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Background and purpose: The purpose of this study was to evaluate the prognostic

value of radiomics-based hyperdensemiddle cerebral artery sign (HMCAS) for patients

with acute ischemic stroke (AIS) aftermechanical thrombectomy (MT) and to establish

prediction models to identify patients who may benefit more from MT.

Methods: In this retrospective study, a total of 102 consecutive patients who

presented with HMCAS on non-contrast computed tomography (NCCT) at admission

and underwent MT in our hospital between January 2019 and December 2020 were

recruited. Among them, 46 experienced favorable outcomes (modified Rankin Scale

[mRS] ≤2) at 3 months of follow-up. All patients were categorized into two sets,

namely, the training set (n = 81) and the test set (n = 21). Radiomics features (RFs)

and clinical features (CFs) in the training set were selected by statistical analysis to

create models. The models’ discriminative ability was quantified using the area under

the curve (AUC) and confirmed by decision curve analyses.

Results: The prediction model established using CFs before MT includes baseline

National Institutes of Health Stroke Scale (NIHSS) and neutrophil-to-lymphocyte ratio

(NLR) [AUC [95% confidence interval (CI)] = 0.596 (0.312–0.881)]. A total of 1,389

RFs were extracted from each hyperdense territory and 8 RFs were left to build

the radiomics model [RM; AUC (95%CI) = 0.798 (0.598–0.998)]. The model using

preoperative CFs and RFs showed good performance [AUC (95%CI) = 0.817 (0.625–

1.000)]. The models using post-operative CFs alone [AUC (95%CI) = 0.856 (0.685–

1.000)] or post-operative CFs with RFs [AUC (95%CI) = 0.894 (0.757–1.000)] also

showed good discrimination.

Conclusion: The radiomics-based HMCAS might be a promising tool to predict the

prognoses of patients with AIS after MT.

KEYWORDS

hyperdense middle cerebral artery, acute ischemic stroke, mechanical thrombectomy,

prognostic factor, radiomics

Introduction

Non-contrast computed tomography (NCCT) is currently the most available diagnostic

imaging modality that can identify early signs of ischemic stroke and hemorrhage. NCCT scan at

admission reveals not only early ischemic changes in the brain parenchyma but also hyperdense

artery sign (HAS) in patients with emergent large vessel occlusion (LVO) (1, 2). HAS is most

commonly found in the middle cerebral artery (MCA) on initial NCCT for patients with acute
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ischemic stroke (AIS) known as the hyperdense middle cerebral

artery sign (HMCAS), indicating acuteMCA and/or terminal internal

carotid artery (ICA) occlusion with high red blood cell aggregation

(1, 3, 4). HMCAS was considered to be associated with increased

stroke severity, large infarct volume, and poor functional outcome

in the pre-thrombectomy era (5). However, the prognostic value

of HMCAS for predicting the outcomes of patients undergoing

mechanical thrombectomy (MT) remains inconclusive.

Radiomics analysis is an emerging approach that converts

imaging data into a high-dimensional feature space using

automatically extracted data-characterization algorithms (6).

Several studies have reported that clot-based radiomics is predictive

of treatment response after MT strategy for AIS (7–10). This suggests

that the radiomics features (RFs) extracted from pretherapeutic

radiological imaging may provide valuable information about the

clot composition and structure, which may influence the prognosis.

In this study, we hypothesized that radiomics-based HMCAS on

NCCT could provide more prognostic information for patients with

AIS after MT. Therefore, the predictive ability of radiomics-based

models, with or without clinical features (CFs) before and after MT,

was evaluated in our study.

Materials and methods

Patients

In this retrospective study, the NCCT imaging and clinical data

of 407 patients who were diagnosed with AIS caused by LVO and

underwent MT in our hospital between January 2019 and December

2020 were screened. The inclusion criteria were as follows: (1)

patients ≥ 18 years, (2) the diagnosis of MCA and/or terminal

ICA occlusion was confirmed by digital subtraction angiography

(DSA) for patients with anterior circulation stroke, (3) patients

were diagnosed with AIS and presented with HMCAS on admission

NCCT, (4) within 24 h from the symptom onset to groin puncture,

(5) the conditions of patients were evaluated with baseline NIHSS

score ≥6, and (6) modified Rankin Scale (mRS)≤2 at admission.

