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4Oslo Center for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway, 5Division of

Emergencies and Critical Care, Department of Research and Development, Oslo University Hospital,
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Importance: Vagus nerve innervation via electrical stimulation andmeditative-

based diaphragmatic breathing may be promising treatment avenues

for fibromyalgia.

Objective: Explore and compare the treatment e�ectiveness of active and

sham transcutaneous vagus nerve stimulation (tVNS) and meditative-based

diaphragmatic breathing (MDB) for fibromyalgia.

Design: Participants enrolled from March 2019–October 2020 and randomly

assigned to active tVNS (n = 28), sham tVNS (n = 29), active MDB (n =

29), or sham MDB (n = 30). Treatments were self-delivered at home for 15

min/morning and 15 min/evening for 14 days. Follow-up was at 2 weeks.

Setting: Outpatient pain clinic in Oslo, Norway.

Participants: 116 adults aged 18–65 years with severe fibromyalgia were

consecutively enrolled and randomized. 86 participants (74%) had an 80%

treatment adherence and 107 (92%) completed the study at 2 weeks; 1

participant dropped out due to adverse e�ects from active tVNS.

Interventions: Active tVNS is placed on the cymba conchae of the left ear;

sham tVNS is placed on the left earlobe. Active MDB trains users in nondirective

meditation with deep breathing; sham MDB trains users in open-awareness

meditation with paced breathing.

Main outcomes and measures: Primary outcome was change from baseline

in ultra short-term photoplethysmography-measured cardiac-vagal heart rate

variability at 2 weeks. Prior to trial launch, we hypothesized that (1) those

randomized to active MDB or active tVNS would display greater increases
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in heart rate variability compared to those randomized to sham MDB or

sham tVNS after 2-weeks; (2) a change in heart rate variability would be

correlated with a change in self-reported average pain intensity; and (3) active

treatments would outperform sham treatments on all pain-related secondary

outcome measures.

Results: No significant across-group changes in heart rate variability were

found. Furthermore, no significant correlations were found between changes

in heart rate variability and average pain intensity during treatment. Significant

across group di�erences were found for overall FM severity yet were not found

for average pain intensity.

Conclusions and relevance: These findings suggest that changes in

cardiac-vagal heart rate variability when recorded with ultra short-term

photoplethysmography in those with fibromyalgia may not be associated

with treatment-specific changes in pain intensity. Further research should be

conducted to evaluate potential changes in long-term cardiac-vagal heart

rate variability in response to noninvasive vagus nerve innervation in those

with fibromyalgia.

Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT03180554,

Identifier: NCT03180554.

KEYWORDS

meditation, diaphragmatic breathing, vagus nerve, vagus nerve stimulation (VNS)

therapy, chronic pain and fibromyalgia, heart rate variability (HRV), pain intensity

Introduction

Fibromyalgia (FM) is a chronic disorder characterized by

disabling pain that lasts for 3months ormore inmultiple regions

of the body and is commonly associated with psychological

distress (1). Global prevalence rates for FM are estimated to be

4.9 % in women and 2.9 % in men (2, 3) with a treatment cost of

$12-14 billion each year in the United States alone1. Currently

available FM treatments provide only modest improvements

in pain and minimum improvements in psychophysiological

functioning (4–11). The complex etiology of FM makes it

continually difficult to develop targeted treatment strategies that

are effective, affordable, and safe.

The presence of autonomic nervous system (ANS)

dysfunction in those with FM (12, 13) is significantly associated

with high self-report pain intensity when compared to pain-

free controls (14). A frequently reported indication of ANS

dysfunction in FM is low resting-state heart rate variability

(HRV) (15). HRV represents the change in the time interval

between successive heartbeats and is one of the most important

indexes of cardiovascular and autonomic health in clinical

and nonclinical populations (16–22). Compared to healthy

controls, those diagnosed with FM display significantly lower

1 https://www.fmaware.org/fibromyalgia-the-economic-burden/

levels of cardiac vagal tone— specific HRV variables thought to

indirectly measure activity of the vagus nerve, the main nerve of

the parasympathetic nervous system (19, 23–26).

Vagus nerve stimulation (VNS), which typically involves

electrical stimulation of the vagal nerve, is an approved therapy

for both refractory epilepsy and treatment-resistant depression

(26, 27). Preliminary intervention trials on humans have

shown that electrical VNS reduces widespread pain in patients

with treatment-resistant FM (28) and reduces sensitivity of

mechanically evoked pain in healthy volunteers (29). In addition

to electrical-based VNS, cardiorespiratory VNS in the form

of meditative-based diaphragmatic breathing (MDB) can also

be used to directly influence brain electrical activity mediated

by the vagus nerve arising from the diaphragm (30). MDB

techniques demonstrate positive analgesic effects for some acute

pain conditions but have yet to be determined effective for

those with FM (7). These findings suggest that an indirect

mediation of pain intensity through changes in cardiac-vagal

tone may be a pathway to alleviate pain and disability in FM

(31). To date, experimental evidence elucidating the underlying

psychophysiological mechanisms is lacking.

