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Purpose: Hippocampal volumetry is an important biomarker to quantify atrophy in

patients with mesial temporal lobe epilepsy. We investigate the sensitivity of automated

segmentation methods to support radiological assessments of hippocampal sclerosis

(HS). Results from FreeSurfer and FSL-FIRST are contrasted to a deep learning

(DL)-based segmentation method.

Materials and Methods: We used T1-weighted MRI scans from 105 patients with

epilepsy and 354 healthy controls. FreeSurfer, FSL, and a DL-based method were

applied for brain anatomy segmentation. We calculated effect sizes (Cohen’s d) between

left/right HS and healthy controls based on the asymmetry of hippocampal volumes.

Additionally, we derived 14 shape features from the segmentations and determined the

most discriminating feature to identify patients with hippocampal sclerosis by a support

vector machine (SVM).

Results: Deep learning-based segmentation of the hippocampus was the most

sensitive to detecting HS. The effect sizes of the volume asymmetries were larger

with the DL-based segmentations (HS left d= −4.2, right = 4.2) than with FreeSurfer

(left= −3.1, right = 3.7) and FSL (left= −2.3, right = 2.5). For the classification based

on the shape features, the surface-to-volume ratio was identified as the most important

feature. Its absolute asymmetry yielded a higher area under the curve (AUC) for the deep

learning-based segmentation (AUC = 0.87) than for FreeSurfer (0.85) and FSL (0.78)

to dichotomize HS from other epilepsy cases. The robustness estimated from repeated

scans was statistically significantly higher with DL than all other methods.

Conclusion: Our findings suggest that deep learning-based segmentation methods

yield a higher sensitivity to quantify hippocampal sclerosis than atlas-based methods

and derived shape features are more robust. We propose an increased asymmetry in the

surface-to-volume ratio of the hippocampus as an easy-to-interpret quantitative imaging

biomarker for HS.
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1. INTRODUCTION

Magnetic resonance imaging (MRI) is the key element
in diagnosing structural lesions in epilepsy (1). High-
resolution MRI, preferably with 3 Tesla (3T) including
three-dimensional non-contrast T1-weighted (T1w) imaging
suitable for automated postprocessing, is part of today’s
protocol recommendations (2, 3). In mesial temporal lobe
epilepsy (mTLE), hippocampal sclerosis (HS) is the most
common pathology (4). Its characteristic neuronal loss and
gliosis manifesting as volume loss and increased T2 signal
intensities (5) make MRI an essential clinical tool for the
differential diagnosis in TLE. While HS in advanced stages is
usually reliably identified in epilepsy specific MRI by experts (6),
the challenge remains putative in non-lesional (MRI negative)
patients in an early stage (7). Quantitative hippocampal
volumetry is already recommended for patients with TLE,
who were considered for epilepsy surgery (8). For clinical
assessment, manual segmentations are recommended (9), a
labor-intensive task requiring specific training to achieve good
inter-rater agreement (10).

In this study, we selected two of the most frequently
used freely available morphometry tools (11) to segment deep
gray matter structures, FreeSurfer (FS) (12, 13) including
segmentation of hippocampal subfields (FS-SF) (14) and FSL-
FIRST (15), and contrasted the results to a deep learning (DL)-
based segmentation (16).

Deep learning-basedmethods have been shown to outperform
atlas-based methods for neuroanatomy segmentation (17–
20). Convolutional neural network (CNN) architectures
have also been successfully used specifically to segment the
hippocampus (21–24).

In the largest morphometry study on epilepsy to date by
the ENIGMA-Epilepsy group (25), volume loss of the ipsilateral
hippocampus was the most pronounced effect in lesional
patients with TLE (26, 27). Inter-hemispheric asymmetries of
brain structures are not correlated to age in healthy conditions,
i.e., are usually small and remain stable across large age
ranges (28), making it an ideal metric to compare an individual’s
estimate against normative data (29).

Rather than comparing with a ground truth expert
segmentation, the present study aimed to examine the
impact of the segmentation method on the end result of
a clinically motivated question, in this case, quantifying
hippocampal sclerosis in patients with epilepsy. With recent
progress in applying DL-based methods in medical imaging, we
hypothesized that DLwould providemore accurate segmentation
of the hippocampi than atlas-based methods and consequently

lead to improved discrimination of HS.
The experiments in this study were structured as follows:

we processed T1w-MRI from healthy controls and patients

with epilepsy with all four investigated methods (FS, FS-
SF, FSL, and DL) using their recommended default settings.
Subsequently derived measures of the hippocampal shape and
volume were calculated identically from the binary segmentation
of the respective method. First, we compared the impact of
the segmentation method on hippocampal volumetry. Next, we

identified the most important shape feature of the hippocampus
using a machine-learning classifier and subsequently examined
this feature for its ability to support the radiological assessment of
HS. The reliabilities of the measures were assessed using repeated
scans. Finally, we propose this metric as an imaging biomarker
for HS along with a quantitative report to communicate the result
of an individual assessment (30).

