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We here provide an overview of the pathophysiological mechanisms during heat stroke

and describe similar mechanisms found in myalgic encephalomyelitis/chronic fatigue

syndrome (ME/CFS). Both conditions are characterized by disturbed homeostasis in

which inflammatory pathways play a central role. Splanchnic vasoconstriction, increased

gut permeability, gut-related endotoxemia, systemic inflammatory response, central

nervous system dysfunction, blood coagulation disorder, endothelial-cell injury, and

mitochondrial dysfunction underlie heat stroke. These mechanisms have also been

documented in ME/CFS. Moreover, initial transcriptomic studies suggest that similar

gene expressions are altered in both heat stroke andME/CFS. Finally, some predisposing

factors for heat stroke, such as pre-existing inflammation or infection, overlap with those

for ME/CFS. Notwithstanding important differences - and despite heat stroke being an

acute condition - the overlaps between heat stroke and ME/CFS suggest common

pathways in the physiological responses to very different forms of stressors, which are

manifested in different clinical outcomes. The human studies and animal models of

heat stroke provide an explanation for the self-perpetuation of homeostatic imbalance

centered around intestinal wall injury, which could also inform the understanding of

ME/CFS. Moreover, the studies of novel therapeutics for heat stroke might provide

new avenues for the treatment of ME/CFS. Future research should be conducted to

investigate the similarities between heat stroke and ME/CFS to help identify the potential

treatments for ME/CFS.

Keywords: post-viral fatigue, myalgic encephalomyelitis/chronic fatigue syndrome, gut permeability, systemic

inflammatory response syndrome (SIRS), heat stroke, endotoxemia, ME/CFS, splanchnic vasoconstriction

INTRODUCTION

Heat stroke results from a failure of the body tomaintain its normal core temperature when exposed
to a high environmental temperature (i.e., “classic heat stroke”) or from strenuous exercise (i.e.,
“exertional heat stroke”) (1). There is no universally accepted definition of heat stroke. Based on
the pathophysiology of heat stroke, Bouchama and Knochel (1) proposed to define heat stroke as
“a form of hyperthermia associated with a systemic inflammatory response leading to a syndrome
of multiorgan dysfunction in which encephalopathy predominates.” Heat stroke is often clinically
defined as “a core body temperature that rises above 40◦C and that is accompanied by hot, dry skin
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and central nervous system abnormalities such as delirium,
convulsions, or coma” (1, 2). However, given the occurrence
of multiple organ dysfunction in heat stroke victims, the
Japanese Association for Acute Medicine (JAAM) recommended
heatstroke clinical criteria to include “the presence of renal
and hepatic complications and disseminated intravascular
coagulation (DIC)” (3). The JAAM criteria do not include
temperature “because elderly people often do not present with
high temperature even when they are already suffering from heat
stroke” (3). Heat stroke can lead to organ damage or death, and
the hospital mortality rate in classic heat stroke ranges from 10%
to 65%, whereas that of exertional heat stroke is 3% to 5% (4). An
average of 702 heat-related deaths occurred in the United States
annually during 2004–2018 (5) (we assume representing mostly
cases of classic heat stroke). “Prompt recognition and effective
body cooling will in most cases rapidly reverse heat-induced
organ dysfunction. However, body cooling alone may not suffice
to effect a full recovery, and prompt administration of adjuvant
treatments may be critical for survival” (4). Several novel
treatments are currently being explored for heat stroke, notably
to address gut permeability and to reduce systemic inflammatory
markers (4).

Myalgic encephalomyelitis/chronic fatigue syndrome
(ME/CFS) is a debilitating multi-system disease of unclear
etiology (6–10). The most common peri-onset events reported
by patients are infection-related episodes, stressful incidents,
and exposure to environmental toxins (11). “Impaired function,
post-exertional malaise, and unrefreshing sleep” are considered
to be the core symptoms (12, 13). Post-exertional malaise
refers to an exacerbation of some or all of an individual’s
ME/CFS symptoms after physical or cognitive exertion, or
orthostatic stress that leads to a reduction in functional ability.
The severity of the symptoms varies, where “very severely
affected patients experience profound weakness, almost constant
pain, severe limitations to physical and mental activity, sensory
hypersensitivity (light, touch, sound, smell, and certain foods),
and hypersensitivity to medications” (14, 15). The illness can
be completely incapacitating (16) and “at least one-quarter of
ME/CFS patients are house- or bedbound at some point in
their lives” (12). Patients with milder symptoms experience
a significant reduction in their previous level of functioning
(8). The illness progresses over time, shifting from an early
hypermetabolic state to a hypometabolic state with low energy
production (17). ME/CFS is often dismissed by physicians
because standard urine and blood laboratory tests produce
normal results, thereby multiplying patients’ suffering (18).
Deaths from ME/CFS are rare (19), however, the prevalence
of the disease is estimated to be at least 1.5 million cases in

Abbreviations: CMV, Cytomegalovirus; DIC, disseminated intravascular
coagulation; EBV, epstein-barr virus; HSPs, heat shock proteins; IBS, irritable
bowel syndrome; ICU, intensive care unit; IL, interleukin; JAAM, Japanese
association for acute medicine; LPS, lipopolysaccharides; ME/CFS, myalgic
encephalomyelitis/chronic fatigue syndrome; O&NS, oxidative and nitrosative
stress; PACS, Post-acute COVID-19 syndrome; PICS, Post-intensive care
syndrome; POTS, postural orthostatic tachycardia syndrome; ROS, reactive
oxygen species; SIRS, systemic inflammatory response syndrome; TNF, tumor
necrosis factor; TLR, toll-like receptor.

the United States alone (20). There are currently no effective
treatments for ME/CFS (21–25).