The primary aim of this single-blinded randomized

sham-controlled clinical trial was to evaluate and compare the

effects of two noninvasive and portable means of electrical-

and cardiorespiratory-based VNS—transcutaneous vagus
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nerve stimulation (tVNS) and meditative-based diaphragmatic

breathing (MDB)—on photoplethysmography (PPG) measured

cardiac vagal HRV and average self-report numeric rating

scale (NRS) pain intensity. We hypothesized that adults

with FM randomized to receive active MDB or active tVNS

would display greater increases in HRV as compared to those

randomized to sham MDB or sham tVNS after 2-weeks of

treatment. Furthermore, we hypothesized that a change in

HRV would be correlated with a change in self-reported NRS

pain intensity. Lastly, we hypothesized that active treatments

would outperform sham treatments on all clinical pain-related

secondary outcomes.

Materials and methods

Setting and procedure

Study design and clinical trial protocol was peer-reviewed

and published [see trial protocol (31)]. FM participants were

consecutively recruited from, (1) the Department of Pain

Management and Research at Oslo University Hospital, in Oslo,

Norway; (2) the surrounding Oslo community; and (3) from

the south-east region of Norway. Information describing the

trial was posted on ClinicalTrials.gov (Identifier: NCT03180554)

and CRISITIN (Current Research Information System in

Norway). Interested participants were directed to the Oslo

University Hospital website where they logged into a secure

digital data collection system and filled out a brief self-

report inclusion/exclusion form. Participants who met self-

reported inclusion criteria received an appointment for both

clinical visitation I (CVI) and clinical visitation II (CVII) at

the Department of Pain Management and Research, Division

of Emergencies and Critical Care, Oslo University Hospital

(Figure 1). Inclusion and exclusion criteria were assessed using

data from the self-report digital inclusion/exclusion form and

an in-person diagnostic screening interview at CVI. Participants

enrolled between March 2019 and October 2020. Ethical

approval was obtained by the Regional Committee for Medical

and Health Research Ethics (REC South-East, Project Number:

2017/7066) in Norway in May 2017.

Participants and blinding

Participants were 18–65 years of age with severe FM that

persisted at least 3 months or more with an average self-report

NRS pain intensity of 6-10. A full list of study exclusion criteria

can be found in trial protocol (31). Participants provided both

oral and written informed consent for participation. Active and

sham treatment allocation was concealed from the participants

and testing administrators—both were told that they will

provide/receive two different versions of nerve stimulation at

different locations on the ear (for the tVNS group) or that

there are two breathing techniques that are being explored

(for the MDB group). The testing administrators introduced

either “Version 1” (active) or “Version 2” (sham) of the

respective treatment interventions. The principal investigators

were blinded to patient treatment allocation as well as

the randomization.

Randomization

Participants were consecutively randomized to one of the

four treatment groups which were ran in parallel: tVNS #1

(active); tVNS #2 (sham); MDB #1 (active); MDB #2 (sham).

The computer-generated randomized allocation sequencer was

imported into an electronic data capture system and made

available to testing administrators. The randomization was

stratified by sex (male = 1, female = 2) and cardioactive

medications (yes = 1, no = 0) with varying block size within

strata. Participants were permitted to continue taking any

previously prescribed pain medications during the trial period.

Interventions

Both treatment types (MDB or tVNS) and versions (active

or sham) were self-delivered for 15min in the morning upon

waking and 15min at night before bed for a total duration of

2-weeks [see intervention details in (31)]. Participants received

a step-by-step training session and instruction manual on how

to self-deliver their assigned treatment at home for the 14-day

period at Clinical Visitation I (CVI). Treatment adherence was

evaluated at the end of CVII by testing administrators by a

combination of HRV recording sessions and respiratory data

(for active and shamMDB).

Active and sham MDB was delivered via an android

smartphone-app program (32) and compatible CE-approved

respiratory gating device (31). Active MDB guided participants

in nondirective meditation (33) and slow diaphragmatic

breathing (6 breadths/min) (17) whereas sham MDB instructed

participants in focused paced breathing (22, 34, 35) at 12

breadths/min—the normal resting respiration rate for an

adult (36). Active and sham auricular transcutaneous vagus

nerve stimulation (tVNS) was delivered utilizing two titanium

electrodes connected to a portable electrical stimulator (22, 37–

39). Participants placed the bipolar stimulation electrode within

the conchae of the left ear (active tVNS) or on the center of the

left earlobe (40, 41) (sham tVNS). A detailed description of tVNS

and MDB delivery is described in (31).

