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Background: Traumatic brain injury (TBI) is a serious public health issue all over the

world. This study was designed to evaluate the prognostic value of lactate to albumin

ratio (LAR) on patients with moderate to severe TBI.

Methods: Clinical data of 273 moderate to severe TBI patients hospitalized in West

China Hospital between May 2015 and January 2018 were collected. Multivariate logistic

regression analyses were used to explore risk factors and construct a prognostic model

of in-hospital mortality in this cohort. A receiver operating characteristic (ROC) curve was

drawn to evaluate the discriminative ability of this model.

Results: Non-survivors had higher LAR than survivors (1.09 vs. 0.53, p < 0.001).

Results of multivariate logistic regression analysis showed that Glasgow Coma Scale

(GCS; odds ratio [OR] = 0.743, p = 0.001), blood glucose (OR = 1.132, p = 0.005),

LAR (OR = 1.698, p = 0.022), subdural hematoma (SDH; OR = 2.889, p = 0.006),

intraparenchymal hemorrhage (IPH; OR = 2.395, p = 0.014), and diffuse axonal injury

(DAI; OR = 2.183, p = 0.041) were independent risk factors of in-hospital mortality in

included patients. These six factors were utilized to construct the prognostic model. The

area under the ROC curve (AUC) values of single lactate, albumin, and LAR were 0.733

(95% Cl; 0.673–0.794), 0.740 (95% Cl; 0.683–0.797), and 0.780 (95% Cl; 0.725–0.835),

respectively. The AUC value of the prognostic model was 0.857 (95%Cl; 0.812–0.901),

which was higher than that of LAR (Z = 2.1250, p < 0.05).

Conclusions: Lactate to albumin ratio is a readily available prognostic marker of

moderate to severe TBI patients. A prognostic model incorporating LAR is beneficial for

clinicians to evaluate possible progression and make treatment decisions in TBI patients.
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INTRODUCTION

Traumatic brain injury (TBI), defined as an alteration of brain function or other evidence of brain
pathology due to external force, is a serious public health problem worldwide (1). Over the past
decade, the prognosis of TBI has been improved significantly, attributable to better implementation
of pre-admission treatments, rapid CT examination, and high-standard critical care measures (2).
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However, the continuously increased incidence rate of TBImakes
it still a serious public health issue. Consequently, predicting
the possible prognosis of patients in the early stage and then
making suitable treatment strategies are significant to improve
the outcomes of TBI patients. The serum lactate level, a
widely acknowledged indicator of tissue hypoperfusion, has been
confirmed associated with organ failure and mortality in many
clinical settings, such as sepsis, trauma, and pediatric critical
Illness (3–7). In addition, several studies have been conducted to
explore the prognostic value of serum lactate level in TBI patients
(8–10). Most of these studies showed that higher serum lactate
was associated with worse injury severity and poor outcome in
TBI patients. As an important metabolic marker of the whole
body, serum lactate level is actually influenced by many factors,
such as hepatic and renal function.

In order to stabilize and improve the predictive value of serum
lactate, the lactate to albumin ratio (LAR), a new marker which
synthetically combines the clinical significance of lactate and
albumin, is developed and practically tested in several groups of
patients (11–13). Results of these studies showed that LAR might
be superior to single lactate in predicting mortality of critically ill
patients.Moreover, recent research concluded that the prognostic
value of LAR was better than single lactate on predicting
neurologic outcomes and survival to discharge after out-of-
hospital cardiac arrest (14). Therefore, we make a reasonable
assumption that LAR is similarly valuable in predicting mortality
of moderate to severe TBI patients. This observational study was
designed to verify our scientific hypothesis.

MATERIALS AND METHODS

Patients
This study was performed in a West China Hospital. Patients
diagnosed with moderate to severe TBI and transferred to our
hospital within 4 h after injuries between May 2015 and January
2018 were eligible in this study. Diagnoses of TBI were confirmed
according to findings of CT and MRI. Exclusion criteria were
listed as below: (1) patients transferred from other hospital after
suffering injuries; (2) patients hospitalized in our hospital <48 h;
(3) patients complicated with severe hepatorenal, cardiovascular,
or respiratory diseases, cancer, and other central nervous system
diseases; and (4) patients lacked in complete laboratory results.
A total of 273 patients were finally included in this study. The
study was approved by the ethics committee of West China
hospital, Sichuan University. Informed consent forms for joining
observational research of each patient were legally obtained from
themselves or their authorized families when they were admitted
based on the research policy of our hospital.