2. MATERIALS AND METHODS

2.1. Dataset for Evaluation
For the evaluation, we used previously acquired data
comprising healthy controls and patients with epilepsy.
Included high-resolution T1-weighted MR images were
acquired at the Bern University Hospital (Inselspital) on
3T scanners from Siemens (Magnetom Trio and Verio,
Siemens, Erlangen, Germany) with 1 mm isotropic resolution.
MR protocols were either MDEFT (31), standard 3D MP-
RAGE (32), MP-RAGE according to the recommendations
of the Alzheimer’s Disease Neuroimaging Initiative (33),
or MP-RAGE optimized for gray-white contrast (34) with
sequence parameters as listed in the Supplementary Material.
More than one scan was available for some subjects,
resulting in a total of 126 MRIs from 105 patients and 406
MRIs from 354 healthy controls, as listed in Table 1 and
Supplementary Table S1.

The assignment of the patients’ MRI to the epilepsy sub-
group is based on information extracted from the radiological
report of the examination (i.e., corresponds to the assessment of
the neuroradiologist with the clinical and imaging information
available at that time point). In particular, the initial assessment
of whether HS is present was based entirely on the radiological
finding. Patients without reported HS (IGE/unknown, TLE
HS negative) are referred to as the “all-other-epilepsies” sub-
group in the text. Where available, additional clinical and
radiological information from follow-up examinations was
used for a separate outlier review (cf. Section 2.5). The age
of onset of the disease is known from 52 patients (with
67 MRI) with an average age of 18.4 (±14.7) years and
a duration of the disease at the time of the MRI of 17.7
(±14.9) years.

2.2. MRI Processing
2.2.1. FreeSurfer (FS)/Hippocampal Subfields (FS-SF)
The structural MRI were processed with FreeSurfer 6.0 (13)
including segmentation of the hippocampal subfields (SF) using
the recon_all pipeline with default parameters.

FreeSurfer extracts variousmorphometrics of both subcortical
and cortical structures. Segmentation is performed using
an anatomical atlas and Markov Random Fields (MRF) to
incorporate relative spatial priors between anatomical structures
and neighboring labels (12). Cortical measures are calculated
on a reconstructed surface of the cortex (35). An additional
module is dedicated to segment hippocampal subfields (FS-
SF) using a statistical atlas built from ultra-high resolution ex-
vivo data (14). While FS-SF internally upsamples data to a
0.3 mm resolution, our analysis was based on the results in the
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TABLE 1 | Demographic information for the cohorts.

Group # MRI (# Subjects) Mean age in years (range) %Female

Healthy Controls 406 (354) 32.3 (6.1-84.0) 57.1%

Epilepsy 126 (105) 34.7 (11.7-68.2) 52.4%

IGE/Unknown 57 (50) 32.1 (15.4-65.0) 50.9%

TLE 69 (55) 36.9 (11.7-68.2) 53.6%

HS negative 29 (24) 31.6 (12.8-57.3) 48.3%

Hippocampal Sclerosis (HS) 40 (31) 40.7 (11.7-68.2) 57.5%

Left 18 (13) 44.9 (18.5-68.2) 55.6%

Right 19 (17) 38.3 (11.7-67.9) 68.4%

Bilateral 3 (1) 31.1 (30.8-31.3) 0.0%

Indented groups show a subset of parent line. Statistics for age and sex are calculated over the MRI samples at the time of acquisition. Corresponding information on a subject level

can be found in Supplementary Table S1. IGE, idiopathic generalized epilepsy; TLE, temporal lobe epilepsy.

original 1 mm resolution to allow direct comparisons with the
other methods.

2.2.2. FSL-First
Segmentation of subcortical structures was generated with
FSL-FIRST (15) using the fsl_anat pipeline. FIRST
is available as a module distributed with FSL (36) and
incorporates probability relationships between shapes and
intensities using an Active Shape and Appearance Models
in a Bayesian framework. For each subcortical structure,
a number of modes of variation constrain the model,
with a higher number possibly capturing more details
at the cost of lower robustness. Default settings of the
pipeline were used which corresponds to 30 modes for the
hippocampus (15).