Follow-up

Testing administrators collected data in-person at baseline

(CVI) and post-intervention follow-up (CVII).
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FIGURE 1

CONSORT flow diagram of study participation. aCondition 1: Widespread pain index (WPI) ≥ 7 and symptom severity scale (SSS) score ≥ 5;

Condition 2: WPI of 4–6 and SSS score ≥ 9. bOf the 116 participants randomized, 86 completed 80% of their assigned home treatment (i.e., 23

out of 28 total treatment sessions) which was regarded as adequate treatment adherence; tVNS version 1: 24 participants compliant; tVNS

version 2: 25 participants compliant; MDB version 1, 20 participants compliant; MDB version 2, 17 participants compliant. cIllness: tVNS version

1, 1 participant discontinued treatment due to a diagnosis of a comorbid condition; MDB version 1, 1 participant discontinued treatment due to

sickness; MDB version 2, discontinued treatment due to excessive fatigue. dAdverse treatment e�ects: tVNS version 1, 1 participant discontinued

treatment due to chest discomfort and additional pain due to tVNS stimulation. eUnable to travel: MDB version 1, 1 participant discontinued

treatment due to unknown circumstances and trouble traveling to the clinic; MDB version 2, 1 participant discontinued treatment due to trouble

traveling to the clinic. fDi�culty performing treatment: MDB version 1, 1 participant discontinued treatment due to di�culty with following the

breathing pattern; MDB version 2, 1 participant discontinued treatment due to di�culty with the meditation posture. gTechnical malfunction:

tVNS version 2, 1 participant discontinued treatment due to technical issues with their ear electrode; MDB version 2, 1 participant discontinued

treatment due to technical issues with the MDB intervention app and HRV app. CVI, Clinical Visitation I; CVII, Clinical Visitation II; tVNS,

transcutaneous vagus nerve stimulation; MDB, Meditative-based diaphragmatic breathing; ITT, intent-to-treat.

Measures

FM diagnostic information and cardiovascular information

was obtained at baseline (Table 1). Primary and secondary

outcome measures were collected at baseline and post-

intervention follow-up.

Primary outcome

Resting-state photoplethysmography (PPG)-measured HRV

data was obtained via an Android App utilized in prior

research trials (42–44) and validated with the Polar H7 device

and electrocardiography (ECG) (45) at CVI and CVII. HRV

recordings of 1min were used to assess cardiac-vagal HRV

parameters: the root mean square of successive differences

(rMSSD), high-frequency (HF) HRV, and the percentage

of successive RR intervals that differ by more than 50ms

(pNN50). PPG-measured HRV is considered a reliable means of

computing HRV if the correct procedural methods of recording

are implemented in trials (46): each participant was instructed

to remain seated for at least 5min prior to taking the first

HRV measurement to acclimatize; acclimatization reduces HRV

changes due to posture changes (47, 48) and help reduce

confounds driven by participant test anxiety and changes

in respiration (18, 49, 50). Immediately following the 5min

acclimatization period, three 1- min HRV recordings were

taken on the tip of the right index finger of each participant

separated by 1-min intervals [recording procedure is provided

in (31)]. Due to the impact of attentive states and test anxiety on
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TABLE 1 Baseline characteristics of participants by treatment group.

Baseline characteristics Mean (SD)

Total

(N = 116)

Active tVNS

(n = 28)

Sham tVNS

(n = 29)

Active MDB

(n = 29)

ShamMDB

(n = 30)

Female, N (%) 110 (94.8) 27 (96.4) 28 (96.6) 27 (93.1) 28 (93.3)

Age (yrs) 45.69 (10.25) 48.25 (8.88) 45.45 (12.04) 46.76 (10.43) 42.50 (8.95)

Body mass index (BMI) (kg/m2) 29.33 (6.35) 29.26 (6.49) 29.37 (5.49) 29.57 (7.90) 29.11 (5.59)

Waist-to-hip ratio (WHR) 0.83 (0.08) 0.83 (0.07) 0.83 (0.10) 0.82 (0.08) 0.85 (0.07)

Systolic blood pressure (SBP) (mm Hg) 119.24 (14.21) 117.82 (15.27) 121.54 (14.48) 115.10 (13.77) 122.43 (12.82)

Diastolic blood pressure (DBP) (mm Hg) 77.76 (9.09) 77.57 (9.77) 79.07 (8.92) 76.14 (9.31) 78.27 (8.56)

Average resting heart rate (HR) (BPM) 62.69 (9.60) 58.88 (9.58) 63.12 (9.15) 64.93 (10.43) 63.68 (8.61)

Average interval between heart beats

(AVNN) (ms)

983.50 (155.55) 1049.42 (163.16) 971.11 (145.94) 950.37 (166.52) 968.17 (135.56)

N (%)

Spouse/Partner? 75 (65.8) 21 (75.0) 20 (71.4) 17 (60.7) 17 (56.67)

Daily caffeinated coffee and/or tea

consumption (cups/day), mean (SD)

2.85 (2.04) 3.0 (1.59) 2.71 (1.98) 2.93 (1.29) 2.77 (2.33)

Smoke currently, yes 12 (10.5) 2 (7.1) 3 (10.7) 3 (10.7) 6 (20.0)

Alcohol consumption 4 or more days/week,

yes

10 (8.8) 3 (10.7) 0 5 (17.9) 2 (6.7)

Exercise about every day, yes 34 (29.82) 4 (19.3) 11 (39.3) 12 (42.9) 7 (23.3)