Data Collection
Vital signs and Glasgow Coma Scale (GCS) were recorded once
patients were admitted to the emergency department of our
hospital. Injury Severity Scores (ISSs) of other regions except
for the head were added. Sequential Organ Failure Assessment
(SOFA) score on the first day of hospitalization was also recorded.
The blood samples of patients in admission were taken for blood
biochemistry, blood routine, and arterial gas analysis, such as

lactate level. Laboratory results of the first blood sample on
admission were recorded in this study for statistical analysis.
Occurrence of hypoxia on admission was also collected and was
divided into two severities, i.e., mild hypoxia (60 mmHg ≤ PaO2

< 80 mmHg) and severe hypoxia (PaO2 < 60 mmHg). The
primary outcome of this study was in-hospital mortality.

Statistical Analysis
Kolmogorov-Smirnov test was performed to test the normality
of variables. Normally distributed variables were presented
as mean ± SD, and non-normally distributed variables were
presented as median (interquartile range). Moreover, categorical
variables were shown in the form of numbers (percentage).
Independent Student’s t-test and Mann-Whitney U-test were
respectively performed to analyze differences between two
groups of normally distributed and non-normally distributed
variables. We performed a Chi-square test to examine the
difference of categorical variables. The relationship between LAR
and other factors was tested by Spearman rank correlation
analysis. Univariate and multivariate logistic regression were
sequentially used to explore the association between risk factors
and mortality in this study cohort. In addition, independent risk
factors were incorporated to construct a prognostic model by
multivariate logistic regression. We drew the receiver operating
characteristic (ROC) curves and evaluated the predictive value of
LAR and the prognostic model by calculating the area under the
ROC curves (AUC). Z test was utilized to compare the difference
of AUC between LAR and the prognostic model.

A value of p <0.05 was considered to be of statistical
significance. SPSS 22.0 Windows software (SPSS, Inc., Chicago,
IL, USA) was used for all statistical analyses and figure drawing.

RESULTS

Baseline Characteristics of Survivors and
Non-survivors in TBI Patients
There were 124 survivors and 149 non-survivors with a mortality
rate of 54.6% in this study (Table 1). Age and male ratio did not
differ between survivors and non-survivors (43 vs. 43, p= 0.707;
77.4 vs. 73.8%, p = 0.491). Motor vehicle crash and falling injury
respectively ranked first and second among the injury causes with
66.3 and 19.8%. Initial vital signs, such as systolic and diastolic
blood pressure, heart rate, did not differ between survivors and
non-survivors (123 vs. 120, p = 0.287; 72 vs. 70, p = 0.094;
98 vs. 103, p = 0.184). However, the body temperature of non-
survivors was significantly lower than survivors (36.7 vs. 36.8,
p = 0.003). In addition, non-survivors had significantly lower
GCS than survivors (5 vs. 7, p < 0.001). Results of laboratory
tests showed that non-survivors had a significant higher level
of glucose, lactate, LAR, blood urea nitrogen (BUN), serum
creatinine, lactate dehydrogenase (LDH), and prothrombin time
(PT). Whereas the level of platelet, hemoglobin, and albumin
was significantly lower in non-survivors. The incidence of
subarachnoid hemorrhage (SAH), subdural hematoma (SDH),
intraparenchymal hemorrhage (IPH), diffuse axonal injury
(DAI), and cerebral infarction were both higher in non-survivors
than survivors. In addition, non-survivors had shorter length of
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TABLE 1 | Baseline characteristics of included patients.

