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Predicting the brain age of
children with cerebral palsy
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convolutional neural networks
prediction model without gray
and white matter segmentation
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Song-hai Biedelehan, Ling-xiao Tong and Xin-ping Luan*
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Urumqi, China

Background: Abnormal brain development is common in children with

cerebral palsy (CP), but there are no recent reports on the actual brain age

of children with CP.

Objective: Our objective is to use the brain age prediction model to explore

the law of brain development in children with CP.

Methods: A two-dimensional convolutional neural networks brain age

predictionmodel was designedwithout segmenting the white and graymatter.

Training and testing brain age prediction model using magnetic resonance

images of healthy people in a public database. The brain age of children with

CP aged 5–27 years old was predicted.

Results: The training dataset mean absolute error (MAE) = 1.85, r = 0.99; test

dataset MAE = 3.98, r = 0.95. The brain age gap estimation (BrainAGE) of the

5- to 27-year-old patients with CP was generally higher than that of healthy

peers (p < 0.0001). The BrainAGE of male patients with CP was higher than that

of female patients (p < 0.05). The BrainAGE of patients with bilateral spastic CP

was higher than those with unilateral spastic CP (p < 0.05).

Conclusion: A two-dimensional convolutional neural networks brain age

prediction model allows for brain age prediction using routine hospital T1-

weighted head MRI without segmenting the white and gray matter of the

brain. At the same time, these findings suggest that brain aging occurs in

patients with CP after brain damage. Female patients with CP are more likely

to return to their original brain development trajectory than male patients after

brain injury. In patients with spastic CP, brain aging is more serious in those

with bilateral cerebral hemisphere injury than in those with unilateral cerebral

hemisphere injury.
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Introduction

Cerebral palsy (CP1) is a clinical syndrome characterized

by dyskinesia and abnormal posture resulting from non-

progressive but irreversible damage caused by cerebral ischemia

and hypoxia during fetal brain development (1). The incidence

of CP in children has gradually exceeded 3 per 1,000 (1, 2).

Globally, there is a relatively large number of patients with CP.

Currently, rehabilitation is the primary treatment for CP (3), and

depending on surgical indications, some children may undergo

selective posterior rhizotomy (4) (SPR2) or cervical perivascular

sympathectomy (5) (CPVS3). Previous studies on CP have

mainly focused on early diagnosis, brain injury characterization,

and neurodevelopmental outcomes in newborns with CP (6–8).

There is currently no report on the pattern of brain development

with disease progression in children with CP.

With regard to the description of brain development

in patients with CP, it is more common for researchers

to find white matter damage and gray matter atrophy

in patients with CP through magnetic resonance image

(9) (MRI4), but it does not specify the exact brain

age of patients with CP after brain atrophy. It is

hypothesized that the trajectory of brain development

of patients with CP changes following this kind of

brain damage.

The three-dimensional convolution neural network (3D-

CNN5) brain age prediction model is a good predictor of

brain age (10, 11). As a physiological index, the brain age

gap estimation (BrainAGE6) (12, 13) method can effectively

predict the degree of brain development in patients with

neuropsychiatric disorders (12, 14, 15). However, the theoretical

basis of these models is contingent on the volume and

proportion of white and gray matter during the development

of the human brain. It is necessary to segment the white and

gray matter in the process of magnetic resonance preprocessing.

Our hospital has accumulated a large number of magnetic

resonance data for the diagnosis and treatment of CP. Because

the voxels of children with CP in our hospital do not meet

the basic requirements of the Montreal Neurological Institute

(MNI7) template, we cannot clearly segment the white and

gray matter, and thus, we cannot obtain the white matter map

and gray matter map. Additionally, we cannot use the 3D-

CNN brain age prediction model to predict the brain age of

children with CP. The establishment of the two-dimensional

1 CP, Cerebral palsy.

2 SPR, Selective posterior rhizotomy.

3 CPVS, Cervical perivascular sympathectomy.

4 Magnetic resonance image.

5 3D-CNN, Three-dimensional convolution neural network.

6 BrainAGE, Brain age gap estimation.

7 Montreal Neurological Institute.

convolution neural network (2D-CNN8) brain age prediction

model provides the possibility to solve this problem (16, 17).

However, because the training of the model is still based on

the input of white and gray matter images, it cannot meet

the demand.

To effectively use these MRIs9 to study brain development

in children with CP, a 2D-CNN brain age prediction model that

can avoid segmenting white and gray matter was designed, and

a retrospective cohort study was conducted using existing MRIs

to explore the pattern of brain development in children with CP

aged 5–27 years old.