Snuff or chewing tobacco daily consumption,

yes

5 (4.4) 0 0 2 (7.1) 3 (10.0)

Antidepressants 23 (19.8) 3 (10.7) 7 (24.1) 6 (20.7) 7 (23.3)

Cardioactive medication currently taking, yes 87 (75.0) 20 (71.4) 22 (75.9) 22 (75.9) 23 (76.7)

Blood pressure medication currently taking,

yes

21 (18.10) 6 (21.43) 4 (13.79) 6 (20.69) 5 (16.67)

Cholesterol medication currently taking, yes 9 (7.76) 4 (14.29) 2 (6.90) 2 (6.90) 1 (3.33)

Anxiolytics currently taking, yes 6 (5.17) 1 (3.57) 1 (3.45) 1 (3.45) 3 (10.00)

Prescription pain medication (analgesics)

currently taking, yes

40 (34.48) 10 (35.71) 8 (27.59) 12 (41.38) 10 (33.33)

Non- prescription pain medication

(non-analgesic) currently taking, yes

14 (12.1) 4 (14.3) 4 (13.8) 2 (6.9) 4 (13.3)

Sleeping pills currently taking, yes 23 (19.8) 5 (17.86) 8 (27.59) 8 (27.59) 2 (6.67)

Hormonal contraceptives (women only), yes 36 (32.7) 3 (11.1) 10 (35.7) 10 (37.0) 13 (46.4)

Menopause hormones taking (women only),

yes

13 (12.0) 2 (7.7) 4 (14.8) 3 (11.1) 4 (14.3)

Baseline measures of primary HRV outcome values, median (IQR)

rMSSD (ms) 42.25 (32.25–59.65) 48.2 (39.1–57.6) 39.0 (31.8–59.5) 39.2 (29.8–50.6) 41.7 (27.6–66.9)

hfHRV (ms2) 0.046 (0.033–0.068) 0.054

(0.04–0.07)

0.05 (0.03–0.06) 0.05

(0.04–0.07)

0.04 (0.03–0.09)

pNN50, mean (SD) (%) 25.41 (18.92) 27.99 (14.58) 24.06 (19.61) 23.07 (18.60) 26.65 (22.27)

Baseline measures of secondary outcome scores, mean (SD)

Clinical pain outcomes

Numerically rated scale (NRS) current pain

intensity (0–10), mean (SD)

5.49 (1.77) 5.57 (1.55) 5.62 (1.82) 5.69 (2.16) 5.10 (1.52)

FM widespread pain index (WPI) (0–19),

mean (SD)

14.26 (2.67) 14.82 (2.65) 14.38 (3.14) 13.79 (2.38) 14.07 (2.46)

(Continued)
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TABLE 1 (Continued)

Baseline characteristics Mean (SD)

Total

(N = 116)

Active tVNS

(n = 28)

Sham tVNS

(n = 29)

Active MDB

(n = 29)

ShamMDB

(n = 30)

FM symptom severity scale (SSS) (0–12),

mean (SD)

9.19 (1.87) 9.64 (1.91) 8.97 (2.03) 8.97 (1.94) 9.20 (1.61)

FM severity (FS) scale (WPI+ SSS) (0–31),

mean (SD)

23.45 (3.68) 24.45 (3.42) 23.34 (4.45) 22.76 (3.37) 23.27 (3.34)

Average numerically rated scale (NRS) pain

intensity in the last week (0–10), mean (SD)

6.72 (0.74) 6.68 (0.77) 6.83 (0.80) 6.79 (0.73) 6.60 (0.77)

Treatment credibility and expectancy, mean (SD)

At this point, how logical does the treatment

offered to you seem? (1-9)

6.57 (1.81) 6.39 (1.87) 6.64 (1.68) 6.54 (1.55) 6.70 (2.15)

At this point, how successfully do you think

this treatment will be in raising the quality of

your functioning? (1-9)

5.50 (1.66) 5.71 (1.90) 5.68 (1.16) 5.04 (1.32) 5.57 (2.06)

How confident would you be in

recommending this treatment to a friend

who experiences similar problems? (1-9)

5.39 (2.23) 5.86 (2.19) 5.11 (1.93) 5.54 (2.03) 5.10 (2.68)

By the end of the treatment, how much

improvement in your function do you think

will occur? (0-100%)*

39.91 (19.39) 43.93 (21.49) 45.36 (17.10) 31.07 (17.07) 39.33 (19.29)

At this point, how much do you really feel

that the treatment will help you to improve

your functioning? (1-9)∧

5.18 (1.80) 5.86 (1.72) 5.36 (1.62) 4.54 (1.60) 5.0 (2.03)

By the end of the treatment, how much

improvement in your functioning do you

really feel will occur? (0-100%)

37.72 (22.34) 43.21 (23.10) 38.93 (21.66) 30.36 (18.75) 38.33 (24.51)

Credibility Score 5.82 (1.61) 5.99 (1.67) 5.81 (1.22) 5.70 (1.32) 5.79 (2.12)

Expectancy Score 27.61 (13.69) 31 (14.71) 29.88 (12.41) 21.99 (11.81) 27.56 (14.45)

*p= 0.024 for differences between groups.
∧p= 0.041 for differences between groups.

respiratory frequency and HRV recordings (51), the beginning

and end of each of the three HRV recordings were not

announced. An average of the last two recordings was used as

the baseline measure.