In the following sections, we provide an overview of
key pathophysiological mechanisms in heat stroke, such as
splanchnic vasoconstriction, increased gut permeability, gut-
related endotoxemia, systemic inflammatory response, central
nervous system dysfunction, blood coagulation disorder,
endothelial-cell injury, and mitochondrial dysfunction - and
relate these mechanisms to similar findings from ME/CFS
research. In addition, we also describe the results of initial heat
stress gene transcriptome studies and the parallel findings from
ME/CFS studies. Finally, we summarize key predisposing factors
for both illnesses.

The central thesis of this paper is that the lessons from the
human studies and animal models of heat stroke can contribute
to the understanding and treatment of ME/CFS. Although this
thesis might seem unlikely given the important differences in
the onset and clinical outcomes between these two conditions,
it is derived from a broader hypothesis that supports the
notion of common pathways in the physiological responses
to very different forms of stressors and disease manifestations
(26–30). The paper serves as an element of a wider enquiry
into commonalities in the pathology of illnesses induced by
physical, infectious, and/or emotional stressors including heat
stroke, ME/CFS, prolonged critical illness (chronic intensive
care unit [ICU]), post intensive care syndrome (PICS), cancer-
related fatigue, post-viral fatigue, post-acute coronavirus disease
2019 [COVID-19] syndrome (PACS), and long-COVID-19.
The paper is in line with a history of research comparing
ME/CFS with other conditions (including fibromyalgia, multiple
sclerosis, and rheumatoid arthritis) to derive lessons for
understanding ME/CFS.

PATHOPHYSIOLOGICAL MECHANISMS

Since the 1990s, human and animal model studies have shown
that endotoxemia of intestinal origin (i.e., the presence of
endotoxins leaked from the intestines into circulation) may
play an important role in the pathophysiological mechanisms
of heat stroke (1, 2, 31–33). This evidence culminated in the
dual pathway model of heat stroke, which proposes that heat
stroke can be triggered by two sequential but independent
pathways (31, 34): (i) the heat toxicity pathway, referring to
cytotoxicity resulting directly from hyperthermia (e.g., protein
denaturation, organ damage, and interruption of critical cellular
processes because of heat), and (ii) the endotoxemia pathway (or
heat sepsis pathway), involving splanchnic vasoconstriction, gut
hyper-permeability (“leaky gut”), and endotoxemia culminating
in systemic inflammation (or sepsis) (Figure 1). Whereas heat
toxicity was traditionally considered the primary determinant of
morbidity and mortality in heat stroke, it is now increasingly
recognized that this pathway occurs only at temperatures above
42◦C. Conversely, the endotoxemia pathway can provoke heat
stroke at temperatures between 40 and 42◦C (31, 33). In other
words, the endotoxemia pathway precedes and acts largely
independently of the heat toxicity pathway in the pathology
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of heat stroke (31). Moreover, the endotoxemia pathway is
increasingly considered as the lead driver of severe organ damage
and the main cause of death in patients suffering from heat
stroke (35).

In the following paragraphs, we provide an overview of the
mechanisms of the modern paradigm of heat stroke with a focus
on the endotoxemia pathway. Moreover, we describe similar
findings from ME/CFS. Our focus on the similarities between
the two conditions does not intend to negate the disease-specific
mechanisms. Instead, it intends to highlight possible lessons from
heat stroke for understanding ME/CFS.

Splanchnic Vasoconstriction and Hypoxia
In Heat Stroke

The primary response of the cardiovascular system to an increase
in the ambient heat or heat from exertion is an increase in the
blood flow to the skin (i.e., cutaneous vasodilation) to dissipate
the excess heat. Themodern paradigm of heat stroke suggests that
the maintenance of a constant blood pressure implies/requires
a reduction in blood flow to internal organs (i.e., splanchnic
vasoconstriction) (1, 32, 36–38). However, splanchnic hypo-
perfusion is not unique to heat stroke and common to critical
illnesses (i.e., severe injury or infection) (39, 40), and may thus
be a response to severe stress in general. In any case, the resulting
hypoxia has important consequences on the gut and brain during
heat stroke (as shown below) and promotes liver damage. In
addition, the strain on the cardiovascular system often results in
syncope and orthostatic intolerance in heat stroke (36).

In ME/CFS

Akin to heat stroke, several new hypotheses of ME/CFS suggest
that vasoconstriction and hypoxia are central to its pathology—
respectively focused on the consequence of ß2 adrenergic and
M3 acetylcholine receptor autoantibodies (41, 42), a potential
reduction of ACE2 expression (43), and an abnormal immune
response with a concomitant impact on endothelial function
(44). In addition, postural orthostatic tachycardia syndrome
(POTS) is a common comorbidity of ME/CFS (45), which is
a complex disorder of the vascular system also associated with
gastrointestinal dysfunctions (46, 47). Impaired blood pressure
variability and arrythmia have been observed in the patients
with ME/CFS (48, 49).

In summary, vasoconstriction and hypoxia would appear to
be common to both heat stroke in at least a subset of patients
withME/CFS—despite the difference in onset events of these two
conditions. Research from critical illnesses (beyond heat stroke)
suggests that splanchnic vasoconstriction is a general response
to stressors. Vasoconstriction and hypoxia have far-reaching
implications for organs and tissues.