Patients with prior large hemispheric stroke (n = 17), craniocerebral

surgery history (n = 11), posterior circulation stroke (n = 152),

baseline NCCT combined with other cerebrovascular diseases such

as intracranial hemorrhage, aneurysm, and so on (n= 25), absence of

thin-slice NCCT or poor image quality (n= 37), adverse safety events

during the operation (n = 5), absence of follow-up information (n

= 49), and new stroke or other chronic diseases occurred within

3 months after MT (n = 9) were excluded. Finally, 102 patients

were included in this study. The recruitment process of the study

is shown in Figure 1, and the workflow of the study is shown in

Figure 2.

CFs collection

The following CFs of all patients were collected: (1) baseline

information, including age, sex, medical history of hypertension,

diabetes mellitus, atrial fibrillation, coronary heart disease,

stroke, and history of smoking and drinking; (2) laboratory

examination results, including the levels of hemoglobin,

white blood cells (WBCs), neutrophils, lymphocytes, platelets,

NLR, C-reactive protein, fibrinogen, D-dimer, cholesterol,

and triglyceride; and (3) other clinical information, including

the time from onset to admission, from onset to NCCT

examination, from onset to puncture, from a puncture to

recanalization, and from onset to recanalization. The baseline

NIHSS score was recorded by two experienced neurologists before

endovascular treatment.

All operations are performed by doctors with more than 5

years of experience. The recanalization was considered successful

when a modified Thrombolysis in Cerebral Infarction (mTICI)

score of 2b/3 was documented by DSA, which was recorded

during the operation and evaluated by experienced neurologists.

Cranial CT was performed within 48 h after the operation

to observe whether hemorrhage appeared (8). Symptomatic

intracerebral hemorrhage (sICH) was described as hemorrhage

accompanying a clinical worsening of ≥ 4 points on the NIHSS

score (11). The stroke severity at discharge was assessed by

the NIHSS. A good long-term clinical outcome was defined as

an mRS score of 0–2 at 3 months after the operation, while a

bad long-term clinical outcome was defined as an mRS score

of 3–6.

NCCT image acquisition and thrombus
segmentation

Non-contrast computed tomography was performed using

a 128-detector CT scanner (Brilliance iCT, Philips) with the

following parameters: 120 kV, 79 mAs, section thickness of

1.0, 500mm field-of-view, and 512 × 512 matrix. HMCAS was

identified when the lumen of the MCA was denser than adjacent

or equivalent contralateral arteries on NCCT but non-calcified.

All HMCAS on NCCT images were visually evaluated by two

trained neuroradiologists with 5 years of experience who were

blinded to patients’ baseline characteristics. A senior radiologist

with 20 years of experience made the final decision in a case

where there was disagreement. Simple imaging features including

thrombus attenuation, contralateral MCA attenuation, and the

length of clot were acquired by manual measurement before

segmentation of ROIs and RFs extraction on axial NCCT images

(12). Then, the difference and ratio of thrombus attenuation

and contralateral MCA attenuation were calculated before

statistical analysis.

The ROIs were drawn slice by slice from the axial view of

NCCT images using ITK-SNAP (version 3.8.0, http://www.itksnap.

org) by a junior and a senior neuroradiologist, as previous literature

described (9). Plotting ROIs with a manual coating of thrombi

revealed hyperdensity while viewing the corresponding DSA and/or

computed tomographic angiography (CTA) images for guidance

(Supplementary Figure 1). The RIAS software was used for image

preprocessing, feature exaction, and model construction (13). To

assess the repeatability of characteristic extraction between intra-

observer and inter-observer, the RFs with intra-class correlation

coefficients (ICCs) >0.9 were left. Then, a total of 1,389 RFs

were extracted automatically from each ROI using Pyradiomics

(version 3.0.0) (14). The ICC values of intra-observer and inter-

observer reproducibility of simple imaging features were all >0.8 in

Supplementary Table 2, showing a good agreement.
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FIGURE 1

The recruitment process.

Data standardization and gradient feature
selection

The total dataset was divided into a cross-validation set

and a test set at a ratio of 8:2. Then, patients in the cross-

validation set were further categorized into the training set and

the validation set, which was used to perform 5-fold cross-

validation and evaluate the comprehensive effectiveness of RFs.