Secondary outcomes

Testing administrators conducted a FM clinical interview at

CVI and in CVII. Participants were guided through an electronic

version of the 2016 revision to the 2010/2011 FM diagnostic

criteria form (52) which computes an overall FM severity (0–

31 point scale, where higher numbers indicated more severe

pain status) composed of a widespread pain index (WPI) score

and a symptom severity scale (SSS) score. The numeric rating

scale (NRS) (53) was used to assess average pain intensity in the

last week at both CVI and CVII. Participants chose a number

between 0 and 10 that best described their pain intensity—zero

indicates “no pain at all” whereas the upper limit represents “the

worst pain ever possible.”

Participant-reported outcome measures in the form of

questionnaires were completed electronically by each participant

at the end of CVI and CVII [for a complete list of questionnaires

see (31)]. The Credibility/Expectancy Questionnaire (CEQ) was

delivered at CVI andmeasures a participant’s expectations about

the efficacy of a particular treatment and whether they think that

the treatment is credible or not; it is composed of six items which

are scored on a 9-point scale ranging from “not at all logical,”

“somewhat logical,” and “very logical.” Items 4 and 6 ask the

participant how they feel and how they think the administered

treatment will improve their overall health state regarding their
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pain on a 0–100% scale, where 0% represents “no improvement”

whereas 100% represents “total improvement.”

Adverse events

Adverse events were identified during intervention period

and by follow-up testing administrator questions about

significant discomfort, technical usability issues, or harm of any

kind caused by the interventions.

Sample size

A sample size of at least 84 participants (21 in each group)

was needed to detect meaningful differences between our four

groups at 2 weeks (54, 55). Effect size distributions of 0.25, 0.5,

and 0.9 were interpreted as small, medium, and large effects

(after rounding to the closest 0.05). To account for possible

participant dropout during the trial, we aimed to recruit a

minimum of 112 participants (28 participants per group) which

would correlate to a statistical power of 0.9. A final population

of N =116 were formally enrolled and randomized (Figure 1)

for the study. This recommended sample size is based upon the

effect size distributions and was tailored to our specific study to

appropriately power the investigation and make it more likely

to better replicate and derive true effect size estimates for both

HRV and NRS pain intensity (55).

Statistical analyses

The analyses were performed with STATA/SE for Windows,

Version 16.1 and IBM SPSS Statistics version 27 (56, 57).

Characteristics of the four groups were described by means

and standard deviations or medians and quartile ranges for

continuous variables. Frequencies and percentages were given

for categorical variables/data. Missing data after baseline were

handled with last observation carried forward method as

specified in the protocol. Associations between changes in HRV

and pain were examined by correlation analyses—strengths of

the intercorrelations were assessed by Pearson’s and Spearman’s

correlation coefficients. A linear mixed model for continuous

outcomes was used to fit two data points (week 0, week 2) per

patient to include all patients in the analysis in accordance with

the Intention to Treat principle (ITT).

Difference in change from baseline between the four groups

with and without adjusting for baseline was tested by using two

linear mixed effect models for continuous outcome data and a

likelihood ratio test. For the random part of the linear mixed

effect model, participant identifier or identifier and time, were

specified as the random variables. In the linearmixedmodel with

two random variables (identifier and time), an exchangeable

variance-covariance structure was specified. For the fixed part

of the mixed model, group and time and interaction between

group and timewere specified to test whether the change differed

between the groups over time with and without adjusting

for baseline values. Highly skewed (non-normally distributed)

variables were logarithmically transformed before fitting the

mixed models. The analyses of average changes between groups

over time were carried out for the compliant groups (n= 86) and

full sample (N= 116).

Results

Among 267 individuals expressing interest in study

participation and screened for eligibility, 116 were enrolled and

randomized (Figure 1). Of the 116 participants randomized,

86 (74%) in total completed 80% of their assigned home

treatment (i.e., 23 out of 28 total treatment sessions) which

was regarded as adequate treatment adherence (see Figure 1

for 80% compliancy numbers by treatment group) and

107 (92%) were seen at CVII for post-treatment follow-

up.

Treatment groups were similar in baseline characteristics

and current cardioactive medication use. Significant between-

group differences were found for hormonal contraceptive

use among women and two items on the CEQ regarding

improvement in function (Table 1). The mean (SD) pain

intensity in the past week at baseline was 6.72 (0.74)

for the total population indicating severe intensity. No

significant differences were found across treatment groups

at baseline for any cardiac vagal HRV variables. A pairwise

Spearman correlation analysis (Table 2) performed for

the entire FM population (N = 116) which explored

associative changes from CVI to CVII among HRV and

pain variables showed that NRS average pain intensity in

the last week had no significant correlations with changes

in HRV.