Gut Permeability and Endotoxemia
In Heat Stroke

Animal models of heat stroke have shown that ischemia resulting
from reduced blood flow to the gut causes mucosal damage
and a weakening of the tight junctions in the gut—likely
via the action of oxidative and nitrosative stress (O&NS) (1,
4, 31–33, 35–38, 50, 51)—as well ATP depletion and local

acidosis (50) induced by hypoxia. The result is a leaky gut
characterized by a reduction of intestinal immunity and increased
permeability of the intestines (1). This condition promotes
gram-negative bacteria (i.e., lipopolysaccharides, LPS) that are
normally contained in the gut to enter blood circulation (1, 4,
31–33, 35–38, 50, 52). Studies have shown that in the case of
heat stroke, the liver is unable to effectively clear endotoxin
(31), notably because of poor circulation in the venous system
that returns blood from the digestive tract and spleen to the
liver (37, 50). The resulting endotoxemia is assumed to trigger
a systemic inflammatory response syndrome (SIRS) in heat
stroke (as shown below) (4, 31–33, 35, 36, 53). Furthermore,
findings from critical illness suggest that additional forms of
intestinal injury play a role in driving critical illness, including
the erosion of the mucus barrier, a shift in the composition and
virulence of intestinal microbes, and the inability of the host
epithelium to regulate its proliferative and apoptotic response
(39, 54). These elements are thought to contribute to a vicious
cycle of inflammation and intestinal injury. Moreover, the
reduction in gut motility, the formation of toxic gut-derived
lymph, and a decrease in the secretion of gastrointestinal
hormones could contribute to multi-organ dysfunction in
critical illness (55, 56).

Critically, normalization of the core temperature during heat
stroke through cooling does not necessarily imply a reversion to
normal gut permeability or the end of endotoxemia (1). Some
researchers have thus suggested and tried to repair gut function
to treat heat stroke (38). This includes the administration of
nutritional supplements, such as glutamine and bovine colostrum
with some promising results (33, 50, 57, 58). Additionally, the
use of prebiotics and probiotics is being explored as an avenue
for treatment (38, 50). Others have had success in limiting
intestinal injury with the use of 4-phenylbutyrate to interrupt
the endoplasmic reticulum stress-mediated apoptosis pathway
of intestinal cells (59). Similarly, others have studied the use of
xanthine oxidase inhibitor (allopurinol) to protect the integrity
of tight cell-to-cell junctions in the gut of rat models (51). The
inhibition of endotoxemia by pre-treatment with LPS-specific
antibodies and corticosteroids to counteract LPS was shown to
protect animals from lethal heat stress (31, 60). Readers are
referred to the reviews for details on the results of human and
animal studies (35, 38, 50, 61).

In ME/CFS

Echoing the endotoxemia model of heat stroke, ME/CFS
researchers have hypothesized that the translocation of gut
microbes or toxins from the gastrointestinal tract and the
resulting inflammation is central to ME/CFS (62–66). Studies
have found gut hyper-permeability (63) and gut inflammation
(67) in ME/CFS as well as increased levels of the antibodies
to LPS (IgM and IgA) in serum of patients with ME/CFS (the
prevalence of patients with CFS with abnormally increased IgM
and IgA levels: 40% and 66.7%) (68). Moreover, researchers
have induced fatigue in mice through the administration of
LPS (69). Finally, studies have shown that the normalization
of leaky gut in ME/CFS by administration of natural anti-
inflammatory and antioxidative substances is accompanied by a
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FIGURE 1 | Pathophysiological mechanisms during heat stroke and similar mechanisms in myalgic encephalomyelitis/chronic fatigue syndrome ME/CFS [modified

from (36)].

clinical improvement (70). Readers are referred to the reviews
for a detailed discussion on the implication of gut permeability
on the immune system and mitochondrial function in ME/CFS
(7, 71).

It is worth noting that leaky gut is distinct from irritable bowel
syndrome (IBS), although the former is believed to contribute to
the latter (72). Leaky gut is related to changes in the permeability
of the tight junctions in the gut barrier, which can be observed
in the absence of symptoms (73). In research, changes in the
gut barrier have been measured in urine using sugar probes of
different molecular sizes, and in the circulation, using intestinal
fatty acid binding protein (iFAB), and claudine-3 (74, 75). iFAB
is an intracellular protein in the intestine wall and supports the
transportation of fatty acid across the gut barrier. Claudine-
3 is located between the tight junctions and functions as a
“glue” to preserve the integrity of the gut barrier. Leaky gut is
associated with diseases beyond the gut, such as diabetes (76)
and autoimmune diseases (77, 78). Conversely, IBS is related
to gut dysbiosis and is primarily associated with gastrointestinal
discomfort (79). Whereas IBS is widely recognized as a clinical
entity by the medical profession, leaky gut is largely considered
the domain of alternative medicine (80).

In summary, gut hyper-permeability and endotoxemia would
appear to be common to both heat stroke and at least a
subset of patients with ME/CFS patients—despite the difference
in onset events of these two conditions. These mechanisms
have far-reaching implications on various physiological systems,
including inflammation (as shown below). The results of human

and animal experiments to repair gut function and mitigate
endotoxemia in heat stroke might inform and provide new
therapeutic avenues for ME/CFS.

Systemic Inflammatory Response
In Heat Stroke

Bouchama and Knochel suggest that the inflammatory response
during the initial “acute-phase of heat stress” is mediated
primarily by interleukin-6 (IL-6) and other pro-inflammatory
cytokines, which serve to protect against tissue injury and to
promote repair. Indeed, IL-6 and other cytokines induced by
exposure to heat stress appear to mediate fever, leukocytosis,
increased synthesis of acute-phase proteins, muscle catabolism,
stimulation of the hypothalamic–pituitary–adrenal axis, and the
activation of leukocytes and endothelial cells (1). However,
an exaggeration of the acute-phase response can precipitate
a maladaptive progression from heat stress to heat stroke.
Specifically, leaky gut (as described above) hastens local
inflammation toward the “exaggerated” systemic inflammatory
response that underpins heat stroke (1). The field of exercise
immunology has demonstrated that LPS leaking from the
gut activates toll-like receptor (TLR) 4 on immune and
intestinal epithelial cell membranes. This activation results
in the production of pro-inflammatory cytokines, e.g., IL-
6, IL-1β, and tumor necrosis factor (TNF)-α (31, 33, 35,
50). Moreover, the animal models of heat stroke have shown
that, when LPS is present, NLRP3 (NOD-, LRR-, and pyrin
domain-containing protein 3) inflammasomes are activated and
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drive neuroinflammation (81). A vicious cycle centered around
intestinal injury ensues in heat stroke involving the release
of nitric oxide, the leakage of gut-related endotoxins, and
increased production of inflammatory cytokines (e.g., TNF-α,
IL-1β, and IFN-γ) (35). Anti-inflammatory cytokines (IL-10,
IL-1 receptor antagonist (IL-1ra), and TNF receptors p55 and
p75) are also elevated, but to a lesser degree (2). The mode
of action of cytokines in a heat stroke remains to be fully
understood (33, 36). However, the increase in inflammatory
cytokine levels is associated with inflammation-associated injury
and refractory immunosuppression (1, 36) and can induce fever
when transported to the brain (1, 82). Mouse models indicate
that glia cells are a likely source of cytokine and chemokine
production (36, 83).