The test set is completely independent and applied to test the

performance of the model. The mean and variance of the RFs

were obtained from the cross-validation set and then used to

standardize the test set. The gradient feature selection was used

to evaluate 1,389 RFs of each NCCT image. Analysis of variance

(ANOVA) was first used to select 12 RFs. The p-values of

these features were all <0.05. Then, the 12 features were further

selected by the least absolute shrinkage and selection operator

(LASSO) algorithm with 10-fold cross-validation. The α-value was

set as 0.0133 with the smallest mean square error, as shown in

Supplementary Figure 2. Finally, 8 RFs were obtained. The examples

of RF visualization of the two-group ROI images are shown in

Figure 3.

Statistical analysis

Statistical analysis was performed using the Python packages

statsmodels (version 0.12.1, https://www.statsmodels.org/stable/

index.html), Pingouin (version 0.5.2, https://pingouin-stats.

org/index.html), and SciPy (version 1.5.3, https://scipy.org).

Continuous variables were described as mean ± standard deviation

or median with interquartile range, depending on the distribution

of the variables. The normality of the data was assessed by the

Kolmogorov–Smirnov and Shapiro–Wilk tests. MedCalc (version

20.121, https://www.medcalc.org) was used for the DeLong test of

five modes.

Data were divided into two groups, namely, good prognosis

(Label 0) and poor prognosis (Label 1). The chi2 test or Fisher’s exact

test was used to compare categorical variables. The Mann–Whitney

U-test or independent t-test was used to compare continuous

variables. ROC curves with a 95% confidence interval (CI) were

plotted for each statistically significant variable to investigate the

accuracy of prognosis prediction. A p-value of <0.05 was considered

statistically significant. Some CFs with a p-value of <0.1 were used to

establish the prediction model after comprehensive analysis.
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FIGURE 2

The workflow of this study.

Establishment and comparison of prediction
models

Five logistic regression models were developed to predict

poor prognosis before and after MT based on RFs or/and CFs:

(1) clinical model pre-MT (CM pre-MT) with preoperative

CFs alone; (2) radiomics models (RMs) with RFs alone; (3)

radiomic and clinical model pre-MT (R&CM pre-MT) with

both RFs and preoperative CFs; (4) clinical model post-

MT (CM post-MT) with post-operative CFs alone; and (5)

radiomic and clinical model post-MT (R&CM post-MT) with

both RFs and post-operative CFs. Then, the DeLong test

was performed on the ROC curves of these models to assess

possible overfitting.

RFs-related score

Lasso-score is one of the fusion RFs analyzed by the LASSO

algorithm. Another fusion RF (Rad-score) is acquired during

model establishment.

Lasso-score and Rad-score were calculated as follows:

Lasso-score = wavelet-LLH_firstorder_Skewness ∗

(−0.029) + wavelet-LLH_glcm_ClusterShade ∗ (−0.061)

+ wavelet-LHH_glrlm_GrayLevelVariance ∗ 0.061 +

wavelet-LHH_glrlm_LowGrayLevelRunEmphasis ∗ (−0.093)

+ wavelet-HHL_firstorder_Skewness ∗ (−0.121) +

wavelet-HHL_firstorder_Minimum ∗ (−0.055) + wavelet-

HHH_glszm_SmallAreaHighGrayLevelEmphasis ∗ 0.041 +

wavelet-HHH_glszm_SmallAreaEmphasis ∗ 0.068.

Rad-score = wavelet-LLH_firstorder_Skewness ∗ (−0.287)

+ wavelet-LLH_glcm_ClusterShade ∗ (−0.372) +

wavelet-LHH_glrlm_GrayLevelVariance ∗ 0.711 + wavelet-

LHH_glrlm_LowGrayLevelRunEmphasis ∗ (−0.516)

+ wavelet-HHL_firstorder_Skewness ∗ (−0.640) +

wavelet-HHL_firstorder_Minimum ∗ (−0.302) + wavelet-

HHH_glszm_SmallAreaHighGrayLevelEmphasis ∗ 0.282 +

wavelet-HHH_glszm_SmallAreaEmphasis ∗ 0.343+ 0.056.

The Radiomics Quality Score (RQS) has been recently proposed for

the overall assessment of the methodological quality of radiomics-

based studies (15). We also calculated it to assess the performance

of our prediction models.

