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Background: Depression is the most common psychiatric comorbidity of temporal lobe

epilepsy (TLE). In the recent years, studies have focused on the common pathogenesis of

TLE and depression. However, few of the studies focused on the dynamic characteristics

of TLE with depression. We tested the hypotheses that there exist abnormalities in

microstates in patients with TLE with depression.

Methods: Participants were classified into patients with TLE with depression (PDS)

(n = 19) and patients with TLE without depression (nPDS) (n = 19) based upon the

Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V). Microstate

analysis was applied based on 256-channel electroencephalography (EEG) to detect the

dynamic changes in whole brain. The coverage (proportion of time spent in each state),

frequency of occurrence, and duration (average time of each state) were calculated.

Results: Patients with PDS showed a shorter mean microstate duration with higher

mean occurrence per second compared to patients with nPDS. There was no difference

between the two groups in the coverage of microstate A–D.

Conclusion: This is the first study to present the temporal fluctuations of EEG

topography in comorbid depression in TLE using EEG microstate analysis. The temporal

characteristics of the four canonical EEGmicrostates were significantly altered in patients

with TLE suffer from comorbid depression.

Keywords: temporal lobe epilepsy, depression, microstates parameter, EEG, resting state

INTRODUCTION

Epilepsy is a chronic neurological disorder characterized by recurrent episodes of spontaneous
seizures, affecting nearly 1–2% population of the world (1). Epileptic seizures are caused
by the imbalance of excitatory and inhibitory neurotransmitters in central nervous system,
thus leading to abnormal synchronous firing occurs in the involved neural networks of
brain (2). The most prevalent type of focal epilepsy is temporal lobe epilepsy (TLE). In
this population, comorbidity burden is high and psychiatric comorbidities are frequently
encountered (3), such as depression, which is the most common psychiatric comorbidity.
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The recently reported prevalence numbers of depression
comorbidity in patients with TLE vary from 30 to 50% (4, 5).
Comorbid depression has been further linked not only to high
rates of suicide and decreased life expectancy, but it is also a
greater risk factor for developing refractory epilepsy (5, 6).

However, the precise mechanism of comorbid depression
in TLE is not yet fully elucidated. In the recent years,
studies have focused on the neurobiological basis of TLE
and depression, suggesting that a common pathogenesis may
exist. The pathogenesis includes disorders of the endocrine
system (7–10), abnormal neurotransmitter balance (11, 12),
changes in immune-related biochemical indicators (13, 14),
abnormal glucose metabolism (15, 16), inflammation (17), and
neurogenesis (15). Spenser et al. (18) highlighted that epilepsy
and depression have similar networks with postulated roles in
neuropsychiatric disorders that overlap, providing a theoretical
basis for the high prevalence of comorbid depression disorders
in epileptic patients. Therefore, knowledge of the physiological
mechanisms at an intrinsic network level is essential to patients
with TLE with depression.

Most recent studies have indicated that brain neural
activity changes dynamically through time and, thus, provides
abundant information of neural characteristics for epilepsy
and depression (19, 20). The electroencephalography (EEG)
activity is segmented into limited amounts of scalp electrical
topographies of certain time periods (60–120ms) duration and
then dynamically changing into a different state that remains
stable again (8, 21). Each successive signal is referred to as
“microstate” and transitions between microstates are thought
to reflect coordinated interactions among large-scale distributed
brain networks (22). In the resting state, only four specific
topographies (termed microstates A, B, C, and D) are able to
explain most of the global variance of EEG signals (>65%) (22).
Microstate metrics included the duration (average time of each
state remains stable), occurrence (the number of times it occurred
per second), coverage (the percentage of total time spent in each
state), and microstate syntax (transition probabilities from each
microstate class to another) (23). Simultaneous EEG-functional
MRI (fMRI) has reported association of the microstates A
and B with phonological and visual and microstates C and
D with salience and attention networks (24). Most of the
studies conducted focused on fMRI and few on EEG (22).
With the emergence of dense array EEG technologies, the
recording of more accurate electrical source imaging has become
available. Due to its advantages of submillisecond temporal, high-
spatial resolution, and high signal-noise ratio, high-density EEG
covering all the relevant neural regions has become more likely
to reveal underlying mechanisms.