Critically, normalization of the core temperature does not
necessarily inhibit the systemic inflammatory response in heat
stroke (1). Researchers have thus suggested and tried the
modulation of the inflammatory response as a form of heat stroke
treatment and prophylaxis, including with the administration
of IL-1 receptor antagonists (81, 84), corticosteroids (60, 85),
activated protein C (86), and the inhibition of nuclear factor-
kB activity (1). Others have used oleoylethanolamide to inhibit
LPS-induced TLR-4 stimulation of the immune response (50,
87). Blood purification therapy (53) and bone marrow-derived
mononuclear cell therapy (88) to reduce pro-inflammatory
cytokines have been suggested or tested in clinical trials. Other
clinical trials have tested the efficacy of antioxidants and anti-
inflammatories, such as quercetin (89). One study found that
parenteral administration of ascorbate attenuated heat stroke-
induced systemic inflammation inmice (90). Readers are referred
to the reviews for details on the results of human and animal heat
stroke studies (35, 50).

In ME/CFS

Akin to heat stroke, researchers have found that chronic
inflammation also underlies ME/CFS (91–95), including
inflammation of the brain—hence the name myalgic
encephalomyelitis (96, 97). Moreover, similarly to heat stroke,
O&NS has been documented in ME/CFS (98) and the cytokine
profile of patients with ME/CFS differs from healthy controls
(99, 100). Researchers have also linked NLRP3 inflammasomes
with inflammation in ME/CFS (101). Some researchers have
theorized that the complex pathways between these elements
(O&NS, cytokines, and inflammation) underpin the metabolic
dysfunction characteristic of the disease (102), including by
hindering mitochondrial (103) and hypothalamic function
(104, 105). Significantly, researchers suggest “the possibility
of a vicious cycle of immune-dysregulation and gut dysbiosis
accompanied by poor physiological gut function” perpetuating
a disease state in ME/CFS (7)—as is the case for heat stroke.
Readers are referred to the numerous studies and reviews
for a detailed discussion on the relationship between redox
imbalance, cytokines, and inflammatory pathways in ME/CFS
(7, 101, 106, 107).

In summary, inflammation associated with cytokines and
O&NS is central to both heat stroke and ME/CFS—despite the
difference in onset events of these two conditions. Moreover, a

vicious inflammatory cycle involving altered gut-blood barrier
function (leaky gut) may be a central element of both heat stroke
and some patients with ME/CFS. The results of human and
animal experiments to modulate the inflammatory response in
heat stroke might inform and provide new therapeutic avenues
for ME/CFS.

Central Nervous System Dysfunction
In Heat Stroke

Delirium, convulsions, and coma are common symptoms in
the clinical presentation of heat stroke. The mechanisms of
central nervous system injury in heat stroke are not well
understood but are likely due to the combination of ischemia,
hypoxia, thermolysis (Tc > 42◦C), and hemorrhage (108–
110). The animal models of heat stroke identified ischemia
resulting from decreased cerebral flow and increased intracranial
pressure as causing extensive cerebral neuronal injury (36).
Moreover, a decrease in brain blood supply and an increase
in intracranial pressure are followed by a compromised blood-
brain barrier and an increase in circulatory pyrogens (37). In
other words, analogous to the consequences of hypo-perfusion
in the gut, reduced blood flow to the brain can lead to
hypoxia, inflammation, and hyper-permeability within the brain,
facilitating protein and pathogen leakage from the systemic
circulation into the brain (32, 36, 37, 111). The severity of this
mechanism in heat stroke can lead to brain injury.

In ME/CFS

Central nervous system dysfunctions are present in ME/CFS,
albeit in a different form. Brain fog and hypersensitivity to
noise and light are common symptoms in patients with ME/CFS
(8, 13). However, the mechanisms in ME/CFS are arguably
even less well understood than in heat stroke. Brain imaging
studies revealed significant neuroinflammation (112–114) and
white matter abnormalities (115), which are confirmed by
autopsies (116). As mentioned above, a new unifying hypothesis
of ME/CFS suggests that vasoconstriction and hypoxia in muscle
and brain underpin ME/CFS, including cognitive impairments
(41, 42). Studies have shown reduced cerebral blood flow during
tilt tests (117). Akin to heat stroke, some patients with ME/CFS
present signs of increased intracranial pressure (118, 119),
consistent with altered blood flow. Alternatively, others have
hypothesized that ME/CFS is promoted by gut microbes or toxin
translocation from the gastrointestinal tract into other tissues,
including the brain (62). The central nervous system is generally
an immune-privileged site (i.e., protected from the peripheral
immune system) (120), but pathogens that reach the brain can
cause devastating inflammation (121).