Results

Clinical data analysis

Among 102 recruited patients, 46 had good prognoses and 56

had bad prognoses. In the cross-validation set, 38 patients had good

prognoses and 43 had bad prognoses. The baseline characteristics of

all patients are summarized in Table 1. In the cross-validation set,

the admission NIHSS score, hemoglobin levels, NLR, and D-dimer

of patients with good prognoses were significantly different from

those of patients with bad prognoses (P < 0.05). The NIHSS score at
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FIGURE 3

(A) The visualization of texture features and Rad-score of a patient with a good prognosis. (B) The visualization of texture features and Rad-score of a

patient with a bad prognosis.
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TABLE 1 Correlation analysis of clinical characteristics and 3-month clinical outcome of patients in the cross-validation set and test set.

Clinical Characteristics
& imaging
characteristics of
manual measurement

Cross-validation set Test set Cross-
validation
& test set

mRS
(0–2)

mRS
(3–6)

P mRS
(0–2)

mRS
(3–6)

P P

No. of patients 38 43 – 8 13 –

Age, y, median (IQR) 67 (59–71) 66 (59–70) 0.82a 54.5 (32–71.5) 61 (55.5–76) 0.21a 0.28a

Gender, Male 21 (55.3%) 31 (72.1%) 0.17b 3 (37.5%) 9 (69.2%) 0.33b 0.73b

Onset to admission (min),

(median) (IQR)

198

(81.50–321.25)

160 (105–293) 0.74a 219 (101.25–

582.75)

240

(117.5–410)

0.94a 0.26a

Onset to NCCT (min), (median)

(IQR)

228 (136.25–

360.00)

177 (131–301) 0.54a 231 (114.25–

589.25)

276

(146.5–530.5)

0.80a 0.28a

Admission NIHSS, (median) (IQR) 12 (9–15) 15 (13–18) <0.001
a 14

(10.25–15.75)

13 (11–15) 0.44a 0.68a

The density of MCA affected side

(HU), mean± STD

63.55± 8.661 62.12± 8.71 0.46 61.50± 11.83 66.46± 11.29 0.35 0.44

The density of MCA contralateral

side (HU), mean± STD

43.32± 5.83 46± 7.77 0.84 44.88± 9.78 46.62± 5.28 0.72 0.91

Difference value of bilateral MCA

(HU), mean± STD

17.24± 7.09 16.12± 6.02 0.44 16.63± 6.32 19.85± 8.56 0.37 0.24

Density ratio of bilateral MCA,

mean± STD

1.38± 0.17 1.37± 0.16 0.69 1.39± 0.22 1.42± 0.18 0.47 0.34

Length of clot, (median) (IQR) 23.24

(14.21–29.88)

18.67

(11.1–29.81)

0.43a 14.89

(6.25–29.93)

16.71

(10.50–38.1)

0.45a 0.33a

Hypertension 24 (63.2%) 18 (41.9%) 0.09
b 6 (75%) 7 (53.8%) 0.61b 0.56b

Diabetes 7 (18.4%) 12 (27.9%) 0.46b 1 (12.5%) 3 (23.1%) 0.99b 0.89b

Arterial fibrillation 12 (31.6%) 9 (20.9%) 0.40b 1 (12.5%) 4 (30.8%) 0.67b 0.93b

Coronary heart disease 4 (10.5%) 9 (20.9%) 0.33b 2 (25%) 0 (0%) 0.26b 0.68b

Smoke 17 (44.7%) 22 (51.2%) 0.72b 4 (50%) 7 (53.8%) 0.78b 0.92b

Drink 13 (34.2%) 19 (44.2%) 0.49b 1 (12.5%) 6 (46.2%) 0.27b 0.79b

History of stroke 6 (15.8%) 10 (23.3%) 0.57b 1 (12.5%) 1 (7.7%) 0.69b 0.44b

Hemoglobin, (median) (IQR) 132.0

(124.0–140.2)

143.0

(129.0–149.0)

0.02 128.5

(103.75–149.0)

134

(123.5–140.0)

0.75 0.27a

WBC, (median) (IQR) 9.04

(7.29–10.82)

9.53

(7.59–11.98)

0.20 10.09

(8.59–12.94)

8.45

(7.71–11.36)

0.49 0.48a

Neutrophils, (median) (IQR) 7.10

(5.32–8.23)

7.88

(5.94–10.37)

0.08 8.78

(6.69–10.46)

7.44

(6.15–9.19)

0.49 0.33a

Lymphocyte, (median) (IQR) 1.44

(1.10–1.71)

1.20

(0.89–1.53)