The purpose of this study was to examining deviant resting-
state EEG microstate dynamics in patients with TLE with
depression as compared to patients with TLE without depression.
We hypothesized that in patients with TLE suffer from comorbid
depression, the temporal characteristics of the four canonical
microstate maps will be significantly altered. In this study, we
applied 256-channel high-density EEG to reveal the microstate
dynamic changes in patients with TLE with depression
over time.

MATERIALS AND METHODS

Study Design and Participants
This retrospective study was based on data of patient collected
from Beijing Tiantan Hospital from January 2019 to June
2021. The diagnosis was conducted by at least two well-
trained neurologists. Inclusion criteria were: (i) diagnosed as
TLE according to the criteria established by the International
League Against Epilepsy (25); (ii) age over 18 years old; (iii)
the epileptogenic zone was localized to the temporal lobe by
continuous video EEG evaluation; and (iv) being seizure free for
at least 72 h. Exclusion criteria were: (i) previous neurosurgery;
(ii) cognitive impairment assessed using the Mini-Mental State
Examination; (iii) a history of other neurological disorders,
except epilepsy; and (iv) use of antidepressant medications prior
to this study. Depression was ascertained using the Fifth Edition
of Diagnostic and Statistical Manual of Mental Disorders (DSM-
V) criteria and depressive severity was assessed using the 24-item
version of the Hamilton Depression Rating Scale (HAMD24).
A total of 38 patients with TLE were enrolled and divided into
patients with depression (PDS, n = 19) and patients without
depression (nPDS, n = 19). This study was approved by the
Hospital Ethics Committee and all the patients signed informed
consent forms.

Electroencephalography Acquisition and
Preprocessing
Prior to EEG measurements, patients were requested to lie
comfortably in the supine position and relax their facial muscles.
During the acquisition, subjects remained awake with their eyes
closed to reduce artifact signals due to eye movements and
avoid deliberate mental activities. Data were recorded using 256-
channel high-density EEG recordings (EGI System 400; Electrical
Geodesic Incorporation, Oregon, USA, band pass filter: 0.1–
70Hz, sampling rate: 1,000Hz, and impedance <30 kΩ with
a recording reference at the vertex). We subjected EEG to rule
out the presence of interictal EEG discharges for all the patients.
For further analysis, the number of electrodes was reduced from
256 to 203 channels in order to minimize artifacts from facial or
neck muscles.

Each EEG dataset was segmented into 2 s non-overlapping
epochs and bad channels were removed with subsequent
interpolation. If a channel was bad for 20% ormore of the epochs,
the channel was flagged as bad for all the epochs; if more than
15% of the channels in a single segment were labeled as bad,
the whole segment was rejected. Electroencephalography epochs
contaminated by movement artifacts were manually discarded
from subsequent analysis. Independent component analysis was
employed to remove components associated with persistent
ocular and electrical artifacts. At the end, an artifact-free data
were selected per subject from which estimating the parameters
for the microstate analyses.

Microstate Analysis
The atomize-agglomerate hierarchical cluster (AAHC), a
modified k-means to provide unique clusters for microstate
analysis, was used to generate clusters of EEG topographies
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FIGURE 1 | Schematic of the method of microstate analysis. The global field

power (GFP) (drawn in purple) is calculated at each instant of the 256-channel

electroencephalography (EEG) recording. Original maps at the times of

maximal GFP are plotted and assigned into the four group model maps

labeled A, B, C, or D.

TABLE 1 | Demographic and clinical characteristics of participants.

Variable PDS nPDS P-value

(n = 19) (n = 19)

Age (year) 26.0 (23.0, 30.0) 29.0 (19.0, 31.0) 0.58

Sex 0.71

Male 13 (68%) 15 (79%)

Female 6 (32%) 4 (21%)

HAMD score 21.0 (15.0, 35.0) 5.0 (2.0, 6.0) <0.01

Epilepsy duration (year) 10.0 (6.0, 15.0) 7.0 (4.0, 17.0) 0.41

Education years 12.0 (9.0, 13.0) 9.0 (8.0, 12.0) 0.46

Lateralization 0.75

Left 9 (47%) 11 (58%)

Right 10 (53%) 8 (42%)

PDS, patients with temporal lobe epilepsy with depression; nPDS, patients with temporal

lobe epilepsy without depression; HAMD, 24-item Hamilton Depression Rating Scale.