Materials and methods

Participants

We downloaded the head MRI of 3,735 healthy humans

from 14 public datasets (male/female= 2,128/1,607, mean age=

26.93 ± 19.03, age range = 5–86 years) (10, 18–20). The images

in the dataset are from various locations, and the instruments

and parameters employed vary, ensuring the universality of the

model (SupplementaryTable S1). Permission to download and

use all datasets was obtained before conducting data analysis.

The local ethics committee ethically approved all projects in the

datasets, and all healthy participants signed informed consent

forms at the scanned sites. According to the local research

plan, all healthy controls in the dataset had no diagnosis of

neurological or mental illnesses when collecting the MRI scans.

The head MRI of 667 patients with CP (male/female =

387/280, mean age = 7 ± 3.97, age range = 1–27 years) came

from the CP center of the second affiliated hospital of Xinjiang

Medical University, which is the only hospital designated by the

Ministry of Civil Affairs in Northwest China for CP surgery.

The costs of examination and treatment of children

with CP were borne by the Ministry of Civil Affairs. This

study was approved by the ethics committee of the second

affiliated hospital of Xinjiang Medical University. Written

informed consent was abandoned because this study was a

retrospective study.

MRI screening

The MRI of healthy people left 3,474 cases (male/female

= 2,035/1,439, mean age = 25.39 ± 18.20, age range = 5–

86 years) after excluding artifacts and images with abnormal

brain MRI findings. After excluding patients under the age

of 5 and all patients with MRI artifacts, there were 455

patients left (male/female = 272/183, mean age = 8.71 ± 3.70,

8 Two-dimensional convolution neural network.

9 Magnetic resonance images.
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FIGURE 1

Model schematic. At the beginning of the model, a 2D convolution layer composed of three convolution kernels was used for feature extraction,

followed by a skipping layer composed of nine skipping blocks to capture deeper features. Features were learned again through three groups of

convolution layers designed by reference GoogLeNET, and the same skipping layer was used to capture deeper features. Finally, the brain age

was regressed through the full connection layer.

age range= 5–27 years). Patients with CP were examined using

a Philips 1.5T scanner. The T1-weighted sequences scanning

parameters were as follows: TE= 15ms, TR= 487ms, flip angle

= 90◦, matrix = 256 × 163mm, slice thickness = 6mm, slices

= 18, FOV= 230× 183× 118mm, voxel= 0.9× 1.12× 6 mm.

Data preprocessing

(1) We used dcm2niix (https://github.com/rordenlab/

dcm2niix) to convert the MRI data of cerebral palsy patients

(DICOM) to NIfTI format. Since the MRI data in the public

datasets are already in NIfTI format, no further format

conversion is required; (2) based on the clinical data acquisition

parameters, we used the linear registration flirt of the FMRIB

Software Library (FSL) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki)

to align all data to the MNI152 1-mm standard T1 structure

and resampled to 128 × 128 × 18, voxel size = 1.42 × 1.70

× 10.11mm. (3) Since the rigid transform only translates and

rotates the image without changing the structure of the brain

itself, preserving enough individual differences for feature

extraction by the convolution kernel, we use the rigid transform

to align all data to the standard template and resample them

as above; (4) Due to differences in acquisition parameters

and equipment, to ensure uniform measurements, all data are

standardized by z-score.

Construction of the brain age prediction
model

The framework of the brain age prediction
model

A small number of skipping blocks was used to extract image

features better, while the middle part referred to GoogLeNet

to make the network wider, integrate the features of different

convolution kernels, and achieve a multi-model fusion effect.

Finally, we used three layers of the full connection layer to return

to the brain age, and each layer was followed by the Dropout

layer to avoid over-fitting. Training strategy: the learning rate

is 0.00008, and the optimization strategy is Adam, loss: mean

squared error (MSE10) (Figure 1).

Training and testing of models

A total of 2,442 out of 3,474MRI data of healthy people were

randomly selected for the training model, and the remaining

1,032 healthy people were used as the test set. The data in the

training set are independent of the data in the test set. Due

to the uneven age distribution of the healthy people in the

training set (Figure 2A), a hierarchical sampling strategy was

used for the training set data (Figure 2B). The performance of

the predictive model was evaluated using mean absolute error

(MAE11), correlation coefficient r, determination coefficient

(R212), root-mean-squared error (RMSE13), and BrainAGE.

Statistical methods

Kolmogorov–Smirnov test was used to determine whether

the data were normally distributed. Normally, distributed

data were described using mean ± standard deviation

(mean ± SD). The brain age difference between the two

sets was compared using an independent samples t-test.