0.06
a 1.86

(0.65–2.39)

1.09

(0.77–1.46)

0.31a 0.73a

Platelet, mean± STD 196.16± 42.89 197.79± 53.21 0.88 172.38± 50.89 207.15± 45.24 0.12 0.79

NLR, (median) (IQR) 4.78

(3.45–6.55)

6.36

(4.61–9.42)

0.01
a 5.26(3.92–

19.17)

7.32

(5.09–9.62)

0.45a 0.25a

C-reactive protein, (median) (IQR) 5.81

(3.02–8.01)

6.08

(3.02–18.30)

0.47a 3.07

(3.02–8.11)

7.29

(3.05–35.60)

0.25a 0.67a

Fibrinogen, mean± STD 2.84± 0.79 3.11± 1.034 0.18 2.98± 0.91 3.06± 1.28 0.87 0.85

D-dimer, (median) (IQR) 0.96

(0.59–2.24)

2.60

(0.92–190)

0.01
a 1.00

(0.75–2.52)

0.59

(0.55–7.54)

0.46a 0.15a

Cholesterol, mean± STD 4.18± 0.87 4.37± 1.08 0.38 4.21± 1.07 4.46± 0.91 0.57 0.73

Triglyceride, (median) (IQR) 1.60

(0.99–2.05)

1.66

(1.16–2.39)

0.28a 1.83

(1.05–3.21)

1.4 (0.76–1.70) 0.17a 0.51a

Onset to puncture (min), (median)

(IQR)

299

(195–459.75)

301 (230–400) 0.99a 297.5

(203.75–662.5)

368

(235.5–690)

0.64a 0.36a

(Continued)
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TABLE 1 (Continued)

Clinical Characteristics
& imaging
characteristics of
manual measurement

Cross-validation set Test set Cross-
validation
& test set

mRS
(0–2)

mRS
(3–6)

P mRS
(0–2)

mRS
(3–6)

P P

Puncture to recanalization (min) 77.50

(52.25–119)

85 (65–110) 0.20a 65 (51.25±

105)

75 (70–137.5) 0.11a 0.97a

Onset to recanalization (min) 377.5 (297.50–

518.25)

390 (320–505) 0.69a 360

(260–747.5)

430 (368–835) 0.37a 0.41a

NIHSS at discharge, (median)

(IQR)

3 (1–7) 12 (7–16) <0.001
a 2 (0–5) 11 (8–13.5) <0.001

a 1a

mTICI (2B and 3) 37 (97.4%) 38 (88.4%) 0.26b 7 (87.5%) 11 (84.6%) 0.65b 0.58b

sICH 2 (5.3%) 9 (20.9%) 0.08
b 0 (0%) 4 (30.8%) 0.24b 0.78b

Normal distribution: Mean± standard deviation; Abnormal distribution: Median (25% Percentile−75% Percentile).
aNon–parameter test (Mann–Whitney U-test).
bChi2 test; others: t-est.

The P-values in the last column were acquired between the whole cross-validation set and the whole test set after statistical analysis. NIHSS, National Institute of Health Stroke; WBC, white blood

cells; NLR, neutrophil-to-lymphocyte ratio; mTICI, modified thrombolysis in cerebral infarction; sICH, symptomatic intracerebral hemorrhage.

discharge (P < 0.05), history of hypertension (P < 0.1), neutrophils

(P < 0.1), lymphocytes (P < 0.1), and sICH (P < 0.1) were also

considered significant clinical factors.

In the cross-validation set, 92.6% (75/81) of the patients achieved

successful reperfusion (mTICI 2b/3). The successful reperfusion

rate between patients with a good prognosis and those with a

bad prognosis was not significantly different (97.4 vs. 88.4%, P =

0.26). The HMCAS was not significantly correlated with the 90-

day prognosis regardless of the density and length of the clot. In

addition, there were no significant differences in age, sex, time

from onset to puncture, procedure time, and time from onset to

reperfusion between patients with a good prognosis and those with

a bad prognosis (P > 0.05). In the test set, only the NIHSS score at

discharge showed a strong correlation with the bad prognosis. No

significant correlations were found between the prognosis and other

risk factors. In addition, the p-values of all variables between the

cross-validation set and the test set were more than 0.05, indicating

the data of the two sets are evenly distributed (Table 1).

Extraction and selection of NCCT semantic
features and RFs

The coefficients of 8 RFs are shown in Supplementary Table 1.