Primary outcome

There were no significant differences found across treatment

groups in any of the cardiac-vagal variables of interest

(Table 3A).

Per-protocol analyses

No significant across-group differences were found in any

of the cardiac-vagal variables of interest for participants who

achieved 80% treatment compliancy (a completion of 23 out of

28 total treatment sessions) (n= 86) (Table 3B).
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TABLE 2 Pairwise correlations of change from clinical visitation I to clinical visitation II between HRV, FM pain variables, and psychological distress

(N = 116).

Heart rate

variability

(HRV)

NRS average

pain intensity

(0–10)

P-value NRS current

pain intensity

(0–10)

P-value Widespread

pain

index (WPI)

(0–19)

P-value Symptom

severity

scale (SSS)

(0–12)

P-value Fibromyalgia

severity (FS)

(0–31)

P-value

rMSSD (ms) −0.07 0.444 0.09 0.315 −0.06 0.515 0.06 0.537 0.02 0.867

hfHRV (ms2) −0.172 0.066 −0.01 0.884 −0.02 0.826 0.12 0.204 0.03 0.726

pNN50 (%) −0.04 0.682 0.03 0.777 0.06 0.528 0.08 0.379 0.09 0.341

Spearman correlation coefficients are given for rMSSD and hfHRV because they were not normally distributed. Pearson correlation coefficients were given for pNN50.

Secondary outcomes

Significant across group differences were found for current

pain intensity with significant within-group changes in those

randomized to active tVNS (−0.82; 95% CI, −1.32−0.31) and

sham tVNS (−0.86; 95% CI,−1.36–−0.36) (Table 4). Significant

across group differences were also found for overall FM severity.

No significant across group differences were found for FM

symptom severity, widespread pain, or average pain intensity in

the last week.

Adverse events

One participant randomized to receive active tVNS

experienced chest discomfort and additional pain due to the

tVNS stimulation and decided to discontinue treatment. No

other serious adverse events were reported in this trial.

Discussion

The aim of our randomized controlled clinical trial was to

establish and compare the efficacy of active and sham versions of

tVNS andMDB on cardiac vagal tone and average pain intensity

in adults diagnosed with severe FM. Contrary to our primary

hypothesis, no significant across-group differences in cardiac

vagal tone were found. Furthermore, contrary to our second

hypothesis, no significant associations were found between

changes in cardiac-vagal HRV and changes in average NRS pain

intensity during treatment in our entire FM population; active

treatments did not outperform sham treatments for clinical

pain-related secondary outcomes. However, significant group

differences were found for overall FM severity and current pain

intensity at post-treatment follow-up.

The presence of significant pain reductions in the absence

of significant across-group differences in cardiac-vagal HRV

variables may challenge the current notion that rMSSD and/or

hfHRV are reliable indexes of cardiac vagal activity (19, 24, 25,

58). Recent preliminary findings in rats (59) and in healthy

subjects (60) indicate that there is no correlation between cardiac

vagal HRV and tonic vagal activity or vagal stimulation over time

(61). These findings may suggest three important implications:

(1) that clinical measures of HRV may not represent vagal

activity; (2) the term “vagal tone” may be misleading; and/or

(3) rMSSD may only reflect a small subset of cardiac vagal

afferent activity.

Utilizing ultra short-term (<5min) PPG methods for

evaluating cardiac-vagal HRV could have aided in increasing

participant treatment compliancy and regimen (62) while also

decreasing overall clinical visitation time and associated costs

(63). However, it may have been insufficient in detecting

potentially significant autonomic changes in participants before,

during, and after treatment. Long-term HRV recordings still

represent the typical reference standard for predicting health

outcomes whereas short-term values are proxies of long-

term values with unknown predictive validity; therefore, ultra-

short HRV measurements could be considered as “proxies of

proxies” (63). Despite the fact that our HRV recording method,

instrumentation, and procedure has been validated with both

the Polar H7 device and electrocardiography (ECG) (42–45)

evaluating HRV utilizing classic 5-min ECG recording windows

during pre and post clinical visitations could have aided in

determining whether the observed changes in pain intensity

were associated with changes in HRV (64). Based on clinical

theories such as the vagal-tank theory, longer vagus nerve

innervation treatment methods for those with FM may be

needed to detect a significant perturbance of low HRV levels and

help understand how the≪vagal tank≫ sustains self-regulatory

efforts to build a higher resting cardiac vagal control over time,

yet this is speculative (65).

Significant changes in overall FM severity were found in

all groups. Only those who received active or sham tVNS

displayed significant changes in current NRS pain intensity as

compared to those randomized to active or sham MDB, yet the

clinical significance of these findings are questionable: overall

FM severity is based on a 0–31 point scale (52) whereas current

pain intensity is known to (1) drastically fluctuate daily in those

with FM; (2) is mediated by psychological distress in relation

to physical functioning; and (3) is therefore not considered a

Frontiers inNeurology 08 frontiersin.org

https://doi.org/10.3389/fneur.2022.1030927
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


P
a
c
c
io
n
e
e
t
a
l.