Variables Full cohort (N = 273) Survivors (n = 124, 45.4%) Non-survivors (n = 149, 54.6%) P value

Age (year) 43 (26–55) 43 (24–56) 43 (26–55) 0.707

Gender (male) 206 (75.5%) 96 (77.4%) 110 (73.8%) 0.491

Mechanism of injury

Traffic accident 181 (66.3%) 78 (62.9%) 103 (69.1%) 0.279

High fall 54 (19.8%) 28 (22.6%) 26 (17.4%) 0.290

Stumble 26 (9.5%) 11 (8.9%) 15 (10.1%) 0.737

Others 12 (4.4%) 7 (5.6%) 5 (3.4%) 0.359

Vital signs in admission

Systolic blood pressure (mmHg) 120 (106–138) 123 (108–138) 120 (103–137) 0.287

Diastolic blood pressure (mmHg) 71 (60–84) 72 (65–83) 70 (56–84.5) 0.094

Heart rate (bpm) 101 (82–120) 98 (81–117) 103 (84–123.5) 0.184

Body temperature (◦C) 36.8 (36.5–37.1) 36.8 (36.5–37.5) 36.7 (36.3–37.0) 0.003

GCS in admission 5 (4–7) 7 (5–9) 5 (3–6) <0.001

ISS otherregions 0 (0–5) 0 (0–8) 0 (0–4) 0.730

SOFA 6 (5–8) 6 (4–7) 7 (6–9) <0.001

Hypoxia 0.595

None 233 (85.3%) 107 (86.3%) 126 (84.6%)

Mild hypoxia 30 (11.0%) 14 (11.3%) 16 (10.7%)

Severe hypoxia 10 (3.7%) 3 (2.4%) 7 (4.7%)

Laboratory tests

Glucose (mmol/L) 10.33 (7.87–14.29) 8.53 (6.61–11.59) 12.66 (9.16–16.15) <0.001

White blood cell (109/L) 15.13 (11.28–20.06) 15.09 (11.13–20.08) 15.47 (11.54–20.14) 0.512

Neutrophil (109/L) 11.87 (8.67–15.24) 11.81 (8.96–15.43) 11.98 (7.81–15.12) 0.301

Lymphocyte (109/L) 0.78 (0.53–1.12) 0.88 (0.54–1.23) 0.74 (0.50–1.04) 0.070

Platelet (109/L) 90 (57–141) 114 (76–172) 72 (46–112) <0.001

Hemoglobin (g/L) 85 (73–103) 92 (79–110) 81 (69–97) <0.001

Albumin (g/dL) 3.02 (2.61–3.45) 3.25 (2.86–3.70) 2.77 (2.31–3.18) <0.001

Lactate (mmol/L) 2.4 (1.5–3.6) 1.8 (1.2–2.8) 3.1 (2.1–4.6) <0.001

LAR 0.78 (0.475–1.31) 0.5 (0.39–0.79) 1.09 (0.73–1.72) <0.001

Blood urea nitrogen (mmol/L) 6.34 (4.81–8.82) 5.72 (4.36–7.69) 7.11 (5.35–9.91) <0.001

Serum creatinine (umol/L) 76 (56–106) 65 (54–85) 84 (59–124) <0.001

LDH (U/L) 400 (301–594) 360 (289–479) 452 (330–775) <0.001

PT (s) 13.9 (12.5–16.3) 13.0 (11.9–14.6) 15.1 (13.4–18.2) <0.001

Injury types

Subarachnoid hemorrhage 142 (52.0%) 54 (43.5%) 88 (59.1%) 0.015

Epidural hematoma 27 (9.9%) 11 (8.9%) 16 (10.7%) 0.686

Subdural hematoma 88 (32.2%) 27 (21.8%) 61 (40.9%) 0.001

Intraparenchymal hemorrhage 164 (60.1%) 56 (45.2%) 108 (72.5%) <0.001

Intraventricular hemorrhage 15 (5.5%) 6 (4.8%) 9 (6.0%) 0.792

Diffuse axonal injury 88 (32.2%) 30 (24.2%) 58 (38.9%) 0.013

Cerebral infarction 9 (3.3%) 1 (0.8%) 8 (5.4%) 0.043

Surgical interventions

Decompressive craniectomy 102 (37.4%) 41 (33.1%) 61 (40.9%) 0.209

Hematoma evacuation 114 (41.8%) 54 (43.5%) 60 (40.3%) 0.623

Length of ICU stay (day) 10 (2–24) 21 (13–33) 2 (1–7) <0.001

Length of hospital stay (day) 15 (5–34) 31 (22–48) 5 (3–12) <0.001

GCS, Glasgow Coma Scale; ISS, Injury Severity Score; SOFA, Sequential Organ Failure Assessment; LAR, lactate to albumin ratio; LDH, lactate dehydrogenase; PT, prothrombin time.
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TABLE 2 | Correlation between other factors and LAR by Spearman analysis in

patients with moderate to severe TBI.

