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The Lewy Body Dementia Association (LBDA) held a virtual event, the LBDA

Biofluid/Tissue Biomarker Symposium, on January 25, 2021, to present advances

in biomarkers for Lewy body dementia (LBD), which includes dementia with Lewy

bodies (DLBs) and Parkinson’s disease dementia (PDD). The meeting featured eight

internationally known scientists from Europe and the United States and attracted over

200 scientists and physicians from academic centers, the National Institutes of Health,

and the pharmaceutical industry. Methods for confirming and quantifying the presence

of Lewy body and Alzheimer’s pathology and novel biomarkers were discussed.

Keywords: cerebrospinal fluid, alpha-synuclein, skin biopsy, seeded aggregation assays, tau, amyloid, Lewy body

dementia, LBDA biomarker symposium

INTRODUCTION

The Lewy Body Dementia Association (LBDA) Research Centers
of Excellence presented a virtual symposium on biomarkers
for consideration in clinical trials on January 25, 2021. The
goals were to identify biomarkers that may be useful as
inclusion criteria and as outcome measures in clinical trials in
Lewy body dementia (LBD) which is a major opportunity to
improve clinical trials for these individuals (1). The discussion
was confined to biomarkers in body fluids and tissues and
did not extend to other modalities such as neuroimaging.
Given that the majority of people with LBD harbor both
Lewy body and Alzheimer’s disease (AD) pathology (2–5),
options for identifying and quantifying the presence of each
of these types of pathology were reviewed. Novel biomarkers
for related disease processes such as endolysosomal trafficking
were also evaluated. Although the focus of the symposium
was to assess candidate biomarkers for potential use in clinical
trials, the role of biomarkers in disease pathophysiology was
also considered.

BIOMARKERS OF ALPHA-SYNUCLEIN
PATHOLOGY

Two modalities for detecting pathologic alpha-synuclein
were discussed: seeded aggregation assays (SAAs) and
immunohistochemical detection of pathologic alpha-synuclein
(Table 1). SAAs, also described as protein misfolding cyclic
amplification (PMCA) or real-time quaking-induced conversion
(RT-QuIC) assays, amplify small amounts of aggregated protein

in body fluids or tissue homogenates in an iterative process
of aggregation and partial disaggregation (6). Such assays
have become a focus of alpha-synuclein biomarker research
since measurement of total, phosphorylated, and oligomeric
alpha-synuclein in cerebrospinal fluid (CSF) and serum has
to date failed to demonstrate acceptable diagnostic value (14).
SAAs are well developed as a clinically useful assay in prion
disease, and several laboratories have now adapted the methods
for detecting aggregated alpha-synuclein in biofluids (15–18).
Dr. Lebovitz described published studies documenting that the
specificity and sensitivity of the PMCA assay in CSF samples
from clinically diagnosed individuals with Parkinson’s disease
(PD) is >90% (6, 17, 19). In dementia with Lewy bodies (DLBs),
seeding activity is significantly increased over PD, so it is perhaps
not surprising that test specificity and sensitivity are also >90%
for individuals with DLB vs. controls and individuals with DLB
vs. nonsynucleinopathies (16, 20, 21). Furthermore, certain
diseases not typically classified as synucleinopathies have been
shown to possess subtypes with incidental findings of Lewy body
pathology. Previous studies utilizing SAA report that clinically
diagnosed patients with AD were found to have aggregated
synuclein in CSF in 5/14 cases (36%) (19). Until now, SAAs
have been assessed only in clinically-diagnosed cases; however,
evaluation of diagnostic value in pathologically confirmed
individuals is underway.

In a cohort of 120 patients with a majority of AD clinical
diagnoses, the PMCA assay, using antemortem CSF samples,
correctly identified Lewy body pathology with a sensitivity of
61.5% and a specificity of 100%, when compared to autopsy
findings (unpublished). Interestingly, when broken down by
Lewy body distribution, people with AD who harbored Lewy
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TABLE 1 | Fluid and tissue biomarkers of alpha-synuclein pathology.

Biomarker Utility for

inclusion/exclusion

criteria

Utility as an outcome

measure

Procedure Comments

CSF, seeded aggregation

assay for alpha-synuclein

PD vs. Ctrl: good SN, SP,

AUC (0.89–0.95) (6)

PD/DLB/PAF: good SN,

SP (7) RBD vs. Ctrl: good

SN, SP (8)

Changes over time not

established.