The classification performance of the fusion RF (Lasso-score) with

the feature coefficient value analyzed by the LASSO algorithm

between the two groups in both the cross-validation and test sets is

shown in Supplementary Figure 3, Table 1.

Development of prediction models

Model 1 (CM pre-MT) was established with 7 preoperative CFs

with a p-value of <0.1 before the operation, and the coefficients

of the features are shown in Supplementary Figure 4. The ROCs of

the training and verification sets were plotted using the model with

optimal parameters from the 5-fold cross-validation. In CM pre-

MT, the mean areas under the curve (AUC) (95%CI) of the training

set was 0.76 ± 0.03 (0.71–0.81); the mean AUC (95%CI) of the

validation set was 0.67± 0.13 (0.55–0.79); AUC (95%CI) of the cross-

validation set was 0.741 (0.634–0.848); AUC (95%CI) of the test set

was 0.596 (0.312–0.881).

Model 2 (RM) predicts poor prognosis with 8 RFs, whose

coefficients are shown in Supplementary Figure 5. In RM, the mean

AUC (95%CI) of the training set and the validation set was 0.84

± 0.04 (0.80–0.88) and 0.78 ± 0.15 (0.64–0.85), respectively; AUC

(95%CI) of the cross-validation set and the test set was 0.829 (0.741–

0.918) and 0.798 (0.598–0.998), respectively.

Model 3 (R&CMpre-MT) was established using preoperative CFs

and RFs after recursive feature elimination (RFE). The admission

NIHSS (P < 0.001) and 8 RFs were included in this model whose

importance and coefficients of the features are shown in Figure 4C.

In R&CM pre-MT, the mean AUC (95%CI) of the training set and

the validation set was 0.88 ± 0.02 (0.85–0.92) and 0.79 ± 0.12 (0.67–

0.87), respectively; AUC (95%CI) of the cross-validation set and the

test set was 0.869 (0.792–0.946) and 0.817 (0.625–1.000), respectively.

Model 4 (CM post-MT) predicts poor prognosis with post-

operative CFs, which include four preoperative CFs with a p-value

of < 0.05 (admission NIHSS, hemoglobin levels, NLR, and D-dimer)

and the NIHSS at discharge. The coefficients of the features are

shown in Supplementary Figure 6. The mean AUC (95%CI) of the

training set and the validation set was 0.86 ± 0.01 (0.83–0.90) and

0.83 ± 0.06 (0.73–0.91), respectively; AUC (95%CI) of the cross-

validation set and the test set was 0.862 (0.785–0.939) and 0.856

(0.685–1.000), respectively.

Model 5 (R&CM post-MT) was established using post-operative

CFs and RFs after RFE. The importance and coefficients of the

features are shown in Figure 4C. The mean AUC (95%CI) of the

training set and the validation set was 0.93 ± 0.01 (0.91–0.96) and

0.87 ± 0.09 (0.80–0.95), respectively; AUC (95%CI) of the cross-

validation set and the test set was 0.916 (0.857–0.975) and 0.894

(0.754–1.000), respectively. The comparison of ROC curves of five

models on the cross-validation and test sets is shown in Figure 4A.

Frontiers inNeurology 07 frontiersin.org

https://doi.org/10.3389/fneur.2022.1037204
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2022.1037204

FIGURE 4

Frontiers inNeurology 08 frontiersin.org

https://doi.org/10.3389/fneur.2022.1037204
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2022.1037204

FIGURE 4

Integration of related results of five models. (A) The ROC curves of five models in cross-validation set and test set, respectively. (B) The DCA curves of the

five models in the test set. When the high-risk threshold is greater than 0.5, 4 DCA curves are higher than positive curves, indicating that the four models

(Continued)
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FIGURE 4 (Continued)

have good returns. Moreover, the AUC of the R&CM post-MT (0.353) was larger than that of the R&CM pre-MT (0.296), indicating that the R&CM post-MT

had better prediction performance. (C) The coe�cient of CFs and RFs for 90-day prognosis in R&CM pre-MT and R&CM post-MT, respectively. (D) The

SHAP figures of the test sets in R&CM pre-MT and R&CM post-MT, respectively. Each dot stands for a patient with a feature value from low to high,

showing as a color from blue to red. The SHAP value indicates the contribution of the features to the model. The nomograms based on the (E) R&CM

pre-MT and (F) R&CM post-MT. The nomogram critical score before MT was 125.5 and the nomogram critical score after MT was 117.9, indicating that

the probability of bad prognosis of patients with HMCAS on NCCT is >50% when the total score is >125.5 or 117.9. The higher the score is, the higher the

probability of a bad prognosis after MT.