Factors r p

Age (year) –0.009 0.878

Gender (male) 0.022 0.714

Systolic blood pressure −0.096 0.113

Diastolic blood pressure −0.097 0.111

Heart rate 0.023 0.700

Body temperature −0.175 0.004

GCS in admission −0.347 <0.001

ISS otherregions −0.051 0.401

SOFA 0.443 <0.001

Hypoxia 0.026 0.672

Glucose 0.447 <0.001

White blood cell 0.111 0.067

Neutrophil −0.007 0.909

Lymphocyte −0.094 0.121

Platelet −0.444 <0.001

Hemoglobin −0.235 <0.001

Blood urea nitrogen 0.106 0.082

Serum creatinine 0.340 <0.001

LDH 0.202 0.001

PT 0.420 <0.001

Subarachnoid hemorrhage 0.073 0.232

Epidural hematoma 0.124 0.040

Subdural hematoma 0.256 <0.001

Intraparenchymal hemorrhage 0.187 0.002

Intraventricular hemorrhage −0.082 0.176

Diffuse axonal injury −0.003 0.955

Cerebral infarction 0.116 0.056

Decompressive craniectomy 0.160 0.008

Hematoma evacuation 0.086 0.154

TBI, traumatic brain injury; LAR, lactate to albumin ratio; GCS, Glasgow Coma Scale; ISS,

Injury Severity Score; SOFA, Sequential Organ Failure Assessment. Bold values indicates

p < 0.05.

intensive care unit (ICU) stay and length of hospital stay than
survivors (p < 0.001).

Correlation Between Other Factors and
LAR by Spearman Analysis in Included TBI
Patients
Spearman correlation analysis showed that GCS (r=−0.347, p<

0.001) and platelet (r = −0.444, p < 0.001) were negatively and
moderately associated with LAR level, while SOFA (r = 0.443, p
< 0.001), glucose (r = 0.447, p < 0.001), serum creatinine (r =
0.340, p < 0.001), and PT (r = 0.420, p < 0.001) were positively
and moderately related with LAR level (Table 2).

Univariate and Multivariate Analyses of
Risk Factors for Mortality in Included TBI
Patients
In univariate logistic regression analysis, we found that body
temperature (OR = 0.674, p = 0.004), GCS (OR = 0.647, p <

0.001), platelet (OR = 0.993, p < 0.001), and hemoglobin (OR
= 0.978, p < 0.001) were negatively correlated with outcomes
in TBI patients (Table 3). Moreover, SOFA (OR = 1.475, p <

0.001), glucose (OR = 1.275, p < 0.001), LAR (OR = 3.611, p
< 0.001), BUN (OR = 1.068, p = 0.030), serum creatinine (OR
= 1.007, p = 0.003), LDH (OR = 1.002, p < 0.001), PT (OR =

1.292, p < 0.001), SAH (OR = 1.870, p = 0.011), SDH (OR =

2.490, p = 0.001), IPH (OR = 3.199, p < 0.001), and DAI (OR
= 1.997, p = 0.010) were risk factors of mortality in the TBI
patients. Furthermore, results of multivariate logistic regression
analysis indicated that six factors, i.e., GCS (OR = 0.743, p =

0.001), glucose (OR = 1.132, p = 0.005), LAR (OR = 1.698, p
= 0.022), SDH (OR = 2.889, p = 0.006), IPH (OR = 2.395, p =

0.014), and DAI (OR = 2.183, p = 0.041), were independently
associated with mortality after adjusting confounders.