PD: MIF correlates with

UPDRS score

RBD: PD/DLB risk (8)

Lumbar puncture Commercial test to be

released in 2021

Skin biopsy, seeded

aggregation assay for

alpha-synuclein

PD: good SN/SP (9, 10)

PD/DLB/MSA vs. other:

good SN/SP (10)

Change over time not

established

PD: MIF correlates with

UPDRS and MMSE (9)

Punch biopsy, frozen Promising results, numbers

of patients still modest,

lower SN/SP for FFPE

Skin biopsy(-ies), IF

synuclein & PGP 9.5

PD: good SN/SP when

optimized (11)

PD/DLB/MSA/PAF vs.

other: good SN/SP, better

for IF vs. CSF or skin

RT-QuIC in one study (12)

One study shows 7%

increase per year

(unpublished)

1–3 punch biopsies, frozen

or ZF

Promising results; needs

multisite validation;

commercial test offered

since 2020

Skin biopsy-single biopsy

(scalp), single-label IHC for

alpha-synuclein

PD: good SP with optimized

methods; SN limited (24%)

especially in early PD. Better

SN than colon (13)

Changes over time not

established

Punch biopsy, FFPE Not likely to be developed

further

Submandibular gland

biopsy

PD: good SP with optimized

methods; limited SN (56%)

especially in early PD; better

SN than colon and skin (13)

Changes over time not

established

Submandibular biopsy by

ENT

Not likely to be developed

further

Colon biopsy PD: good SP with optimized

methods; low SN (<15%)

especially in early PD (13)

Changes over time not

established

Colonoscopy with biopsy Not likely to be developed

further

Designation of “good” means >90%. PD, Parkinson’s disease; DLBs, dementia with Lewy bodies; PAF, pure autonomic failure; RBD, REM-behavior sleep disorder; UPDRS, Unified

Parkinson’s Disease Rating Score; MMSE, Mini Mental State Examination; SN, sensitivity; SP, specificity; AUC, area under the curve; MIF, maximum intensity fluorescence; FFPE,

formalin-fixed paraffin embedded tissues; IF, immunofluorescence; ZF, Zamboni’s fixative.

bodies mainly in the amygdala at autopsy were detected only
13% (2/15) of the time with the PMCA assay, suggesting that
this assay may not be suitable for certain subtypes of LBD
(unpublished). Patients clinically diagnosed with PD or DLB
and had autopsy-confirmed Lewy body pathology tested positive
by the PMCA assay 4/4 (100%) and 6/8 (75%), respectively
(unpublished). Quantitative aspects of the assays (e.g., time to
amplification, maximal fluorescence) still require further testing.
Data examining these metrics across individuals of advancing
disease state (measured by postmortem alpha-synuclein), within
individuals longitudinally, and with larger sample sizes are
ongoing and are needed to demonstrate clinical utility.

Dr. Beach provided a history of efforts since 2007 to develop
immunohistochemical detection of pathologic alpha-synuclein
in peripheral tissues as a biomarker of PD. Initial studies in
colon biopsies were limited by high false-positive rates and
poor interrater reliability, but subsequent multicenter studies
concluded that these problems could be addressed by the
screening of multiple candidate methods and training of raters.
Following such optimization, sensitivity and specificity of colon
biopsy in autopsy tissue were excellent (100% accuracy for one
method albeit in limited numbers of individuals) and could
be useful diagnostically (13, 22, 23). However, the question of
whether the colon was the best site for biopsy remained, due to an

insufficient amount of submucosa obtained with current biopsy
methods and invasiveness. Subsequent studies compared colon,
submandibular gland, and skin biopsy. The Systemic Synuclein
Sampling Study (“S4 Study”) employed consensus slide-reading
by a panel of 5 specially trained neuropathologists, all blinded
to diagnosis (13). The S4 Study found >90% specificity but
disappointingly low sensitivity (56% in submandibular gland,
24% in skin, and very low sensitivity in colon). This may in part
be attributable to the overrepresentation of early PD cases in the
S4 Study: one-third of cases had a median disease duration of
only 8 months, and the median disease duration for the entire PD
group was 42 months (13). Sensitivity was greater in participants
with more advanced PD, particularly in submandibular gland
biopsies (76%). Dr. Beach concluded that improvement in the
sensitivity of immunohistochemical methods was needed, or
alternatively, SAAs such as RT-QuIC may soon supersede them.
He hypothesized that whereas SAAs are already being done on
CSFwith very promising potential, peripheral tissue depositsmay
be a better model of brain tissue deposits and also perhaps a
better measure of target engagement for monoclonal antibodies
and other new therapeutic approaches.