The brain age and physiological age of patients with CP

were compared by paired t-test. The chi-square test was

used to compare sex and other classified variables. Pearson

correlation analysis was used tomeasure the association between

continuous variables. Statistical analyses were performed

using SPSS22.0.

10 Mean squared error.

11 Mean absolute error.

12 Determination coe�cient.

13 Root-mean-squared error.
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FIGURE 2

Sample size distribution before and after stratified sampling. (A) The sample distribution before stratified sampling, and (B) the sample

distribution after stratified sampling.

Results

E�ect of the brain age prediction model
based on 2D-CNN

Without segmenting white and gray matter, our 2D-CNN

model accurately predicted the brain age of healthy people using

MRI after simple preprocessing (Table 1, Figures 3, 4).

Data analysis of brain age in patients with
cerebral palsy

The BrainAGE data in the CP group were normally

distributed (p = 0.076). The BrainAGE in the CP group (n =

455, 20.28 ± 2.9) was higher than that in the healthy control

group (n = 442, 0.25 ± 2.90). This difference was found to

be statistically significant (p < 0.0001). There is a negative
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TABLE 1 Performance of the brain age prediction model.

MAE RMSE R R
2

Train 1.85 2.39 0.99 0.98

Test 3.98 5.6 0.95 0.9

FIGURE 3

The brain age prediction model was trained 40 times. The MAE

of the training and test sets decreased gradually and tended to

be stable with increased training times.

correlation between BrainAGE and physiological age in patients

with CP aged 5–27 years old (r =−0.14, p < 0.01).

Sex comparison

In children with mixed CP, there was no significant

difference in the number of asphyxia and non-asphyxia-related

cases between male and female patients (χ2
= 2.467, p= 0.116).

In patients with mixed CP, the BrainAGE was higher in male

patients (n= 96, 20.64± 10.20) than in female patients (n= 88,

17.17 ± 9.28), and the difference was statistically significant (p

< 0.05). In summary, sex has an impact on brain age differences

in patients with CP.

Comparison in terms of disease
classification

As shown in Table 2, there was a large difference in sample

size between the spastic and mixed CP groups, which was not

comparable. After excluding the cases where the cause was

not determined, the difference in sample size between the two

groups was very small. The male to female ratios of the spastic

and mixed CP groups did not match upon analysis (χ2
= 6.509,

p < 0.05). The male proportion of patients with spastic CP

was higher than those with mixed CP. There was no significant

difference in the proportion of asphyxiated and non-asphyxiated

patients between the two types of CP (χ2
= 3.652, p = 0.056).

The BrainAGE of female patients with spastic CP (n= 85, 21.22

± 10.57) was higher than that of female patients with mixed

CP (n = 88, 17.17 ± 9.28), and the difference was statistically

significant (p < 0.01).

Analysis from the perspective of etiology

Excluding patients with unknown etiology, there was no

significant difference in BrainAGE between asphyxiated (n =

26, 15.87 ± 10.73) and non-asphyxiated (n = 28, 19.74 ± 6.91)

female patients with mixed CP (p= 0.12).

Spastic cerebral palsy

In patients with spastic CP, there was no significant

difference in the male-to-female ratios between spastic bilateral

and spastic unilateral paralysis (χ2
= 0.392, p = 0.531). The

BrainAGE of patients with bilateral spastic CP (n = 111, 23.47

± 10.81) was higher than that of those with unilateral spastic

CP (n = 129, 20.62 ± 9.79), and the difference was statistically

significant (p < 0.05).

Discussion

The brain age prediction model based on MRI shows

considerable performance in predicting the degree of brain

development (21, 22). However, not all MRI data can distinguish

between white and gray matter. Since the application of MRI in

clinical care, it is believed that many hospitals have accumulated

a large number of MRI data. However, because the data are

not high-resolution imaging, they cannot be applied to scientific

research. Scientific research involving a large sample size is

often objective and representative of the general population.

The brain age prediction model based on 2D-CNN resolves the

issues of time cost and small sample size, assists researchers

in conducting retrospective studies using existing MRIs, and

avoids the challenge of segmenting white and gray matter. Thus,

the auxiliary effect of BrainAGE on clinical decision-making of

neuropsychiatric diseases can be quickly realized.

Recently, a brain age prediction model based on 2D-

CNN was designed. However, the selected age ranges of the
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FIGURE 4

Performance of brain age prediction model. (A) The physiological age of the training set and its predicted brain age (r = 0.99, p < 0.0001). (B)

The physiological age of the test set and its predicted brain age (r = 0.95, p < 0.05).