Predictive Value of LAR and Constructed
Prognostic Model
Combining GCS, glucose, LAR, SDH, IPH, and DAI, we
constructed a prognostic model for predicting mortality in the
TBI patients by multivariate logistic regression analysis. As
shown in Figure 1, the AUC values of single lactate, albumin,
and LAR are 0.733 (95% Cl; 0.673–0.794), 0.740 (95% Cl;
0.683–0.797), and 0.780 (95% Cl; 0.725–0.835), respectively
(Table 4). The AUC value of LAR and the prognostic model was
0.780 (95% Cl; 0.725–0.835) and 0.857 (95% Cl; 0.812–0.901),
respectively. The AUC value of LAR was higher than that of
GCS (Z = 1.221, p > 0.05), single lactate value (Z = 1.1251,
p > 0.05), and single albumin (Z = 0.9923, p > 0.05) though
without statistical significance. However, the prognostic model
incorporating LAR had a significant higher AUC value than
single LAR (Z= 2.1250, p < 0.05).

DISCUSSION

Previous studies have shown the added prognostic value of
lactate value in trauma patients (6, 15, 16). In addition, several
research studies have confirmed that LAR was associated with
mortality and the development of multiple organ dysfunction
syndrome (MODS) in generalized or pediatric sepsis patients
(11–13, 17, 18). A recent study showed that LAR had a higher
value than single lactate level on predicting neurologic outcomes
and survival to discharge in patients suffering out-of-hospital
cardiac arrest (14). We make a reasonable hypothesis that LAR
would also be superior to single lactate in predicting mortality in
TBI patients.

As a component of LAR, the serum lactate is widely
acknowledged as an indicator of inadequate tissue perfusion. In
addition, the correlation between serum lactate and mortality
has been verified in many clinical settings, such as sepsis, shock,
and trauma (19–22). However, several studies exploring the
association between lactate and outcome in TBI patients showed
different conclusions (9, 23–25). One of these studies even
indicated that TBI patients whose serum lactate >5 mmol/L
were likely to have better survival than those with relatively low
lactate level (24). Furthermore, the exogenous supplement of
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TABLE 3 | Univariate and multivariate logistic regression analysis of risk factors for mortality in patients with moderate to severe TBI.

Unadjusted analysis Adjusted analysis

Variables OR (95%Cl) P value OR (95%Cl) P value

Age (year) 1.003 (0.990–1.015) 0.683

Gender (male) 0.823 (0.471–1.436) 0.492

Systolic blood pressure 1.001 (0.997–1.005) 0.636

Diastolic blood pressure 0.987 (0.973–1.001) 0.077

Heart rate 1.006 (0.997–1.014) 0.176

Body temperature 0.674 (0.514–0.883) 0.004 0.696 (0.482–1.006) 0.054

GCS in admission 0.647 (0.565–0.742) <0.001 0.743 (0.621–0.888) 0.001

ISS otherregions 0.997 (0.960–1.035) 0.868

SOFA 1.475 (1.291–1.686) <0.001 1.001 (0.785–1.275) 0.996

Hypoxia 0.617

None 1.000 [Reference]