Skin biopsy in the S4 Study consisted of two 3-mm skin punch
biopsies obtained from the paravertebral posterior–inferior
cervical area and mid-thigh; immunohistochemical labeling
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TABLE 2 | Fluid and tissue biomarkers of AD pathology.

Biomarker Utility for

inclusion/exclusion

criteria

Utility as an outcome

measure

Procedure Comments

CSF Aβ, tau, pTau DLB-AD > DLB-p:

tTau/Aβ1−42 good sensitivity

and specificity (2) DLB vs.

AD: Aβ42/Aβ38 modest

sensitivity and specificity

(AUC 0.76) (28, 29) AD vs.

MCI/Ctrl: core biomarkers,

improve detection of early

stages (30, 31)

PD: Progression (32)

DLB: Changes over time are

not established

DLB-AD vs. DLB-

p tTau/Aβ1−42 : worse

progression (2–4, 33–37)

AD: Prodromal / baseline Aβ

and tau related to later

atrophy, amyloid, decline

(38–41)

Lumbar puncture AD: soon universal Aβ

cutoffs. Timecourse data

marks AD subtypes (39, 42);

indicates drug-target

engagement (43, 44)

CSF NfL DLB: Sensitive and early

marker, nonspecific (45).

Elevations in DLB > Ctrl

(AUC 0.94), proDLB > Ctrl

(AUC 0.87), DLB > proDLB

(AUC 0.6), DLB-AD >

DLB-p (lower AUC vs.

tau/Aβ, not shown) (46)

MSA, PSP, CBS > other

parkinsonian dz (45, 47)

AD: sensitive,

nonspecific (31)

DLB: Changes over time are

not established

AD: Correlates with

degeneration (48); increase

with dementia, decline,

atrophy (46, 49).

Lumbar puncture

Plasma Aβ42/40 DLB: Aβ42 unchanged in

small study (50); ratio

not studied AD: Small effect

but good AUC (∼0.85),

complements covariates

(APOE ε4, age)

Changes over time are not

established

Blood draw AUC better for mass spec

vs. IA; however stability

unproven

Plasma tTau/pTau DLB: Nonspecific for DLB,

small study, ratio untested

(50); predicts abnormal

tau-PET and CSF

Aβ42/Aβ40 (51) AD vs.

Ctrl, NDD: pTau181 and

pTau217 accurate (AUCs)

(0.87 – 0.98); DLB part of

NDD controls (52)

DLB: Changes over time are

not established

AD: pTau181 and pTau217

predict and correlate with

ongoing progression

(52–54); more

amyloid-specific than

plasma NfL

Blood draw Head-to-head comparison

needed

Plasma NfL Nonspecific marker of

damage (54, 55) DLB and

proDLB vs. Ctrl: Elevated

but unclear test

performance (preprint) (56)

DLB: Predicts cognitive

progression (preprint) (56);

changes over time not

established

AD: Progression

independent of tau but not

AD-specific (54)

Blood draw

Designation of “good”means>90%. AD, Alzheimer’s disease; PD, Parkinson’s disease; DLBs, dementia with Lewy bodies; DLB-AD, dementia with Lewy bodies and AD biomarkers; DLB-

p, “DLB-pure”/dementia with Lewy bodies and lacking AD biomarkers; proDLB, prodromal DLB; MSA, multiple system atrophy; PSP, progressive supranuclear palsy; CBS, corticobasal

syndrome; tTau, total tau; pTau, phosphorylated tau; NDD, neurodegenerative diseases/dementias; NfL, neurofilament light chain; AUC, area under the curve; Ctrl, controls; dz, diseases;

IA, immunoassay.