Among the five models, the R&CM post-MT (0.894 [95%CI,

0.757–1.000]) showed the best discriminative performance. The

second is the CM post-MT (0.856 [95% CI 0.685–1.000]), which

had better discriminative performance than the other 3 models

established before MT. In addition, the R&CM pre-MT (0.817

[95% CI 0.625–1.000]) also shows better discriminative performance

than the RM (0.798 [95% CI 0.598–0.998]). The decision curve

analyses (DCAs) of the five models on the cross-validation and

test sets are shown in Figure 4B. Figure 4D shows the distribution

of each feature with the Shapley values for each patient of

the R&CM pre-MT and R&CM post-MT in descending order.

Lasso-score and Rad-score have higher Shapley values of all

features in both confusion models. The nomograms of R&CM

pre-MT and R&CM post-MT were built to visualize the weight

coefficient of each feature (Figures 4E, F). The sensitivity, specificity,

and other parameters of all prediction models are shown in

Table 2.

The results of the DeLong test revealed that the p-value between

the R&CM pre-MT and R&CM post-MT is 0.07. In our study, the

RQS score was 12 (maximum score = 36), corresponding to 33.3%;

further details are provided in Supplementary Table 3. The results in

predicting the long-term prognosis after MT are encouraging.

Discussion

This is the first study to explore the prognostic value of

the HMCAS on NCCT combined with radionics among patients

undergoing MT. The results indicate that radiomics-based HMCAS

has a limited ability to predict poor prognosis, so CFs should be

included when establishing prediction modes. In this study, we first

used preoperative features to establish prediction models to observe

their performance in predicting prognosis. While considering that

treatment-related factors also play an important role in the prognosis

(16), we also add post-operative features to establish prediction

models. On the one hand, the model with post-operative features

could predict patients’ prognoses more accurately when applied after

the operation; on the other hand, we can learn about the prediction

of R&CM pre-MT in comparison with R&CM post-MT. The gap

between the two is so small that the R&CM pre-MT could also be

used to provide guidance on treatment strategy selection.

A few studies have explored the role of thrombus in the

endovascular treatment of AIS (9), but most of them did not consider

RFs. Kim et al. showed that there was no significant correlation

between HMCAS and treatment outcomes after MT (5). Our data

showed that the density, density ratio of the affected side to the

contralateral side, and length of the clot were not correlated with the

prognosis of patients after MT, which was in line with the study by

Alejandro et al. (12).

In both R&CM pre-MT and R&CM post-MT, the NIHSS score

at admission contributed greatly to the efficiency of the model,

which indicates a strong correlation between early neurological

deterioration and clinical functional outcome, which is consistent

with the study of Thomas et al in the era of pre-thrombectomy (17).

Our data showed that the long-term prognosis of patients after

MT may be affected by clot-related RFs, suggesting that these RFs

may be used to guide treatment selection. In the RM, the red

color seems to dominate a big share in the visual red blueprint

for the texture feature “wavelet-LHH_glrlm_GrayLevelVariance,”

the representative texture feature with the maximum correlation;

the blue color seems to dominate a big share for the texture

feature “wavelet-HHH_glszm_SmallAreaHighGrayLevelEmphasis,”

the representative texture feature with the minimum correlation.

We infer that long-term prognosis may be reflected by the color

composition ratio of the RFs. In addition, we could see that the

color composition of all RFs is more complex in the poor prognosis

group compared to the good prognosis group; we speculated that

patients with heterogeneous thrombus are more likely to have a bad

prognosis. These findings were contradictory to the study conducted

by Jeremy et al. (9), probably because the endpoint of their study

was recanalization after MT, while ours was a 90-day prognosis. The

study conducted by T. R. Patel et al. showed that clots with the

ordered structure were easier to remove (7), which seems to be echoed

by our conclusion. However, the underlying laws between RFs and

histopathology remain to be explored.

A recent study conducted by Lin et al. showed that the NLR of >

3.5 improves the prediction performance of the HAS on NCCT for

the short-term clinical outcome (the mRS score at discharge) (18).