TABLE 2 Clinical data and statistics for cerebral palsy.

Types of cerebral palsy N Male/female Asphyxia Non-asphyxia Unclear etiology

Spastic cerebral palsy 240 155/85 108 71 61

Mixed cerebral palsy 184 96/88 65 54 65

Athetoid cerebral palsy 16 12/4 6 5 5

Other types of cerebral palsy 15 9/6 4 4 7

model were mostly adults or children aged 0–5 years. The

brain age prediction model of 2D-CNN covering children

to elderly patients has not been reported. It is known

that age width, magnetic resonance sequence selected for

modeling, and modeling methods can affect the accuracy of

brain age prediction (12, 13, 17, 23, 24). The brain age

prediction model is better than the adult prediction model

in the prediction performance of healthy children aged 5–

18 years. The accuracy of the brain age prediction model

was better in patients aged 5–18 years than in patients above

18 years of age. We were unable to obtain the MRI data

of healthy children aged 1–5 years due to an issue with

public dataset access, thus, we chose children with CP aged 5

and above.

After a preliminary observation of the MRI of children

with CP, we found that the brain age of children with CP

was much older than their physiological age (Figure 5). To

fully cover these extreme cases, we chose the age range of

the prediction model to be 5–80 years. The results (Figure 6)

confirmed our speculation that the brain age of children with
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FIGURE 5

MRI of an 11-year-old patient with bilateral spastic cerebral palsy vs. an 11- and 62-year-old healthy person. As shown in (A,B) the head MRI of

an 11-year-old patient with bilateral spastic cerebral palsy, who has significant brain atrophy and the patient’s brain age is 61.74 years; (C,D) the

head MRI of an 11-year-old healthy person; (E,F) the head MRI of a 62-year-old healthy elderly person. Based on the pictures, we can see that

the 11-year-old bilateral spastic cerebral palsy patient’s degree of brain atrophy is relatively close to that of a 62-year-old healthy elderly person.
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FIGURE 6

Physiological age and brain age of patients with cerebral palsy. As shown in (A), the data represented by the circle icon are the physiological age

of the CP patient, and the triangle icon represents the corresponding actual brain age. As shown in (B), the brain age of patients with CP is older

than the physiological age. As shown in (A), the data on the left are the physiological age of patients with CP, and the data on the right are the

corresponding actual brain age. The brain age of patients with CP was greater than their physiological age.
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FIGURE 7

Data analysis of brain age di�erence in patients with cerebral palsy. In (A) the BrainAGE of patients with CP is higher than that of healthy peers (p

< 0.0001). In (B) the brain age di�erence of men is higher than that of women in patients with mixed cerebral palsy (p < 0.05). In (C) the brain

age di�erence of female patients with spastic CP was higher than that of patients with mixed CP (p < 0.01). Furthermore, the BrainAGE of

patients with bilateral spastic CP was higher than that of patients with unilateral spastic cerebral palsy (p < 0.05), as shown in (D). In (E) the

BrainAGE of patients with non-asphyxia was higher than that of patients with asphyxia in female mixed CP (p = 0.12).

CP was much older than their physiological age, and the small-

scale brain age prediction model could not fully cover the brain

age range of patients with CP. Although the wide age range

and limited sample size affected the accuracy of the model,

it also successfully revealed the trend of brain development

in children with CP. In addition, based on the MAE and r

Frontiers inNeurology 09 frontiersin.org

https://doi.org/10.3389/fneur.2022.1040087
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhang et al. 10.3389/fneur.2022.1040087

FIGURE 8

Relationship between BrainAGE di�erence and physiological age in patients with cerebral palsy. As shown in the figure, the BrainAGE of patients

with CP negatively correlates with their physiological age (r = −0.14, p < 0.01).

values of the model, the performance of the brain age prediction

model of 2D-CNNwithout sectioning the white and gray matter

was not significantly different from that of some 3D or even

4D-CNN (10, 24). However, compared to 3D and 4D models,

the 2D-CNN models are more difficult to comprehend. Our

brain age prediction model may be more suitable for hospitals

to conduct a retrospective study of the existing large sample

data when the quality of MRI is poor so as to clarify the

impact of some neuropsychiatric diseases on the trajectory of

brain development.