was performed with an alpha-synuclein antibody after protease
pretreatment. Dr. Gibbons presented a distinct approach to
skin biopsy involving three punch biopsies from the distal leg,
distal thigh, and posterior cervical region in people with PD
and DLB, using a double-label immunofluorescence method
to detect and colocalize both alpha-synuclein and neuronal
markers (PGP 9.5) in thick sections (11, 24, 25). His team
found higher sensitivity than the S4 Study for a single biopsy
(74%) and increased sensitivity when considering two (90%) or

three (96%) biopsies (unpublished data presented at American
Academy of Neurology Conference, 2020). They reported overall
outstanding sensitivity and specificity for skin biopsy in this study
and subsequent validation (accuracy 99.1%) as a laboratory-
developed test, the “SYN-ONE” test (CND Life SciencesTM),
for discriminating peripheral synucleinopathies (PD, DLB,
multiple system atrophy, pure autonomic failure) from controls
(unpublished). In discussion, it was noted that Dr. Gibbons’
unpublished data correlated with clinical scores including the
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TABLE 3 | Fluid and tissue biomarkers for other disease mechanisms.

Biomarker Utility for

inclusion/exclusion

criteria

Utility as an outcome

measure

Procedure Comments

CSF autophagy markers DLB: Not established AD:

Increase PD: Decrease

DLB: Changes over time

not established

Lumbar puncture

Novel CSF biomarkers

NPTX2, VGF

DLB vs. Ctrl: • NPTX2

(AUC 0.81) • VGF

(AUC 0.81) •

NPTX2+VGF+age+ αSyn

(AUC 0.94) AD vs.

Ctrl/MCI: NPTX2 (68)

DLB: Low VGF associated

with cognitive decline at

time of presentation, high

VGF associated with future

cognitive decline (69);

changes over time are not

established

AD: NPTX2 change

correlates with cognitive

decline (68)

Lumbar puncture VGF correlated with CSF

tau and αSyn

Unified Parkinson’s Disease Rating Scale (UPDRS), Orientation
and Mobility Severity Rating Scale (OMSR), and DLB Cognitive
Scale (unpublished). Biopsy acquisition was performed, using the
SYN-ONE test, as part of a multicenter center study supported
by the NIH Office of Rare Diseases (Autonomic Disorders
Consortium). An additional multisite blinded study funded by
NIH is currently underway to evaluate how this approach fares
in the environment of multiple academic and private practice
sites with a core reference laboratory-developed test. The skin
biopsies prepared in this manner can also be quantified, and the
first quantitative studies show significant autonomic and sensory
nerve fiber density differences between groups, individuals
with DLB having the most severe autonomic and sensory
neuropathies, followed by idiopathic PD, and finally multiple
system atrophy (MSA), without evidence of peripheral nerve
degeneration. Dr. Gibbon’s group also recently reported that
cutaneous phospho-alpha-synuclein is moderately correlated (r
= 0.6) with both sympathetic and total autonomic impairment
in individuals with isolated REM sleep behavior disorder (iRBD)
and is more common in iRBD with hyposmia (26).

The final speaker in this session, Dr. Kanthasamy,
linked the SAA and tissue biopsy approaches by presenting
results from skin biopsy samples that were analyzed not
with immunohistochemistry but instead homogenized and
processed with RT-QuIC. After establishing the method with
autopsied brain tissue and submandibular gland (15, 27),
his group compared skin samples from individuals with PD
and controls and found that the SAAs performed on skin
homogenates yielded a specificity of 96% and sensitivity of
96% (9). The maximal fluorescence metric from the seeding
assay also correlated with disease severity (UPDRS p <

0.0001; Mini-Mental Status Examination (MMSE) p = 0.0035),
suggesting that quantitative aspects of this assay might be
useful as a marker of disease state and potentially as an
outcome measure in clinical trials targeting alpha-synuclein.
An advantage of seeding assays over immunohistochemistry
is that they do not require extended review by specially
trained neuropathologists.