In summary, central nervous system dysfunctions are central
to both heat stroke and ME/CFS, albeit in different forms and to
different degrees. Neuroinflammation, decreased blood flow to
the brain and increased intracranial pressure might be common
to both heat stroke and some ME/CFS patients. The animal
models of heat stroke may inform the understanding of central
nervous system dysfunction in ME/CFS.
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Coagulation Disorders and
Endothelial-Cell Injury
In Heat Stroke

Both the endotoxemia and the heat toxicity pathways are believed
to contribute to coagulopathy dysfunction and endothelial-cell
injury in heat stroke. First, intestine-derived endotoxins and
cytokines activate vascular endothelial cells and coagulation
factors to amplify the coagulation cascade (32, 35), which
triggers vascular endothelial cell injury (122, 123). Moreover,
the increase in core temperature directly leads to vascular
endothelium damage (2), which in turn drives coagulation (32,
36). Bouchama and Knochel (1) describe a complex interplay
among the cytotoxic effect of the heat and the inflammatory and
coagulation responses of the host. Together these mechanisms
result in a positive feedback loop, causing occlusion of the
arterioles and capillaries (i.e., microvascular thrombosis) (32,
53, 90, 122). The vascular endothelial cell injury in heat stroke
has been substantiated by evidence of differential expression of
exosome lncRNAs and miRNAs (122).

Critically, normalization of the core temperature does not
necessarily deactivate the coagulation process (1). Researchers
have thus suggested anticoagulation therapy (53) with
some initial positive results (124). Others have found that
dexmedetomidine protects endothelial glycocalyx and increases
the survival of rats during heat stroke (125). Readers are referred
to the reviews for details on the results of human and animal
studies (35, 38, 50).

In ME/CFS

Akin to heat stroke, hyper-coagulation was also suggested to
be a contributing factor in ME/CFS (126–128), but the findings
have not been consistent across the studies (129). The lessor
importance or absence of coagulation dysfunctions in ME/CFS
compared with heat stroke may be explained by the fact that
the “heat toxicity pathway,” one of the drivers of the “positive
feedback loop” driving coagulopathy dysfunction in heat stroke,
is absent in ME/CFS.

Studies have shown that endothelial function is impaired
in ME/CFS, both in large vessels and in microcirculation
(130, 131). As in heat stroke, these findings were substantiated
by indirect evidence related to the expression of miRNAs
relevant to endothelial function (132). A new hypothesis
for ME/CFS suggests that endothelial senescence underpins
ME/CFS by disrupting the intestinal and blood-brain
barriers (62).

In summary, coagulopathy dysfunction and endothelial-
cell injury may be common to both heat stroke and at least
a subset of patients with ME/CFS, despite the difference in
onset events of these two conditions. The results of human
and animal experiments to address coagulation disorders and
endothelial-cell injury in heat stroke might inform and provide
new therapeutic avenues for ME/CFS.

Mitochondrial Dysfunction
In Heat Stroke

There are only few studies that assess mitochondrial function
in heat stroke. ATP depletion (36) as well mitochondrial

swelling and vacuolization in the epithelial cells of the gut
have been observed in the mice models of heat stroke
(52). Moreover, animal studies have shown that apoptosis of
vascular endothelial cells in heat stroke was the deleterious
consequence of reactive oxygen species (ROS)-induced p53
translocation into mitochondria (133). Finally, it was shown in
vitro that higher temperatures can directly affect the viscosity of
mitochondria (134).

In ME/CFS

Akin to heat stroke, the immuno-inflammatory pathways
associated with O&NS are thought to be one of the possible
mechanisms driving mitochondrial dysfunction inME/CFS (103,
107). [Alternatively, mitochondrial dysfunction could be caused
by viral reactivation in ME/CFS (135, 136)]. Impaired energy
production (97, 137) and reduced mitochondrial activity (138–
140) are central to the pathology of ME/CFS (7). Researchers
have observed mitochondrial fragmentation (135) and impaired
pyruvate dehydrogenase function as well as lactate degradation
deficiencies in ME/CFS (141). Moreover, irregularities in the
metabolites of patients with ME/CFS (141, 142) suggest that
patients experience a hypometabolic or “dauer” state (143)
maintained by mitochondria; an evolutionary adaptation to
protect the cells and hosts from harm (c.f., “cell danger response”)
(30, 144, 145). Readers are referred to the reviews for a detailed
discussion on the relationship between the immune system and
mitochondrial function in ME/CFS (7, 71).

In summary, mitochondrial dysfunction may be common to
both heat stroke and ME/CFS, despite the difference in onset
events of these two conditions. Mitochondrial dysfunction can
be driven by immuno-inflammatory and O&NS pathways. The
animal models of heat stroke may inform the understanding of
mitochondrial dysfunction in some cases of ME/CFS.

Altered Gene Transcription
In Heat Stroke

A human transcriptome study performed by Bouchama et al.
using peripheral blood mononuclear cells (PBMCs) of healthy
volunteers exposed to short but extreme environmental heat
treatment found “downregulation of most of the genes involved
in the respiratory chain [. . . ] with a predicted decrease in
ATP production and increase in oxidative stress.” The findings
suggested that the “shift to glycolysis as a source of energy” and
“inhibition of mitochondrial respiration” were sustained at least
an hour after the end of the heat treatment. In addition, there
was a “downregulation of ubiquitin conjugation and proteasome
genes with a predicted decrease of protein refolding, mono-
and poly-ubiquitination, and antigen presentation” as well as
“decreased expression of the major histocompatibility I and II
complexes genes, suggesting reduced antigen presentation” that
persisted at least an hour after the end of treatment. To be
clear, the volunteers did not experience heat stroke (only heat
stress), but nonetheless, the study showed an adaptive response
of mitochondria to heat stress - namely, altered protein synthesis,
and reduced expression of genes related to immune function - to
persist at least an hour after the heat stress ended. The authors
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could not explain why cellular stress response to heat would
involve a “switch to a less efficient form of metabolism”(146).