2.2.3. DL-Based Segmentation
Deep learning-based segmentations were derived using
DL+DiReCT (16). The tool is publicly available (https://github.
com/SCAN-NRAD/DL-DiReCT) together with two models
trained using a mixture of public datasets and internal data
from previous studies including patients with epilepsy (as
detailed in Section 2.1 of (16)) and auxiliary labels generated
with FreeSurfer 6.0. Some of the MRIs in the training data were
also used in the current evaluation (200 healthy controls and 60
patients with epilepsy). Therefore, to enable the reuse of these
images in the current evaluation, segmentation for these images
were generated using the corresponding model that has not seen
these images during training.

2.3. Quantitative Analysis
The segmentation of the hippocampi from the four investigated
methods (FS, FS-SF, FSL, and DL) were analyzed in various
steps, individually per hemisphere and using the asymmetry
between the hemispheres. Asymmetry indices (AI) (28) between
the left (lh) and right hemisphere (rh) were calculated as
follows:

AI(lh, rh) =
lh− rh

lh+ rh
(1)

This quantity is zero for completely symmetric hippocampi and
ranges between+1 and−1 otherwise.

Hippocampal volumes corrected for brain size and age were
calculated for each method by fitting a linear model (lm)
to the volumes of the healthy controls with the normalized
(zero-mean, unit SD) co-variates estimated total intracranial
volume (eTIV (37) from FreeSurfer) and age. In agreement
with the literature (38, 39), the initially included co-variate sex
was not significantly related to volumes and was subsequently
removed from the model. The resulting lm(vol ∼ eTIV +

age) was then applied to all subjects. We then calculated effect
sizes between healthy controls and left/right-sided HS for the
corrected volumes.

Besides the hippocampal volumes, further metrics were
extracted from the binary segmentation using pyradiomics (40),
resulting in 14 shape features. Internally, pyradiomics
calculated these features on a triangulated mesh generated
using marching cubes (41). To identify the most important
feature for further analysis, these shape features served as
input to train a support vector machine (SVM) (42) to classify
HS vs. all-other-epilepsies. A linear SVM (43) with default
hyperparameters was trained using 5-fold cross-validation
and 20 repeats. The samples were stratified by patients to
ensure all MRIs from the same subject were in the same fold.
Relative feature importance was aggregated across all runs
to determine a feature ranking. Subsequent experiments
were performed using the volume and the best-ranked
shape feature.

An estimation of the discriminative power of these two
metrics was determined by means of the area under the curve
(AUC). Using the absolute AI to distinguish between HS (n= 37)
and all-other-epilepsies (n = 86), AUC were calculated from an
ROC curve (44).

Finally, we used a quantitative report as outlined in Figure 1

to display the ratios of both hippocampi simultaneously.
Exact symmetries would appear along the diagonal line.
Standard deviations (SD) of the asymmetry indices (AI) in
the healthy controls (n=406) were calculated to demarcate
limits of two and three SD from the expected norm.
Based on these limits, accuracy metrics (sensitivity, specificity,

Frontiers in Neurology | www.frontiersin.org 3 February 2022 | Volume 13 | Article 812432

https://github.com/SCAN-NRAD/DL-DiReCT
https://github.com/SCAN-NRAD/DL-DiReCT
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Rebsamen et al. Imaging Biomarker for Hippocampal Sclerosis

FIGURE 1 | Proposed reporting for the suggested hippocampal sclerosis (HS) biomarker by plotting the surface-to-volume ratio of both hippocampi in one datapoint.

Healthy controls (HC) serve as normative data with left and right-sided HS predominantly appearing outside the limits. The highlighted case with an atrophic

hippocampus on the lateral side is of a left-sided HS (appearing on the right side of the rendering in radiological orientation).

and F1-score) were determined for classifying unilateral HS
vs. all-other-epilepsies.

Statistical analyses were performed using R with the stats
package version 3.6.2 (45). Effect sizes were reported using
Cohen’s d (46). A significance level of α = 0.05 was set.

2.4. Robustness
To assess the robustness of the methods, we have used the
same-day repeated scans in the dataset and determined a
reproducibility error. For each metric m, we calculated the mean
absolute percentage error (MAPE) as follows:

MAPE =
100

N

N
∑

i=1





1

n(i)

n(i)
∑

t=1

|m(i,t) − µ(i)|

µ(i)



 (2)

whereN is the number of sessions with re-scans, n(i) the number
of re-scans in the session i for a subject, m(i,t) the measurement

at timepoint t, and µ(i) = 1
n(i)

∑n(i)
t=1m(i,t) the within-session

mean. A session comprises the scans acquired on the same day for
the patients and all scans within 1 year for the healthy controls,
resulting in 41 sessions. Statistical significance of the differences
between the four methods was determined using paired t-tests.