BIOMARKERS FOR ALZHEIMER’S
DISEASE PATHOLOGY

Dr. Lemstra provided a summary of CSF biomarkers for AD
pathology in LBD (Table 2). Studies in neuropathologically-
confirmed cases have shown that mixed pathology can be
detected antemortem with CSF biomarkers using similar cutoffs
employed for AD. Larger in vivo cohorts including the
European DLB Consortium (E-DLB), Mayo Clinic Cohort,
and Amsterdam Dementia Cohort have shown that AD
biomarkers, either CSF (most commonly CSF tau/Aβ42 ratio)
or PET markers, are increased in DLB over PD and PDD
and correlate with DLB dementia, progression, and survival.
Evidence suggests that these Alzheimer markers likely reflect
concomitant Alzheimer pathological process along with the
Lewy body disease. Specifically, AD biomarker in DLB (DLB-
AD) is defined by the presence of AD biomarkers unlike
DLB-pure (DLB-p) and is a common subtype (at least 50%)
of DLB characterized by more rapid clinical deterioration
and mortality (33). DLB-AD is associated with increased age,
female sex, increased APOE ε4 genotype, decreased memory,
increased delusions and hallucinations, less REM-behavior sleep
disorder and parkinsonism, worse language performance, faster
progression, increased temporal thinning and tau pathology,
and greater risk of institutionalization and mortality (2–
4, 33–37). These findings are corroborated by postmortem
clinicopathologic studies which show that AD pathologic features
(neuritic plaques and also tangles) in cases clinically defined as
“probable DLB” are associated with an atypical “Alzheimerized”
clinical presentation (e.g., worse performed on orientation and
memory testing) (57, 58). Dr. Lemstra also presented studies
that show CSF AD biomarkers do not appear to influence
positivity rates of DaTscan (59) or electroencephalography (60)
but emphasized that more studies are needed. Different amyloid-
beta species were also discussed as possible biomarkers for
discriminating DLB from AD. Unlike AD, in which Aβ42 is
more selectively decreased, multiple studies have shown that
DLB exhibits a broader decrease of multiple amyloid-beta species
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(Aβ38, Aβ40, Aβ42). Furthermore, these studies show that some
species of amyloid-beta (Aβ38, Aβ40) decrease independently
of AD biomarkers (CSF tau/Aβ42) and APOE genotype,
and some species (Aβ38) correlate with disease duration.
Ratios (Aβ42/Aβ38) can discriminate clinical DLB from AD
with moderate accuracy (sensitivity 78%, specificity 67%) (28,
29). Limited data suggest a negative association between
symptomatic treatment with acetylcholinesterase inhibitors in
DLB and longitudinal changes in AD biomarkers (61). It was
proposed that DLB-AD could be considered for recruitment
into clinical trials for amyloid-modifying therapy in the
research setting, but future study is needed to clarify the
relationship between amyloid deposition and clinical symptoms
in AD and DLB-AD.

The final speaker, Dr. Shaw, summarized progress in blood
biomarkers for AD, mainly focusing on targets whose studies
are well underway (Aβ42/40, pTau181 and 217, neurofilament
light chain [NfL]), with a brief mention of earlier-stage targets
(alpha-synuclein, TDP-43, GFAP, NPTX2). Plasma Aβ42/40 as
a biomarker shows small but reproducible absolute differences
in amyloid-positive (by PET) vs. amyloid-negative patients and
shows early promise as a screening test alongside covariates,
APOE ε4 genotype, and age. In general, the area under the
receiver operating characteristic curve (AUC) has been better
in mass spectrometry studies (AUC 0.82–0.89) (62, 63) than
immunoassays (AUC 0.65–0.77, up to 0.80 when Aβ42 and
Aβ40 were used in a logistic regression model instead of the
Aβ42/Aβ40 ratio) (64). A large head-to-head round robin study
[Foundation for the National Institutes of Health Biomarkers
Consortium (FNIH BC)/Alzheimer’s Disease Neuroimaging
Initiative (ADNI)] nearing completion will compare 3 mass
spectrometry and 3 immunoassays for plasma Aβ42/40 ratio
concordance with amyloid-PET. pTau181 and pTau217, tested
by immunoassay or by mass spectrometry, can reliably detect
tau pathology and levels correlate with amyloid PET, cerebral
atrophy, and cognitive decline (53, 65). Some reports suggest
that pTau217 has somewhat superior sensitivity and specificity
vs. pTau181 for discriminating AD from other disorders and
healthy controls (66), but more head-to-head studies are needed
to definitively address this question. Preanalytical, analytical,
and clinical replication studies are underway in international
groups, and there are multiple companies developing diagnostic
tests for these targets. Dr. Shaw also highlighted the importance
of detailed preanalytical studies to test variables such as
delayed centrifugation at room temperature and freeze-thaw
cycles that can affect these measurements. The Alzheimer’s
Association Global Biomarker Standardization Consortium
recently reported that these findings at the 2021 Alzheimer’s
Association International Conference, underscoring the need
to resolve interlaboratory differences before widespread
clinical applications, are implemented. NfL was also briefly
mentioned as a third well-studied biomarker of nonspecific
neurodegeneration that needs larger head-to-head confirmatory
studies. During the discussion, other promising pTau targets
were mentioned including pTau231 and diphosphorylated
peptides. Low DLB enrollment in these studies was noted,
and ongoing consortia were highlighted that are measuring