In ME/CFS

Transcriptome studies have generally found altered gene
expression in patients with ME/CFS (147–154). Researchers,
for example, identified changes in the expression of genes
in peripheral immune cells related to inflammation and
mitochondrial function (153) as well as to oxidative stress (149)
and immune function (149, 150, 154). Others have found specific
microRNA expression patterns associated with specific symptom
severities (155). Readers are referred to the reviews for a detailed
discussion on alterations in gene expression in ME/CFS (95).

In summary, initial gene transcriptome studies would
appear to suggest overlaps in alterations of gene expressions
between the two conditions. Specifically, alterations in genes
related to mitochondrial and immune function may be
common to both heat stroke and some patients with ME/CFS.
Future transcriptome studies of heat stroke may inform the
understanding of ME/CFS.

Predisposing Factors
In Heat Stroke

Young children, the elderly, and patients with chronic diseases
are most susceptible to classic heat stroke. Further intrinsic
risk factors for classic heat stroke include underlying illness,
cardiovascular insufficiency, concurrent infections, and an
immune-compromised state (36).

However, the predisposing factors for exertional heat
stroke—which affects young and apparently healthy and
active individuals—are less clear. Similar to classic heat
stroke, researchers have suggested that prior bouts of illness,
infection or inflammation, preexisting barrier dysfunction, and a
compromised immune systemmay increase the risk of exertional
heat stroke (50, 156, 157). Specifically, prolonged stress exposure
and/or suboptimal dietary intake - which suppress the immune
system and alter the microbiome of the host, thus depleting
its immune and epithelial barrier functions - are thought to be
the determining factors in the susceptibility to exertional heat
stroke (31, 50). Accordingly, some researchers have suggested
that stress and lifestyle factors set the stage for a single event
that promotes LPS translocation (such as exertion) to overwhelm
the suppressed immune system (31). In the central circulation,
LPS can be bound to LPS-specific antibodies, monocytes, or
high-density lipoprotein and transported to the liver for removal
by the reticuloendothelial system (31, 34). Immune suppression
compromises LPS removal by monocytes and LPS-specific
antibodies, leading to an increase in the concentration of LPS in
the circulation (34, 158) and thus susceptibility to endotoxemia.

In terms of prior infection, a hypothesis derived from exercise
immunology research suggests that the immune system is
suppressed temporarily immediately post-intense exercise, which
provides a window for dormant viruses to be reactivated to
cause an infection (c.f. “open window theory”) (159). More
specifically, a group of researchers has shown that the increased
incidence of illness in response to excessive exercise is not due
to immunosuppression per se, but rather to an altered focus of

the immune function: an upregulation of humoral immunity and
suppression of cell-mediated immunity (160).

Regarding gender bias, a review of 22 studies found that
the overall risk for heat illnesses was 2.64 times higher in men
than in women, but the authors suggest this could relate to sex-
associated behavioral differences rather than physiology (161).
Indeed, women are disadvantaged in terms of thermoregulation
because of the smaller body surface area (BSA) to mass ratio,
a higher percentage of body fat, and lower maximal oxygen
consumption (VO2max) (158). A study showed that greater heat
intolerance in women relative to men is largely explained by
VO2max (162). A review of 24 studies of gender differences in
the armed forces suggest that being a female was associated with
a greater risk of exertional heat illnesses, but men experienced a
slightly higher incidence of exertional heat stroke (163)—perhaps
also because of behavioral differences.

Failure to increase the expression of heat shock proteins
(HSPs) has been implicated in the pathogenesis of heat stroke
(146). HSPs play a central role in the maintenance of endothelial
and epithelial barrier function (164, 165). Conditions associated
with a low level of expression of HSPs, for instance, aging, lack
of acclimatization to heat, and certain genetic polymorphisms,
may favor the progression from heat stress to heat stroke (1).
Initial studies have shown that selective pharmacologic induction
of the expression of HSPs (e.g., with alpha-lipoic acid) can protect
cells from apoptosis and inflammatory responses induced by heat
stroke (166).

Finally, Bouchama and Knochel suggest that “genetic factors
may determine the susceptibility to heat stroke; candidate
susceptibility genes include those that encode cytokines,
coagulation proteins, and heat-shock proteins involved in the
adaptation to heat stress” (1). Specifically, TLR4 polymorphisms
may be a genetic factor predisposing to mortality during the
systemic inflammatory response to heat stroke (36). However,
the importance of genetic factors as a risk for heat stroke
remains unresolved.

In ME/CFS

Akin to exertional heat stroke, the predisposing factors for
ME/CFS are not clear. Certainly, existing inflammation or
infection is likely a risk factor (167). Echoing the “open window
theory” of exercise immunology, it has long been suggested
that ME/CFS results from bacterial or viral reactivation in the
context of a suppressed immune system (168, 169), particularly
the reactivation of Epstein-Barr virus (EBV) and cytomegalovirus
(CMV) (170, 171). Cumulative life stress is considered a
predisposing factor for ME/CFS (172), which is also thought to
alter gut permeability and thus immune function (173). As in heat
stroke, the microbiome disturbances and dysbiosis are associated
with ME/CFS pathology (147, 174–179). Gender is a risk factor
for ME/CFS: the female-to-male ratio ranges from 2:1 to 6:1 (12).

Moreover, the studies have shown that ME/CFS is
characterized by impaired HSPs production (180) which,
combined with O&NS and low-grade inflammation, could
explain muscle dysfunction and exercise intolerance (181, 182).
Akin to heat stroke, it has been suggested (but not yet trialed) to
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incorporate the upregulation of HSP into future treatments for
ME/CFS (183).

Finally, research suggests theremay be a genetic element in the
pathogenesis of ME/CFS, such as polymorphism in genes related
to immunomodulatory response (184, 185), hormone action
(184, 186), and metabolic kynurenic pathways (187). However,
genetic associations are not consistent (188) and studies have had
quality-control issues (188, 189).