Mild hypoxia 0.971 (0.453–2.080) 0.939

Severe hypoxia 1.981 (0.500–7.851) 0.330

Glucose 1.275 (1.182–1.374) <0.001 1.132 (1.037–1.235) 0.005

White blood cell 1.013 (0.979–1.048) 0.458

Neutrophil 0.982 (0.942–1.024) 0.399

Lymphocyte 0.680 (0.454–1.021) 0.063

Platelet 0.993 (0.990–0.997) <0.001 0.999 (0.995–1.004) 0.793

Hemoglobin 0.978 (0.967–0.990) <0.001 0.996 (0.981–1.011) 0.604

LAR 3.611 (2.219–5.876) <0.001 1.698 (1.078–2.675) 0.022

Blood urea nitrogen 1.068 (1.006–1.133) 0.030 1.001 (1.000–1.002) 0.185

Serum creatinine 1.007 (1.002–1.011) 0.003 1.114 (0.984–1.262) 0.089

LDH 1.002 (1.001–1.003) <0.001 1.073 (0.990–1.163) 0.087

PT 1.292 (1.168–1.429) <0.001 0.998 (0.991–1.005) 0.649

Subarachnoid hemorrhage 1.870 (1.154–3.029) 0.011 0.939 (0.471–1.873) 0.858

Epidural hematoma 1.236 (0.551–2.771) 0.607

Subdural hematoma 2.490 (1.455–4.261) 0.001 2.889 (1.360–6.135) 0.006

Intraparenchymal hemorrhage 3.199 (1.932–5.297) <0.001 2.395 (1.190–4.819) 0.014

Intraventricular hemorrhage 1.264 (0.437–3.655) 0.665

Diffuse axonal injury 1.997 (1.179–3.382) 0.010 2.183 (1.034–4.610) 0.041

Cerebral infarction 6.979 (0.861–56.585) 0.069

Decompressive craniectomy 1.403 (0.854–2.306) 0.181

Hematoma evacuation 0.874 (0.539–1.416) 0.584

TBI, Traumatic brain injury; GCS, Glasgow Coma Scale; ISS, Injury Severity Score; SOFA, Sequential Organ Failure Assessment; LAR, Lactate to albumin ratio; LDH, Lactate

dehydrogenase; PT, Prothrombin time. Bold values indicates p < 0.05.

lactate by infusing hypertonic sodium lactate has been verified
beneficial for survival and neurologic outcome and cognitive
recovery in TBI animal models and patients (26–32). In our
study, serum lactate was higher in non-survivors than survivors
and was useful in predicting mortality in moderate to severe TBI
patients with an AUC of 0.733. The most key point we think to
understand and discuss the relationship between blood lactate
and the outcome of TBI patients is the different meaning of
increased serum lactate between the initial pathophysiological
state and exogenous supplement state.

A previous study found that serum lactate would still increase
even in normotensive TBI patients (24). This fact indicated an
initial increase of serum lactate after TBI could not only be caused
by peripheral tissue hypoperfusion due to blood loss, but also
the worsening tissue oxygenation due to complications, such

as acute lung injury and neurogenic lung edema. The detailed
mechanism of initially increased lactate after TBI deserves further
exploration. Initially being put forward in 1994, the astrocyte–
neuron lactate shuttle has changed the opinion that lactate is
only an useless waste during the anaerobic metabolism process
(33). It was illustrated that astrocyte would uptake glucose
and metabolized it into lactate under the stimulation of much
glutamate. The generated lactate would be transferred to neurons
and enter the tricarboxylic acid cycle for energy demand of brain.
The increased serum lactate directly penetrating the blood-brain-
barrier would also accumulate in neuronal intercellular space and
be utilized by neurons for energy production (34, 35). Moreover,
one study discovered that brain uptake of lactate reflected by
arterio-venous differences for lactate (AVDlac) was higher in
more severe TBI patients and non-survivors (36). Therefore, a
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FIGURE 1 | Receiver operating characteristic (ROC) curves of predictive factors and the prognostic model for predicting mortality in moderate to severe TBI patients.

The area under the curve (AUC) of GCS, lactate, albumin, LAR, SDH, IPH, and DAI and the constructed prognostic model was 0.729, 0.733, 0.740, 0.780, 0.596,

0.637, 0.574, and 0.857, respectively.

reasonable conjecture is that uptake of lactate from neuron after
more severe TBI would decrease more serum levels of lactate.
However, it was confirmed that themagnitude of absorbed lactate
by brain was extremely small compared with the magnitude of
serum lactate level (36). Therefore, the initial fluctuation of serum
lactate level after TBI is mainly attributable to pathophysiological
changes of the systemic body but not of single brain. This
argument might be confirmed by the finding of the previous
study that blood lactate levels were associated with SOFA score,
which reflects systemic organ failure in unspecified ICU patients
(37). In addition, blood lactate level was also verified inversely
associated with GCS in isolated TBI patients (24). Although
higher serum lactate is beneficial for brain energy supplements,
the effect of poor pathophysiologic condition indicated by higher
serum lactate on outcome could be greater than relatively
transient and small effect of energy supplement. Generally, the
initially increased serum lactate in the natural pathophysiologic
condition is inversely associated with favorable outcome in TBI
patients by reflecting the degree of systemic organ failure and
initial brain injury severity.