pTau181, pTau231 and Aβ42/40, NfL, and glial fibrillary acidic
protein (GFAP). Newer CSF and plasma biomarkers for AD,
Lewy body, and non-AD neurodegenerative disorders are also
reviewed elsewhere (67).

BIOMARKERS OF OTHER DISEASE
MECHANISMS

Two modalities for the discovery of novel CSF biomarkers were
discussed: mass spectrometry and antibody array proteomics
(Table 3). Mass spectrometry is an unbiased approach with
longstanding precedent in laboratory testing and biomarker
research (e.g., plasma AD markers discussed above), whereas
newer antibody arrays, such as O-link R© Proximity Extension
Assay (PEA) discussed below, offer more targeted, higher
throughput, and potentially more sensitive multiplexed
immunoassays. Interestingly, these technologies have been
shown to cover different fractions of the proteome, leading to
partly complementary results (70).

Dr. Zetterberg presented CSF mass spectrometry data of a
panel of proteins involved in endolysosomal and autophagosome
processing. These fundamental intracellular sorting organelle
systems have been implicated by genetic and histologic studies
in DLB [reviewed in Arotcarena et al. (71)] but have rarely
been studied in CSF. Dr. Zetterberg presented data from the
measurement of these proteins quantitatively in AD and PD
and achieved simultaneous measurement of 18 related proteins
in approximately 0.2ml of CSF. The team’s results show a
pattern of increase in AD vs. controls for many lysosomal
markers (e.g., cathepsin B, LAMP2) and endocytosis (AP2) and
ubiquitin whereas there was a decrease in PD for the same
group of proteins. The causes of increased protein release in
AD and decreased release in PD are unknown but results argue
against nonspecific neurodegeneration since results for AD and
PD are in the opposite direction. Discussants noted similar
decreases across multiple proteins (synuclein, tau, Aβ) in the
Parkinson’s Progression Markers Initiative (PPMI) cohort and
one speculated unifying explanation was retromer dysfunction
(72). Studies in patients with DLB have not yet been performed
using this approach.

The second speaker, Dr. Teunissen, first discussed biomarker
discovery in DLB using mass spectrometry and ELISA validation.
Six potential targets were identified in DLB vs. control including
downregulation of neurosecretory protein VGF, neuronal
pentraxin-2 (NPTX2), neuroendocrine convertase 2 (PCSK2),
neuronal pentraxin receptor (NPTXR), upregulation of ubiquitin
carboxyl-terminal hydrolase (USP14), and proteasome subunit
beta type-7 (PSMB7) (73). The extent of downregulation of
NPTX2 and VGF in DLB was greater than but overlapped
with the extent of downregulation in AD and PD. It is
unclear whether DLB patients with lower NPTX2 have more
amyloid pathology, a potentially important distinction given
that AD studies (e.g., ADNI) also find NPTX2 dysregulation
(68). In the second half of his presentation, Dr. Teunissen
presented early results of a broad search for distinguishing
a DLB subgroup with AD CSF biomarkers (DLB-AD) using
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multiplexed immunoassay arrays, Olink R©, discussed briefly
above. Interestingly, Dr. Teunissen’s early data disagree with
the hypothesis that biomarkers for DLB-AD represent a simple
combination of biomarkers for Lewy body disease plus AD.
The team found that DLB-AD had unique features compared
to DLB-p and AD, including lower CSF protein levels and
specific protein differences. In contrast, few differences in
proteins were observed between DLB-p and AD in these data.
The identity of these proteins enriched in DLB-AD included
cell adhesion, cytokine–cytokine interactions, axon guidance,
and neurogenesis. Preliminary validation studies with a more
quantitative immunoassay, the Ella R© system, show replication
of Olink R© hits and further discriminatory power of candidate
proteins in addition to pTau and tTau in distinguishing DLB
from AD.