(26). Electroencephalography was bandpass filtered (0.2–20Hz)
(27) and average rereferenced. The polarity of the topographical
maps was disregarded (26, 28). The global field power (GFP)
(spatial standard deviation as a function of time) is subsequently
calculated across EEG channels as a function of time to quantify
synchronous activity from all of the electrodes at every timepoint
(29). Global field power peaks have been previously proven
to represent moments of highest signal-to-noise ratios and
strongest field potentials. The topographic maps are always
steady during the high GFP, and immediately after, change to
the next topographic map, once GFP reaches a minimum peak
(30). In microstate analysis, the topographies of GFP peaks are
regarded to be discrete microstates, whereas dynamic changes in
EEG signals as variations of these states (23). Cluster analysis was
conducted first at the individual template maps level and then at
group levels. To facilitate comparisons with previous studies, we
categorized the microstate maps into four categories (A–D) on

FIGURE 2 | Microstate topographic maps. PDS, patients with temporal lobe

epilepsy with depression; nPDS, patients with temporal lobe epilepsy without

depression.

the basis of previous study (22) (Figure 1). Spatial correlations
between each map at group level and the topographies (maps)
at the GFP peaks of the original EEG signals at individual
level were calculated. Therefore, microstate maps were used to
determine the backward fitting to the original map topography
at each GFP peak according to maximum spatial correlation.
The timepoints between two GFP peaks were obtained using
nearest-neighbor interpolation. For each microstate map, four
temporal parameters including duration, occurrence, coverage,
and microstate syntax were calculated.

Statistical Analysis
Statistics were calculated with the SPSS Statistics version
25 (IBM Corporation, Armonk, New York USA). For the
differences in microstate duration, occurrence, and coverage,
data were analyzed by using the Wilcoxon rank-sum test. For
the differences in microstate syntax, the non-random transition
probabilities from each microstate to another were counted;
these numbers were normalized to fractions of all between-
class transitions of the subjects. Given four classes, we, thus,
obtained for each subject 12 values for all the possible sequence
doublets. False discovery rate (FDR) was used for multiple testing
correction (FDR q-values < 0.01). Besides, comparisons between
groups were conducted with the two-tailed t-tests. p-values <

0.05 were considered as statistically significant.

RESULTS

Demographics and Clinical Variables
Demographics and pertinent clinical data are given in Table 1.
There were no significant differences in age, gender, years of
education, course of epilepsy, and localization of TLE between
patients with and without depression. The HAMD scores differed
significantly between the two groups [21.0 (15.0, 35.0) vs. 6.0
(2.0, 6.0), p < 0.01]. As described in the methods, patients were
categorized into the PDS group (HAMD score≥ 7) and the nPDS
group (HAMD score < 7).

Electroencephalography Microstate
Analysis
Group dominant microstate maps are shown in Figure 2. They
were highly similar to the categories observed in previous studies
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(22). The orientation of microstate A is from right frontocentral
to left occipital-parietal; the orientation of microstate B is from
left frontocentral to right parieto-occipital; the orientation of

microstate C is from prefrontal to occipital; the orientation
of microstate D is from frontocentral to occipital. The four
microstate classes are labeled accordingly and explained 77.0%

FIGURE 3 | Temporal characteristics of microstate. Comparison between the two groups of microstate duration, occurrence per second, and coverage for each

microstate class separately. (A) correspond to the duration of microstate map A–D and mean duration, (B) correspond to the occurrence per second of microstate

map A–D and mean occurrence, (C) correspond to the coverage of microstate map A–D. p-values result from the Wilcoxon rank-sum test between two groups. PDS,

patients with temporal lobe epilepsy with depression; nPDS, patients with temporal lobe epilepsy without depression. *p < 0.05, **p < 0.01.
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TABLE 2 | Duration of microstates A to D and mean of two groups.

PDS (n = 19) nPDS (n = 19) P-value

A 0.071 (0.062, 0.076) 0.078 (0.069, 0.089) 0.075

B 0.066 (0.062, 0.066) 0.071 (0.066, 0.807) 0.017

C 0.067 (0.060, 0.079) 0.082 (0.063, 0.925) 0.027

D 0.065 (0.060, 0.075) 0.083 (0.065, 0.089) 0.018

mean 0.072 (0.064, 0.077) 0.082 (0.070, 0.090) 0.013

PDS, patients with temporal lobe epilepsy with depression; nPDS, patients with temporal

lobe epilepsy without depression.

(SD: 3.9%) of the total variance across PDS and 78.2% (SD: 3.1%)
across nPDS, respectively. These results suggested no statistical
difference between these two groups (p= 0.45).