1
0
.3
3
8
9
/fn

e
u
r.2

0
2
2
.1
0
3
0
9
2
7

TABLE 3 Primary outcome: Mean (95% CI) di�erences between treatment groups at 2 wk follow-up for HRV and total average change in HRV from baseline to follow-up for total study population (A; N

= 116) and treatment compliancy population (B; n = 86) (Imputed analyses adjusted for baseline di�erences).

A) Total study population (N = 116) Active tVNS (n = 28) Sham tVNS (n = 29) Active MDB (n = 29) ShamMDB (n = 30)

Heart rate

variability

(HRV)

Mean change

(95% CI)

Overall P-

value for

difference

between

CVI and

CVII

Mean change

(95% CI)

p- value Mean change

(95% CI)

p- value Mean change

(95% CI)

p- value Mean change

(95% CI)

p- value Overall P-

value for

difference

between

groups at

CVII

rMSSD* (ms) 0.95 (0.87, 1.03) 0.186 1.00 (0.90, 1.13) 0.942 0.93 (0.84,1.05) 0.248 0.96 (0.86, 1.08) 0.518 1.03 (0.92, 1.14) 0.654 0.672

hfHRV* (ms2) 0.95 (0.87, 1.05) 0.311 0.83 (0.68, 1.00) 0.050 1.02 (0.84, 1.23) 0.841 0.97 (0.81, 1.17) 0.778 0.99 (0.83, 1.19) 0.924 0.411

pNN50 (%) −0.93 (−3.12, 1.26) 0.403 −0.72 (−4.87,

3.43)

0.734 −1.07 (−5.07,

2.93)

0.601 −0.64 (−4.71,

3.44)

0.758 0.99 (−2.95,

4.92)

0.623 0.893

B) Treatment compliancy population (n = 86) Active tVNS (n = 24) Sham tVNS (n = 25) Active MDB (n = 20) ShamMDB (n = 17)

Heart rate

variability

(HRV)

Mean change

(95% CI)

Overall

P-value for

difference

between

CVI and

CVII

Mean change

(95% CI)

p-value Mean change

(95% CI)

p-value Mean change

(95% CI)

p-value Mean change

(95% CI)

p-value Overall

P-value for

difference

between

groups at

CVII

rMSSD* (ms) 0.93 (0.84, 1.04) 0.221 1.04 (0.86, 1.27) 0.673 0.92 (0.77, 1.12) 0.414 0.88 (0.71, 1.07) 0.209 1.03 (0.83, 1.30) 0.761 0.569

hfHRV* (ms2) 0.98 (0.88, 1.10) 0.774 0.81 (0.66, 0.99) 0.043 1.09 (0.90, 1.32) 0.378 1.01 (0.81, 1.25) 0.942 1.06 (0.84, 1.34) 0.602 0.174

pNN50 (%) −1.25 (-4.12, 1.61) 0.391 −0.06 (-5.56,

5.44)

0.984 −1.89 (-7.17,

3.38)

0.482 −3.18 (-9.08,

2.72)

0.291 0.33 (-6.07,

6.73)

0.920 0.830

*The HRV variables were transformed from original to logarithmic scale before fitting the linear mixed model. The statistical results from the mixed model were transformed back to the original scale and reported in the table. Three observations of

hfHRV had null values which were excluded before using log-transformation.
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TABLE 4 Mean (95% CI) di�erences between treatment groups at 2 wk follow-up and total average change from baseline to follow-up for

secondary outcomes (Imputed analyses adjusted for baseline di�erences; N = 116).

Secondary

outcome

measures

Total (N = 116) Active tVNS (n = 28) Sham tVNS (n = 29) Active MDB (n = 29) ShamMDB (n = 30)

Mean

(95%

CI)

Overall

P-value

for

difference

between

CVI and

CVII

Mean

(95% CI)

p-value Mean

(95% CI)

p-value Mean

(95% CI)

p-value Mean

(95% CI)

p-value Overall

P-value

for

difference

between

groups

at CVII

Overall FM

severity (FS)

(0–31)

−2.08

(−2.58,

−1.58)

<0.001 −2.82

(−3.83,

−1.81)

<0.001 −2.90

(−3.89,

−1.91)

<0.001 −1.28

(−2.27,

−0.28)

0.012 −1.37

(−2.34,

−0.39)

0.006 0.025

NRS average pain

intensity in the

last week (0–10)

−0.59

(−0.71,

−0.46)

<0.001 −0.57

(−0.83,

−0.31)

<0.001 −0.86

(−1.11,

−0.61)

<0.001 −0.59

(−0.84,

−0.33)

0.001 −0.33

(−0.58,

−0.08)

0.009 0.199

NRS current pain

intensity (0–10)

−0.38

(−0.63,

−0.13)

0.003 −0.82

(−1.32,

−0.31)

0.002 −0.86

(−1.36,

−0.36)

0.001 −0.07

(−0.57,

0.43)

0.787 0.21

(−0.29,

0.69)

0.425 0.004

Widespread pain

index (WPI)

(0–19)

−1.15

(−1.50,

−0.79)

<0.001 −1.50

(−2.23,

−0.77)

<0.001 −1.69

(−2.39,

−0.98)

<0.001 −0.79

(−1.51,

−0.08)

0.029 −0.63

(−1.33,

0.07)

0.077 0.098

Symptom severity

scale (SSS) (0–12)

−0.93

(−1.22,

−0.65)

<0.001 −1.32

(−1.91,

−0.74)

<0.001 −1.21

(−1.78,

−0.63)

<0.001 −0.48

(−1.06,

0.09)

0.098 −0.73

(−1.31,

−0.17)

0.011 0.134

reliable direct indicator of treatment efficacy (66). Furthermore,

the overall effects of active and sham versions of tVNS in our

trial were quite similar.