Figure 7A shows that the brain of the children with CP

was aging, consistent with the description of brain atrophy in

∼80% of patients with CP on abnormal MRI (7). This is because

children with CP suffer from white matter injury, ischemia,

hypoxia, intracerebral hemorrhage in fetuses, and a decrease in

the gray matter volume after birth (9, 25). Bethlehem et al. found

that gray matter reaches its peak during brain development in

healthy children at age 6 and then steadily declines; white matter

reaches its peak at age 27 and then gradually declines; subcortical

matter reaches its peak at age 14 and then gradually declines;

the ventricle reaches a small peak at age 5 declines slightly, and

then tends to level off, and rises rapidly after age 45 (18). The

gray matter of CP children decreases rapidly after birth, and the

degree of graymatter decrease is higher than that of white matter

reduction, so the brain age of CP children is higher than that of

their peers in the human brain map, reaching the level of the

middle aged and elderly.

From the analysis, the BrainAGE of children with CP aged 5

years compared with adults was negatively correlated with their

physiological age (Figure 8). This implies that as children with

CP grow older, the difference between cerebral and physiological

age reduces. Children with CP after fetal or infantile brain

damage caused by different factors have a corresponding decline

in markers such as Tau protein after treatment (26). Even

with treatment, the damage may continue to affect cerebral

development in children with CP, and the effect peaks before

age 5 and maintains a certain level. Therefore, the BrainAGE of

children with CP aged 5 and above will gradually decrease with

an increase in their age. This was consistent with the canalization

concept described by Waddington (27).

In this study, we found that the BrainAGE of male patients

with CP was higher than that of female patients (Figure 7B),

and the number of male patients in the whole CP group was

also higher than that of female patients. In CP, women are more

tolerant of brain damage thanmen. This conclusion is consistent

with the results of some clinical investigations and animal
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experiments (28, 29). This phenomenon can also be explained by

the concept of canalization put forward by Waddington. From

the fertilized egg, each cell group differentiates into different

tissues, and each tissue has a great trend of specialization

relative to other tissues. If this process deviates from its

path for any reason, an undetermined regulatory process will

immediately make the necessary corrections (27). In this process

of regulation, women are better at regulation than men, which

is true in humans and other mammals (30, 31). Women have a

better ability to adjust their brain development back to the right

track after brain damage than men.

This study reveals that the BrainAGE of spastic CP is

higher than that of mixed CP (Figure 7C), and the BrainAGE

of bilateral spastic CP is higher than that of unilateral spastic CP

(Figure 7D). The BrainAGE of patients with nonasphyxia was

higher than that of patients with asphyxia in female mixed CP

(Figure 7E). These may be related to the MRI findings. First, the

abnormal probability of MRI in spastic CP is higher than that

in mixed CP. This may result in a higher BrainAGE in mixed

CP than in spastic CP in some single samples, usually when

spastic CP is mixed with other types of CP. However, because

mixed CP can also be a mixture of the other two types of CP,

this results in lower average values of BrainAGE in mixed CP

than in spastic CP in larger sample sizes. Second, spastic CP is

characterized by white matter injury and severe cortical atrophy.

If the patient is spastic quadriplegia, the MRI manifestation is

more serious and the prognosis is worse. Mixed CP refers to CP

associated with more than two types of clinical manifestations.

The location of the lesion is uncertain, and most of them show

ventricular dilatation and cortical atrophy. Therefore, according

to the rules of the brain map obtained by Bethlehem et al. (18),

the average brain age of patients with spastic CP is higher than

that of mixed CP.

In this study, a brain age prediction model was constructed

without white and gray matter segmentation. The good

performance of themodel indicated that the brain age prediction

model based on 2D-CNN was feasible. The brain age of children

with CPwas assessed using the brain age predictionmodel. Brain

development in patients with CP over the age of 5 years was also

examined. This study provides a research direction and basis for

brain developmental abnormality studies in children with CP.

Of course, our study also has some shortcomings. The study

was designed as a cross-sectional study, and the conclusions

may not be as convincing as a longitudinal cohort study. In

the future, through collaborations, we will conduct a long-term

longitudinal MRI follow-up of large samples of patients with CP

to complete the next phase of the study.

Conclusion

We observed that the 2D-CNN brain age prediction model

without segmentation of white and gray matter can accurately

predict the brain age of healthy people when the quality of head

MRI data is poor. We also found that brain aging occurred in

patients with CP. In patients with CP, the brain tolerance of

female patients to damage factors is higher than that of male

patients. The damage of spastic CP to brain development was

higher than that of mixed CP, and the degree of brain aging in

patients with spastic CP was higher than that in patients with

mixed CP, and the brain aging in patients with spastic bilateral

paralysis was more serious than that in patients with spastic

unilateral paralysis.
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