CONCLUSION AND FUTURE DIRECTIONS

Alpha-Synuclein Biomarkers
There was agreement by the presenters regarding the urgent
need for sensitive and specific in vivo biomarkers to detect
alpha-synuclein pathology, which has the potential to improve
therapeutic targeting and also to inform disease pathogenesis.
Panel discussants provided insights into the logistics and needs
for further validation of emerging peripheral tissue biopsies and
SAAs for these approaches to reach utility in therapeutic trials
and eventually clinical use. Key gaps include the need for further
autopsy validation, longitudinal analyses, and standardization
of assay methods. Indeed, there are animal and cell-model
data which suggest that alpha-synuclein pathology can spread
throughout the nervous system (74, 75), but it remains unclear
whether and how this occurs in humans. The Braak staging
system for PD suggests that pathology begins in the peripheral
autonomic nervous system or olfactory bulb and then migrates
proximally to the amygdala and brainstem and in the more
severe cases, to the cerebral cortex (76). This model is supported
by some human studies, such as those of multiple groups
finding high levels of alpha-synuclein pathology in skin biopsies
in early PD and REM-sleep behavior disorder (RBD) without
other clinical evidence of synucleinopathy (12, 25, 26, 77–
79). However, the model is not supported by other large
autopsy-based studies that find no evidence of peripheral-first
synucleinopathy (e.g., stomach vs. brain) and that peripheral
synucleinopathy is more common and severe in later stages
(80, 81). Overall, these observations combined with the fact
that limbic Lewy body pathology may occur prior to brainstem
pathology in the course of DLB, indicate that the initiation
and propagation of Lewy body pathology is varied among
the synucleinopathies (82) and may vary by predictors such
as genotype, and that future study is needed to resolve
these findings.

AD Biomarkers in LBD
In contrast to biomarkers of alpha-synuclein, sensitive AD
biomarkers are established and provide a link between clinical

and pathologic aspects of DLB with and without AD pathology.
Panelists agreed with the potential importance of stratifying
therapeutic trial inclusions and/or outcomes based on AD
biomarker profiles in LBD due to the strong association of
these biomarkers with clinical outcomes, exemplified by the
prospective data in the European DLB (E-DLB) consortium. The
frequency of AD pathology in DLB (DLB-AD) varies between
25 and 89% depending on biomarker cutoffs and diagnostic
criteria (2–5). Distinct lines of evidence have shown that DLB-
AD may represent a biological interaction of these mixed
amyloid-beta, tau, and alpha-synuclein pathologies. In clinically
defined DLB, unpublished data suggest that DLB-AD appears to
exhibit a distinct CSF immunophenotypic pattern, raising the
importance of exploratory biomarker discovery work to further
refine biological subgroups inDLB.Moreover, in autopsy-defined
DLB, there is lower overall tau compared to AD and higher
temporal lobe enrichment of tau that is associated with both
cortical thinning and cognitive impairment (37, 83). Although
the longitudinal assessment of AD biomarker progression in
DLB is understudied, there are conflicting results in PD (32,
84) that appear to be explained by variable disease stages and
methods of measurement in individual studies, but also intrinsic
biological variability between patients. Thus, future prospective
longitudinal DLB-specific studies with autopsy-confirmation are
needed to quantitatively compare the time course of amyloid
and tau biomarkers and to consider potential DLB-specific
cutoffs. By enabling the study of homogenous patient populations
with similar underlying biology, these efforts will increase
the capacity to assess treatment outcomes in DLB-focused
clinical trials.

Overall, rapid progress has been made in the development
of fluid and tissue-based biomarkers for Lewy body dementia
and they show promise as useful tools. Further external
validation and translational research are needed specifically
in individuals with Lewy body dementia to accurately
determine biomarker test characteristics and overall
determine how these individuals may benefit from such a
biomarker test.
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