In summary, there are important similarities in predisposing
factors for heat stroke and ME/CFS. Pre-existing inflammation
or infection may make individuals susceptible to the conditions.
Viral reactivation may also play a role in both conditions. Both
are associated with immune suppression. Parallel hypotheses
suggest that cumulative stress and associated degradation of
microbiome health could set the stage for increased susceptibility
for both conditions. There is a female predominance in ME/CFS;
physiological differences may make women intrinsically more
susceptible to exertional heat illnesses than men. In addition,
insufficient expression of HSPs has been identified as a factor in
both conditions. Finally, genetics are thought to be a risk factor
for both conditions, but studies are inconclusive.

DISCUSSION

We suggest that the research on heat stroke might provide
important lessons for understanding and treating ME/CFS.
First, the findings from heat stroke confirm the possibility of
systemic inflammation that is not associated with an exogenous
pathogen (but rather with endogenous toxins). Heat stroke
is primarily an inflammatory response following an external
stressor (i.e., an increase in ambient temperature or over-exertion
during exercise). This insight is likely important for the broader
acceptance ofME/CFS as a disease that does not necessarily result
from an exogenous pathogen.

Second, the findings from heat stroke describe a sequence
and causality between physiological disturbances in various
body systems, including the cardiovascular, gastro-intestinal,
immune, and central nervous systems. The sequential pathway
from splanchnic vasoconstriction to hypoxia, redox imbalance,
and gut hyper-permeability (or intestinal injury) has been
consistently documented in both classic and exertional heat
stroke. The resulting endotoxemia, cytokine production,
systemic inflammation, and decreased cerebral flow are now
understood to underlie mitochondrial, central nervous system,
and multi-organ dysfunction in heat stroke. This knowledge of
the sequence and causality across systems is likely relevant for
understanding ME/CFS because of the overlaps in anomalies
across the two illnesses.

Third, heat stroke provides a model for disease perpetuation.
The heat stroke literature describes a “vicious cycle” centered
around intestinal injury involving the release of nitric oxide,
the leakage of endotoxins, and the increased production of
inflammatory cytokines. This model may also be relevant for
understanding the perpetuation of disease state in ME/CFS, as
these elements have also been documented in ME/CFS. However,
the prevalence of endotoxemia in ME/CFS requires further study
to estimate for what share of patients with ME/CFS a similar
“vicious cycle” might apply.

Fourth, heat stroke research—combined with the findings
from critical illness in general—suggests that intestinal injury
resulting from splanchnic hypo-perfusion is a common stress
response. This insight could help to understand how a variety of
triggers [i.e., physical, infectious, and/or emotional stressor(s)]
can result in homeostatic imbalance by initiating intestinal
injury. Incidentally, intestinal permeability and microbial
translocation are hypothesized to contribute to the pathology in
multiple sclerosis (190), rheumatoid arthritis (191), fibromyalgia
(192), and Hashimoto’s thyroiditis (193)—diseases for which
previous studies have described shared pathophysiological
mechanisms with ME/CFS (194–198). The endotoxemia and
inflammatory pathways described in these diseases echo the
patterns observed in heat stroke. A comparative assessment of
the overlaps (and differences) between these illnesses would
surely provide an important contribution toward resolving
these diseases.

Fifth, the results of therapeutic studies for heat stroke in
animals and people may indicate promising avenues for the
treatment of ME/CFS. Heat stroke researchers have tested the
use of pharmacological agents and supplements to repair the
immune and barrier function of the gut, mitigate endotoxemia,
and modulate the inflammatory response. By building on these
findings, researchers may identify therapeutic avenues with
potential for ME/CFS. The treatment of heat stroke is incomplete
and remains an active area of research; a collaboration between
ME/CFS and heat stroke researchers would likely benefit
both fields.

The findings from heat stroke may provide lessons for
understanding both the early and late stages of ME/CFS. Much of
heat stroke literature describes the mechanisms occurring within
the first 72 h of illness following heat stress. Specifically, adaptive
mechanisms intended to deal with stressors are “exaggerated”
in certain individuals, thereby overwhelming the homeostasis of
the body. Similar exaggerated adaptative responses to external
stressors and overwhelmed homeostasis may explain the early
stage of ME/CFS. Conversely, the detailed findings from heat
stroke regarding the mechanisms that prevent a reversion to a
normal homeostatic state even once the stressor is removed (c.f.
endotoxemia, O&NS, and pro-inflammatory cytokines) may help
to understand the late stages of ME/CFS in at least a subset of
patients with ME/CFS.

The existence of overlaps between heat stroke and ME/CFS
might initially appear unlikely because heat stroke is a
critical illness requiring intensive care, whereas ME/CFS is
a chronic illness that debilitates patients for months and
years. Moreover, the lack of a disease-specific biomarker
and heterogeneity in the clinical symptoms of patients with
ME/CFS (resulting inmisclassification/misdiagnosis) - combined
with the small sample size of many existing studies, pose
a challenge in the assessment of overlaps between the two
conditions. Yet our suggestion of overlaps between ME/CFS
and heat stroke is in line with earlier hypotheses of common
pathways in the physiological responses to very different
forms of stressors (26–30). A difference in the severity of the
vasoconstriction and “endotoxemia pathway” (i.e., intestinal
injury) between the two illnesses might explain the difference
in the critical/chronic natures of the illnesses. Whereas in
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heat stroke the vasoconstriction and “endotoxemia pathway”
are so severe that they lead to brain injury and “heat
sepsis,” the same mechanisms may be less severe but underpin
brain fog and chronic inflammation in some patients with
ME/CFS. Speculatively, at least a subgroup of patients with
ME/CFS might be thought of experiencing a series of mild
exertional heat strokes or a milder but chronic form of the
pathological mechanisms witnessed in exertional heat stroke.
Accordingly, post-exertional malaise - a key symptom ofME/CFS
according to Canadian Consensus Criteria - could be the
manifestation of accentuation of these mechanisms following
exertion. Additional research is required to assess the relative
severity of the pathophysiological mechanisms described above
within heat stroke and ME/CFS, and identify a subgroup of
patients where this hypothesis and the above lessons may be
most applicable.