Our data showed that the NLR was correlated with long-term clinical

outcomes, indicating that the development of stroke may be related

to inflammation.

Our study has several limitations. First, this is a single-center

study with a small sample size and lacks further verification. Second,

different endovascular strategies and variations in the parameters of

different MT devices may reduce the repeatability of the experiment.

While stent retriever and direct thromboaspiration are the MT

strategies used in our study, they are proven to be comparable in

terms of overall effectiveness (19, 20). Third, patients without a

hyperdense vessel sign in MCA were not included in this study

because it was difficult to identify the scope of the vessel affected

when outlining the ROI. In-depth learning may be needed in future

investigations to solve this problem. Finally, given themultimodal CT

examinations are still not available inmost of the basic-level hospitals,

we did not assess the collateral circulation state in order to get more

clues from the NCCT and make the established models to benefit

more patients.

In conclusion, our study revealed that radiomics-based HMCAS

on admission NCCT before MT may be not only a potential imaging
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TABLE 2 The di�erent evaluation parameters in five models.

AUC AUC
std

SEN SEN
std

SPE SPE
std

Precision Precision
std

Recall Recallstd F1-
Score

F1-
Score
std

Acc Acc
std

CM

pre-MT

The training set of

cross-validation

0.76 0.03 0.77 0.03 0.60 0.03 0.69 0.01 0.77 0.03 0.73 0.02 0.69 0.01

The validation set

of cross-validation

0.67 0.13 0.69 0.11 0.55 0.08 0.63 0.07 0.69 0.11 0.66 0.08 0.63 0.07

Cross-validation set 0.741 0 0.77 0 0.55 0 0.66 0 0.77 0 0.71 0 0.67 0

Test set 0.596 0 0.62 0 0.63 0 0.73 0 0.62 0 0.67 0 0.62 0

RM The training set of

cross-validation

0.84 0.04 0.81 0.04 0.69 0.05 0.75 0.05 0.81 0.04 0.78 0.04 0.75 0.05

The validation set

of cross-validation

0.78 0.15 0.71 0.18 0.61 0.23 0.69 0.17 0.71 0.18 0.69 0.15 0.67 0.17

Cross-validation set 0.829 0 0.79 0 0.71 0 0.76 0 0.79 0 0.77 0 0.75 0

Test set 0.798 0 0.54 0 0.88 0 0.88 0 0.54 0 0.67 0 0.67 0

R&CM

pre-MT

The training set of

cross-validation

0.88 0.02 0.82 0.04 0.76 0.03 0.79 0.02 0.82 0.04 0.81 0.03 0.79 0.03

The validation set

of cross-validation

0.79 0.12 0.64 0.19 0.64 0.16 0.67 0.11 0.64 0.19 0.65 0.11 0.64 0.10

Cross-validation set 0.869 0 0.84 0 0.74 0 0.78 0 0.84 0 0.81 0 0.79 0

Test set 0.817 0 0.69 0 0.88 0 0.90 0 0.69 0 0.78 0 0.76 0

CM

post-MT

The training set of

cross-validation

0.86 0.01 0.76 0.04 0.79 0.03 0.80 0 0.76 0.04 0.78 0.02 0.77 0.02

The validation set

of cross-validation

0.83 0.06 0.73 0.11 0.77 0.14 0.79 0.08 0.73 0.11 0.75 0.05 0.74 0.05

Cross-validation set 0.862 0 0.77 0 0.79 0 0.80 0 0.77 0 0.79 0 0.78 0

Test set 0.856 0 0.77 0 0.88 0 0.91 0 0.77 0 0.83 0 0.81 0

R&CM

post-MT

The training set of

cross-validation

0.93 0.01 0.87 0.03 0.82 0.02 0.85 0.02 0.87 0.03 0.86 0.02 0.85 0.02

The validation set

of cross-validation

0.87 0.09 0.79 0.16 0.77 0.17 0.81 0.13 0.79 0.16 0.79 0.10 0.78 0.10

Cross-validation set 0.916 0 0.86 0 0.82 0 0.84 0 0.86 0 0.85 0 0.84 0

Test set 0.894 0 0.69 0 0.88 0 0.90 0 0.69 0 0.78 0 0.76 0
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biomarker for treatment selection but also may guide the functional

recovery of patients with AIS after MT. The prediction model should

be established with both RFs and CFs.
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