Observational fMRI analyses (40, 67) showed that active

tVNS stimulation at the cymba conchae and sham tVNS

stimulation of the earlobe resulted in similar overlapping BOLD

changes in cortical areas. These observational results may

provide support for our clinical findings which showed an

overall nonsignificant difference of clinical efficacy between

active and sham tVNS indicating that the terms “active”

and “sham” tVNS stimulation could be somewhat misleading

(68). More pronounced effects in favor of active respiratory

biofeedback as compared to sham (34, 36, 69, 70) have been

found in previous clinical trials (71–76). However, similar effects

for changes in overall FM severity and average NRS self-

report pain intensity for active and sham MDB in this trial

challenges the significant differentiable effects demonstrated in

prior literature.

Strengths and limitations

There are several important limitations to consider. Firstly,

sociodemographic characteristics including education, annual

income, and employment were not collected in this trial and

could have provided pertinent information for describing our

findings. Secondly, even though this study was practiced as a

double-blinded clinical trial, it was formally categorized as a

single-blind trial because there was no way of ensuring that

either the testing administrators or the participants held any

prior insights into active and inactive MDB/tVNS treatment

protocols. Furthermore, to sufficiently detect a difference

between groups in HRV as it relates to NRS pain intensity,

a sample size between 30 and 77 (depending on the HRV

metric of interest) is typically recommended (77); subgroups are

commonly employed within designs that have been suggested

to require 20 participants per cell (54). However, due to

the exploratory nature of this investigation, our sample size
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determination may not have been ideal to detect clinically

significant differences between our groups. Lastly, it is important

to note our choice of methods regarding 1-min HRV recording

windows. Prior research (78) has found that 10 s and 1min

rMSSD values correlate with 5min rMSSD values. In general,

HRV parameters that predominantly reflect parasympathetic

cardiac modulation (rMSSD and pNN50) can be reliably

measured using 1min recordings; recordings of 1min should

be seen as the absolute minimum to obtain reliable hfHRV

assessment (17, 79–81). Given that our primary HRV parameter

of interest was rMSSD as it pertains to cardiac vagal function,

utilizing 1-min recording windows was acceptable (17, 45, 82).

In addition to the apparent limitations of this trial, there

are several important study strengths to be noted. Reducing

clinical visitation time, HRV recording time, and daily treatment

delivery time may have been a significant contributing factor

to increasing treatment compliancy and achieving high clinical

visitation attendance; MDB was self-delivered with a novel

respiratory-gating device able to monitor the respiratory

dynamics of each participant (35, 83–86). Noninvasive tVNS

treatment was utilized to increase patient safety, usability, and

decrease risk for adverse events (38). It has been proposed

(87) that short- term meditative-based practices could have a

more promising effect upon clinical outcomes as compared

to continual long-term meditation practices (such as the 8-

week mindfulness-based stress reduction program, MBSR) for

specific vulnerable populations (88). tVNS treatment durations

commonly range from 30min to 2hours per session (89, 90).

However, to match dosage and vagus nerve innervation across

all groups, tVNS and MDB were practiced for 30min per day

split into two 15min sessions; delivering the treatments in

this manner may have helped increase treatment useability and

compliancy but may have also changed the way in which the

vagus nerve imparts clinical effects over time.

Conclusions

Meditative-based diaphragmatic breathing and vagus nerve

stimulation had no significant across-group effects on ultra

short-term PPG-measured cardiac vagal tone among adults

with FM. No significant across group differences were

found for changes in average self-report NRS pain intensity;

active MDB as well as sham tVNS resulted in the largest

improvements in average pain intensity at 2-weeks when

compared to sham MDB and active tVNS. The absence of

significant across-group changes in ultra short-term PPG-

measured cardiac vagal tone in response to vagal-innervation

treatments in those with FM may indicate that more

reliable long-term recordings procedures should be utilized

and/or that longer (i.e., >2-weeks) vagus nerve innervation

treatment methods should be delivered. However, finding

significant across-group differences for overall FM severity

and current pain intensity may indicate that meditative-based

diaphragmatic breathing and vagus nerve stimulation provide

differentiable yet complementary approaches to noninvasive

FM pain management. Further research should be conducted

on evaluating long-term noninvasive vagus nerve innervation

methods for treating FM due to their useability, portability, and

potential effectiveness.
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