Heat stroke is not known to provoke ME/CFS. However, the
patients surviving life threatening illnesses can develop PICS,
i.e., “the cognitive, psychiatric, and/or physical disability after
treatment in ICUs,” including ICU-acquired weakness (199,
200). PICS resembles ME/CFS and remains unresolved. It has
been suggested that the persistence of endocrine disturbances
observed during critical illness could also explain PICS (201).
The similarities and differences between PICS and ME/CFS
require further study. Auto-immunity—an important factor in
ME/CFS pathology (91, 93, 197)—remains largely unexplored in
heat stroke. However, auto-immunity has been associated with
inflammatory cytokines and leaky gut (77, 78), which are present
in heat stroke.

Neuroendocrine functions during heat stroke remain largely
unexplored (31). However, it would seem plausible that
the biphasic neuroendocrine pattern found in other critical
illnesses might also exist in heat stroke. Specifically, an
acute phase (in the first few hours or days) characterized
by increased release of pituitary hormones, followed in some
critical care patients by a prolonged phase (after a few days)
characterized by the suppression of the release of pituitary
hormones (202, 203). We have previously described the
relevance of the mechanisms during the prolonged phase
for ME/CFS (28)—notably the suppression of the pituitary
gland’s pulsatile secretion of tropic hormones (204), and
a “vicious circle” between inflammation, O&NS, and low
thyroid hormone function (205, 206). A compilation of the
relevant findings from heat stroke described above (i.e., on
the vascular, gastro-intestinal, immune, and nervous systems)
and the relevant findings from critical illnesses described
previously (i.e., neuroendocrine dysfunctions) might provide
important insights into the mechanisms that prevent recovery in
ME/CFS (28).

Finally, the lessons-learned from heat stroke for ME/CFS may
also be relevant for the aftermath of the COVID-19 pandemic.
Many patients with COVID-19 continue to experience a variety
of debilitating symptoms despite successfully clearing the virus—
termed “post COVID-19 syndrome” or “long COVID-19” —
that resemble ME/CFS (207–215). Moreover, the patients with
ME/CFS and COVID-19 recovery patients share “molecular
signatures” (216), which suggest overlaps in immune and
metabolic dysregulation (101).

CONCLUSION

There may be overlaps in the pathophysiological mechanisms in
heat stroke and ME/CFS, including splanchnic vasoconstriction,
increased gut permeability, gut-related endotoxemia, systemic
inflammatory response, central nervous system dysfunction,
blood coagulation disorder, endothelial-cell injury, and
mitochondrial dysfunction. Moreover, the pathophysiological
mechanisms involved may be self-perpetuating in both
conditions. Indeed, normalizing body temperature does not
necessarily reverse the multiorgan dysfunction in heat stroke;
similarly, ME/CFS persists even after the onset event (i.e.,
physical, infectious, and/or emotional stressor) has ended. A
vicious cycle centered around intestinal injury involving the
release of nitric oxide, the leakage of endotoxins, and increased
production of inflammatory cytokines are central to heat stroke
and have also been observed in some patients with ME/CFS.
Moreover, initial gene transcriptome studies show that the
alterations in gene expression related to mitochondrial and
immune function may be common to both conditions. Finally,
predisposing factors for heat stroke and ME/CFS appear to
partly overlap, including prior inflammation and the altered
gut microbiome. Genetics may contribute to the predisposition
of individuals in both illnesses, but the existing evidence is
inconclusive. Neuroendocrine functions during heat stroke
remain largely unexplored. The lack of a disease-specific
biomarker and heterogeneity in the clinical symptoms of patients
with ME/CFS—combined with the small sample size of many
existing studies—pose a challenge in the assessment of overlaps
between these illnesses.

A full description of therapeutic trials for heat stroke and
their relevance for ME/CFS is beyond the scope of the paper.
However, therapeutic approaches to repair the immune and
barrier function of the gut, mitigate endotoxemia, modulate the
inflammatory response, and induce the expression of HSPs have
been suggested or trialed for both conditions.

We suggest that lessons from the human studies and animal
models of heat stroke might contribute to the understanding
of ME/CFS. Specifically, the human studies and animal models
of heat stroke confirm the possibility of systemic inflammation
that is not associated with an exogenous pathogen. Moreover,
they describe a sequence and causality between physiological
disturbances in various body systems and provide an explanation
for the self-perpetuation of the disease state that might also
inform the understanding of ME/CFS. These studies—combined
with the studies from critical illness in general—could help to
understand how a variety of triggers (i.e., physical, infectious,
and/or emotional stressor) might lead to homeostatic imbalance
by initiating intestinal hyper-permeability (or intestinal injury).
Moreover, given the similarities described above, an exhaustive
analysis of the treatments already tried for heat stroke might
help identify which ones could be redeployed to treat ME/CFS.
Additional research is required to identify a subgroup of patients
with ME/CFS where these lessons may be most applicable.

The existence of possible overlapping pathophysiological
mechanisms between heat stroke and ME/CFS could further
provide support for a broader hypothesis that the maladaptive
mechanisms that prevent recovery in ME/CFS may be common
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to conditions induced by physical, infectious, and/or emotional
stressors, such as heat stroke, prolonged critical illness (chronic
ICU), PICS, cancer-related fatigue, post-viral fatigue, PACS,
and long-COVID-19. We thus suggest that collaborative efforts
should be sought among the researcher community across these
conditions to better understand these conditions and identify
treatments mitigating the functional disability that they induce.
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