On the contrary, the continuously increased serum lactate
level during exogenous infusion of hypertonic sodium lactate
could indicate better survival and recovery after TBI (30, 38, 39).
Because increased serum lactate during exogenous supplement
is not a reflection of initial tissue hypoperfusion and organ
failure, but only means more alternative energy fuel for the
injured brain. This is a key point to distinguish the meaning
of increased serum lactate under the initial pathophysiological
condition and exogenous supplement condition. The beneficial
effects of hypertonic sodium lactate on the injured brain have
been definitely recognized, i.e., improving cerebral perfusion and
brain glucose availability, reversing impaired brain metabolism,
and oxygenation. (26–28). In addition to the function of
neuroenergetic material, lactate is actually a crucial signaling
molecule, which could modulate the production of pentose
phosphate, an important molecule to prevent oxidative stress
injury in brain (40–43). It was testified that lactate would provide
60% of the energy source for cerebral metabolism as blood lactate
increases to 5 mmol/L (44, 45), To sum up, the increased serum
lactate level during exogenous supplement of lactate is beneficial
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TABLE 4 | Value of factors and constructed prognostic model on predicting mortality in patients with moderate to severe TBI.

Predictive factors AUC 95%Cl Sensitivity Specificity

GCS 0.729 0.668–0.789 0.532 0.826

Lactate 0.733 0.673–0.794 0.725 0.653

Albumin 0.740 0.683–0.797 0.597 0.725

LAR 0.780 0.725–0.835 0.678 0.798

SDH 0.596 0.529–0.663 0.409 0.782

IPH 0.637 0.570–0.703 0.725 0.548

DAI 0.574 0.506–0.641 0.389 0.758

Prognostic model 0.857 0.812–0.901 0.839 0.750

TBI, traumatic brain injury; AUC, area under the ROC curve; Cl, confidence interval; GCS, Glasgow Coma Scale; LAR, lactate to albumin ratio; SDH, subdural hematoma; IPH,

intraparenchymal hemorrhage; DAI, diffuse axonal injury.

The prognostic model was composed of GCS, glucose, LAR, SDH, IPH, and DAI.

for neurologic and survival outcome and cognitive recovery
after TBI.

The albumin level of non-survivors was significantly
lower than survivors in this study. Produced by hepatocytes,
albumin works in multiple ways to maintain the physiologic
function of the healthy body, such as constituting plasma
osmotic pressure, transporting insoluble small organic
molecules, and combining heavy metal ions to eliminate
their toxic effects. In addition, low albumin level is also
considered as an efficient marker of malnutrition. The cause
of hypoalbuminemia after TBI is diversified, i.e., initial blood
loss due to injury, consumption by secondary oxidative
stress injury, and physiological hypoalbuminemia resulted
from massive crystal liquid infusion. The reduction of serum
albumin and its association with mortality after TBI have been
confirmed in previous studies (46–49). The correlation between
hypoalbuminemia and poor outcome of TBI patients could
be explained by the brain edema and subsequent increased
intracranial pressure resulted from insufficient intravascular
osmolality. In addition, a lower level of albumin could indicate
more severe degree of the systemic inflammatory response,
which was discovered correlated with poor outcome of TBI
patients (50, 51). In our study, the AUC value of single lactate
was 0.733. After the incorporation of albumin, the AUC value
of LAR was increased to 0.780. This result indicated that LAR,
calculated by the value of lactate and albumin, could more
comprehensively reflect tissue injury severity and systemic organ
function of TBI patients. The prognostic model constructed by
us, which consisted of GCS, glucose, LAR, SDH, IPH, and DAI, is
useful in predicting mortality of moderate to severe TBI patients
with high discriminative ability and sensitivity.

This study had several limitations. Firstly, this observational
study was performed in a single center so that the selection
bias was inevitable. A further prospective study with a larger
sample size in other centers should be conducted to externally
validate the predictive value of our prognostic model. Secondly,
the long-term neurologic outcome and recovery status were
not followed up and the specific causes of death were not
recorded so that we could not explore the correlation between
LAR and them. Thirdly, the drugs and operations of prehospital

emergency medical care which could influence the serum lactate
level were not recorded by us. Our results might be confounded
by these factors.

CONCLUSION

The LAR is an effective and readily available marker of outcome
in moderate to severe TBI patients. The prognostic model
incorporating LAR with high predictive value is beneficial for
clinicians to evaluate possible progression and make treatment
decisions in moderate to severe TBI patients.
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