Figure 3 presents the duration, occurrence, and coverage for
the four microstate classes. Microstate mean duration ranged
from 38.8 to 190.1ms for the different microstate classes. Patients
with nPDS had longer duration on average than patients with
PDS (p = 0.013) (Table 2; Figure 3). Microstate occurrence
ranged between 0.07 and 5.84. Compared with patients with
nPDS, patients with PDS displayed a less mean occurrence per
second (p = 0.010). Proportion of total time covered by the
different microstates varied from 0.3 to 57.6%. There was no
difference between the two groups in the coverage of microstates
A–D. In microstate A, compared with nPDS, the microstate
occurrence of patients with PDS increased. But, there was no
difference between the two groups with duration and coverage
(Table 4). In microstate B, a higher occurrence per second with
a shorter duration was found in patients with PDS compared
with nPDS. The coverage did not reveal statistical significance
between groups. In microstates C and D, the duration was
shorter than in nPDS. No other temporal characteristics differed
between the two groups (Figure 1; Tables 2–4). In this study,
we showed the receiver operating characteristic (ROC) curves
for microstate duration and occurrence (Figure 4). There was
an adequate discrimination for patients with PDS and nPDS:
on ROC analysis, all the areas under the ROC curves of
both duration and occurrence shown in the figure were larger
than 0.6 and were 0.73 for mean duration and 0.74 for
mean occurrence.

Between any microstate measures above and the severity
of depression according to the HAMD score, there was no
significant correlation (p > 0.05).

DISCUSSION

We found a marked increase in the dynamic changes of
the brain network in patients with PDS compared with
patients with nPDS. Collectively, patients with PDS had
shorter mean durations and higher occurrences than patients
with nPDS. This is the first study to present the temporal
fluctuations of EEG topography in patients with TLE with
depression using EEG microstate analysis, which robustly
affirmed alterations in a specific subset of subsecond functional
states of brain.

TABLE 3 | Occurrence per second of microstates A–D and mean of two groups.

PDS (n = 19) nPDS (n = 19) P-value

A 3.862 (3.418, 4,644) 3.337 (2.738, 3.879) 0.030

B 3.661 (3.453, 4.018) 2.999 (2.779, 3.714) 0.020

C 3.489 (3.066, 3.945) 3.030 (2.642, 3.882) 0.096

D 3.824 (3.148, 3.959) 3.327 (2.205, 3.595) 0.140

Mean 14.353 (13.604, 16.050) 12.644 (11.696, 14.649) 0.010

PDS, patients with temporal lobe epilepsy with depression; nPDS, patients with temporal

lobe epilepsy without depression.

TABLE 4 | Contribution of microstates A to D and results from comparison

between two groups.

PDS (n = 19) nPDS (n = 19) P-value

A 0.262 (0.236, 0.307) 0.247 (0.232, 0.289) 0.73

B 0.236 (0.202, 0.287) 0.238 (0.206, 0.280) 0.82

C 0.211 (0.197, 0.301) 0.221 (0.192, 0.310) 0.98

D 0.244 (0.186, 0.290) 0.257 (0.156, 0.300) 0.93

PDS, patients with temporal lobe epilepsy with depression; nPDS, patients with temporal

lobe epilepsy without depression.

To the best of our knowledge, only a handful of studies focused
on spontaneous EEG microstates in TLE or depression (31–
36). However, no studies are currently available that address the
altered large-scale network dynamics in TLE with depression
using microstate analysis. Compared to patients with nPDS,
patients with PDS showed a decreased overall resting-state
microstate duration of microstates B, C, and D and an increase
of occurrence of microstate A and B.

Previous resting-state fMRI studies demonstrated that
microstate class A was highly correlated with the auditory
network (24). Involved regions included bilateral superior and
middle temporal gyri, which is relevant to voice processing.
Besides recognition of the brain involvement, the source of
topography of EEGmicrostate has attracted much attention (37).
Left lateral activity in temporal lobe, insula, medial prefrontal
cortex, and the occipital gyri has been proposed as a major
sources of microstate A (37, 38). Temporal lobe epilepsy and
depression share common involved brain regions including the
temporal, frontal lobes, amygdala, hippocampus, entorhinal
cortex, subcortical structures including basal ganglia and
thalamus, and the connecting pathways (39). The findings of
fMRI studies showed the functional changes in the superior
temporal gyrus in patients with a major depression (40, 41). A
number of studies in the auditory domain document alterations
in auditory system in major depressive disorder (MDD) (42–
44). Higher occurrence of the microstate A has been shown
to be related to greater depression severity in MDD. This
conclusion was corroborated by our results, which showed the
significant alterations of microstate A in patients with TLE with
depressive symptom.

