,
NfL, sAPPb) could reveal important insights into the etiology
of neurodegeneration by identifying specific neurodegenerative
signatures in vivo. This approach may also improve clinical-
pathological correlations in some challenging clinical scenarios.
For example, it may help identify patients presenting with a non-
fluent agrammatic variant of primary progressive aphasia with
underlying TDP-43 pathology and possibly benefit from future
protein-specific treatments (272).

Disease Staging: Looking Beyond
Corticospinal Tract Neurodegeneration
Imaging studies have consistently reported that extra-
motor neurodegeneration in ALS is related to cognitive
impairment and that the frequency of cognitive and behavioral
impairment seems to increase with disease progression
(33). Prefrontal changes detected with MRI in vivo predict
the progression rate, and recent studies suggest that the
topography of extra-motor atrophy in patients with ALS

parallels the neuropathological stages of TDP-43 (215).
However, neuroimaging studies investigating the structural
correlates of cognitive and behavioral impairment have
failed to define a consistent topography of extra-motor
involvement (210, 212, 273). One limitation of previous studies
is the application of neuroimaging techniques that may not
capture the earliest cortical changes driving cognitive and
behavioral impairment in ALS such as gray matter density
or cortical thickness (274). On the contrary, other DTI-
based MRI biomarkers have been shown to be sensitive to
the earliest neurodegeneration-related changes and may be
of great value to monitor disease progression (158, 207).
More studies are needed to determine the potential utility
of DTI-based imaging techniques for quantifying disease
burden within first and second motor neurons and extra-
motor neurodegeneration. This information could allow the
refinement of current classification systems and advance the field
toward a multidimensional approach for the classification of
neurodegenerative diseases (275).

The Relationship Between Astroglial
Activity and Disease Progression in the
ALS-FTD Continuum
As discussed previously, several biofluid biomarkers have
proven to be useful to predict disease progression in
patients with ALS. Due to the role of microglial reactivity
in the neurodegenerative process, YKL-40 might be
useful for the prognostic stratification in the ALS-FTD
spectrum (187). The combination of multiple biomarkers,
such as CSF cytokines and innate complement system
fragments in a single study may provide important clues
to understand the role of neuroinflammation in ALS and
FTD pathophysiology. However, one important limitation of
biofluid biomarkers is that they do not provide information
regarding the topography of neurodegeneration (190). A
recent study combined structural MRI with the use of a
PET ligand to measure microglial activation and showed
that the areas of ligand binding were correlated with motor
signs, cortical thinning, reduced fractional anisotropy and
increased diffusivity (248). Interestingly, this study did not
identify a change in ligand binding in subjects undergoing
repeat imaging over 6 months despite clinical progression,
suggesting that glial activation is present early and does
not change at least in terms of TSPO imaging. This study
illustrated the potential of multimodal biomarker studies
to understand the role of neuroinflammation in ALS. More
studies and better tools are needed to clearly define how
neuronal-glial signaling occurs at the different stages of
the disease, and where potential therapeutic interventions
can be made to modulate inflammation to slow disease
progression (113).

Beyond TDP-43: Identifying Fast and Slow
Progressors
Although TDP-43 is the major neuropathological hallmark
of the disease in most ALS cases, other pathophysiological
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FIGURE 3 | Representation of the increasing neurodegenerative burden in

patients with ALS over time depending on their pathophysiological profile. The

use of biomarkers may help to improve the current detection threshold

(detection threshold and diagnostic window 1) from 1 to earlier clinical stages

and differentiating between profiles (detection threshold and diagnostic

window 2).

processes play an important role. Clinical-pathological studies
investigating the relationship between pathological aggregates
of TDP-43 and cognitive impairment have revealed conflicting
results (33, 108). However, a recent study reported that
pre-mortem cognitive performance was better correlated
with postmortem synaptic density than with postmortem
cortical thickness or neuronal loss (109). In addition, cognitive
and behavioral changes were better correlated with cortical
microstructure than with cortical thickness in a recent
neuroimaging study involving patients from the ALS-FTD
clinical continuum (158).

Of note, early neurodegenerative changes and synapse loss
can be captured with novel radiotracers capturing synaptic
density but to date, these novel imaging methods have not been
assessed in ALS (276, 277). Taken together, these findings suggest
that synaptic loss and other neurodegeneration-related changes
may antedate cortical atrophy and pathological aggregates
of TDP-43 but additional studies are needed to clarify the
relationship between non-motor symptoms, synaptic density,
cortical microstructure, and cerebral metabolism. In addition, the
exact significance of cortical mean diffusivity changes in ALS is
unknown. Future multimodal biomarker studies combining 18F-
FDG-PET, cortical mean diffusivity, and measures of microglial
activity and neuroinflammation will be helpful to understand
the pathophysiology of the earliest microstructural changes
in ALS.

Figure 3 illustrates the potential use of biomarkers to
advance the diagnosis of ALS in earlier clinical stages
when future targeted therapies may be more effective.
The information provided by biomarkers at diagnosis
could also be considered for the prediction of disease
progression and the selection of candidates for clinical
trials. This information may be crucial for the candidate
selection for future trials targeting a specific aspect of ALS
pathophysiology (i.e., anti-inflammatory drugs). On the

other hand, the development of novel imaging biomarkers
more sensitive than conventional imaging biomarkers
may increase our sensitivity for the detection of FTLD-
related neurodegenerative changes by lowering the detection
threshold. This, in turn, may allow at diagnosis the earliest
clinical stages. Finally, pathophysiological biomarkers
measuring the key aspects of the neurodegenerative process
(i.e., neuroinflammation or FTLD subtype) could play
an important role in future multimodal classification
schemes, similar to the recently proposed biomarker-
based classification systems for other neurodegenerative
diseases (278).

CONCLUSIONS

The fact that some patients diagnosed with ALS develop
cognitive and behavioral changes while others remain
cognitively intact is intriguing. This observation may
provide important clues to the specific vulnerability of the
frontotemporal cortex in neurodegenerative dementias. As
we have shown in this review, biomarkers have the potential
to improve our understanding of the pathophysiological
underpinnings of extra-motor neurodegeneration in ALS.
Emerging imaging biomarkers have shown a significant
potential to improve the diagnosis and staging of patients
within the ALS-FTD clinical continuum. In addition,
several biofluid biomarkers have the potential to increase
the diagnostic certainty of underlying ALS or FTLD,
predict disease progression at the single-subject level,
and characterize the pathophysiological underpinnings of
extra-motor neurodegeneration in ALS. Future studies for
determining the benefit of current and future biomarkers to
advance ALS classification and monitoring are the essential
steps for improving the design of clinical trials testing novel
disease-modifying treatments.
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