This study showed decreased duration and increased
occurrence of class B in patients with PDS. Microstate B could
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FIGURE 4 | The summary receiver operating characteristic (ROC) curves for the two groups of microstate duration and occurrence per second. (A–E) correspond to

the duration of microstate map A–D and mean duration, respectively; (F–J) correspond to the occurrence per second of microstate map A–D and mean occurrence,

respectively.

mirror the alterations in resting-state visual networks (24).
Major depressive disorder had been reported to show abnormal
functional connectivity (FC) within visual regions (45, 46).
Abnormal visual and auditory networks have increasingly
been recognized as a core feature of depression (47), which
could explain, at least in part, by the fact that there were
differences of microstates A and B between patients with PDS
and nPDS.

The alterations in microstate C were not found to be unique
to epilepsy. Prior microstate studies have reported increased
frequency not only in epilepsy (31), but also in schizophrenia
(48, 49) and syndrome of 22q11 deletion (50). Our results
indicated that microstate map C could reflect the combined
effect of comorbidity depression that patients living with TLE
might harbor. Besides, precuneus activity often is implicated
in microstate C (38) and it has been perceived in patients
with TLE with MDD that the spontaneous brain activity is
altered in precuneus (51). Therefore, we inferred that the
alteration of microstate C in the nPDS group is likely driven
by brain network involved precuneus. In addition, microstate
map C is predominated by a task inhibitory alpha level (52).
Intriguingly, past study has shown that depressive patients
had decreased alpha (53, 54), which might be the key factor
that causes vigilance in depressive behavior. Furthermore, a
phenomenon that frontal EEG alpha asymmetry has been
described in depressed patients (55, 56). All of the above
could support the suggestion that in this study, the PDS
group showed alterations of microstate C compared to the
nPDS group.

Microstate D was found to be negatively related to BOLD
signal changes in right-lateralized dorsal and ventral areas of
the frontal-parietal networks involved in attentional reorienting
and switching (22, 57). The default mode network (DMN) is
disrupted in patients with TLE with MDD according to previous
studies. Moreover, increased activation in the DMN including
midline thalamus, precuneus, hippocampus, ventral anterior
cingulate cortex, and prefrontal cortex was found in patients with
TLE with depression (58), implying that midline structure is one
of the key brain structures involved in the emotional modulation
and hyperactivation in these regions disrupt normal emotional
function. Consistent with these results, we found that microstate
D showed shorter duration in patients with TLE with depression.

In addition, we found a lower duration of B to D microstates
in patients with PDS. Duration is the key parameter in microstate
analysis because accurate timing is of great importance tomanage
the flow of information the brain has to deal with at eachmoment
to exert their functionality (59). This speaks to the increased
dynamical changes of the brain network structures in patients
with TLE with depressive symptom.

There was no correlation of the HAMD scores with
microstate parameters. Such an observation may result from
limitations to the utilization of the HAMD scale. As far as
we know, most of the previous studies on depression used
other depression scales such as Beck Depression Inventory-II
(33) or Montgomery–Åsberg Depression Rating Scale (32) to
assess correlation between depressive severity and microstate
parameters. Therefore, another depression scale may have to be
employed in future studies to capture this correlation.
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LIMITATIONS

Several study limitations need to be acknowledged. First,
the sample size may not be sufficient. Therefore, the study
needs replications with larger sample sizes. Second, this study
considers only temporal and not spatial dynamics or time-
frequency analysis. Third, more detailed and comprehensive
scales are required to assess the severity of depression.
Furthermore, given that none of our patients with PDS received
antidepressant therapy as EEG was recorded, we cannot come
to any further conclusions with respect to the potential effect
of antidepressants on the microstate parameters of patients
with PDS.

CONCLUSION

We analyzed the altered resting-state EEG microstate
dynamics measured with high-density EEG in TLE
with comorbid depression and compared them to
those without comorbid depression. Classic microstate
analysis provide insight into subsecond time scale whole-
brain dynamics in depression comorbidity in epilepsy.
Large scale EEG microstate network alterations cast
a perspective on the neuronal networks underlying
depression in TLE. The high spatiotemporal resolution of
high-density EEG provides a detailed understanding of
functional network.
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