Additionally, we have calculated intraclass correlation
coefficients (ICC) with the first two MRIs from every session.
The random effects of repeated acquisitions are reflected in a two-
way random-effect model with an absolute agreement, also known
as ICC(2, 1) (47, 48), implemented in the R-package irr (49).

2.5. Outlier Review
As outlined above (Section 2.1), the patients’ MRIs were initially
assigned to epilepsy sub-groups entirely based on information
from the radiological report of the corresponding image.
Therefore, we performed an additional sensitivity analysis. An
experienced radiologist (co-author PR) reviewed all ‘wrongly’
classified cases, i.e., putative false negatives (HS appearing inside
the limits of 3 SD relative to healthy controls) and false positives
(all-other-epilepsies appearing outside the limits). For the review,
all available clinical information was taken into account including
patient history, follow-up assessments by epileptologists, further
diagnostics like EEG, additional MRI examinations, and all
medical reports. Results after correcting the assigned sub-groups
are reported separately.

2.6. Comparison to Other DL-Based
Methods and Manual Tracing
In a supplementary subanalysis, we compared the results
from DL+DiReCT to two other DL based segmentation
methods: the whole-brain neuroanatomy segmentation method
FastSurfer (19)1 and HippoDeep (21)2, which specifically
segments the hippocampi only.

Additionally, we report surface-to-volume ratios derived from
the manual tracing of the hippocampi by experts as provided in
the OASIS TRT-20 dataset (50, 51) of twenty healthy individuals.

1https://github.com/Deep-MI/FastSurfer
2https://github.com/bthyreau/hippodeep_pytorch
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3. RESULTS

3.1. Hippocampal Volumetry
Effect sizes of hippocamal volumes (after correction for brain
size and age) between healthy controls and HS were larger
for DL (left hippocampus = −2.968, right= −1.904) than
for FS (left= −2.462, right= −1.624), FS-SF (left= −2.376,
right= −1.661), and FSL (left= −2.818, right= −1.826) with
detailed distributions reported in Supplementary Figures S1,S2.
The asymmetry index (AI) of the volumes (uncorrected as the
contralateral side serves as internal reference for everyMRI) were
generally more sensitive, again with the effect sizes for DL being
larger (HS left=−4.165, right= 4.203) than for FS (left=−3.085,
right= 3.695), FS-SF (left= −3.697, right = 4.080), and FSL
(left= −2.301, right = 2.544) as shown in Figure 2. In healthy
controls, a statistically significant (p < 10−5) negative mean
AI was observed from all four methods (FS= −0.010, FS-SF=
−0.008, FSL= −0.011, and DL = −0.007), indicating a slightly
larger right hippocampal volume.

A qualitative example of a patient with left-sided HS is shown
in Figure 3 with automated segmentation of the hippocampi and
ventricles outlined (as shown in Supplementary Figure S3 for
additional examples). Qualitatively inspecting the results, mis-
segmentation by the atlas-based methods was most frequently
observed on the lateral side of the body of atrophic hippocampi.

3.2. Surface-to-Volume Ratio
The surface-to-volume ratio was identified by the SVM as the
most important shape feature from the DL-based segmentation
(Supplementary Figure S5).

By plotting the left vs. the right surface-to-volume ratios
in Figure 4, we can observe the healthy controls and all-
other-epilepsies clustering along the diagonal while left-sided
HS appear on the lower right triangle, right-sided HS on the
upper left, and the bilateral cases toward the upper right corner,
indicating that in contrast to the volume, the surface-to-volume
ratio increases in the presence of HS.

FIGURE 2 | Boxplot of the asymmetry indices (AI) of hippocampus volumes derived from the four segmentation methods. Effect sizes indicate difference between

healthy controls (HC), and left/right-sided HS.
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FIGURE 3 | Qualitative example of a case with left HS. Images are in radiological orientation, i.e., the left (L) hemisphere appears on the right side of the image.

Boundaries of the segmentation are outlined for the hippocampi (yellow) and ventricles/CSF (purple). Coronal view of the hippocampal body and sagittally of the left

hippocampus. While FS correctly identified fluid-filled cavities at the tail and head of the hippocampus, this was only fully captured by deep learning (DL) along the

entire body of the hippocampus. The example corresponds to the case highlighted in Figure 1.

We have observed a symmetric ratio in the healthy controls
only from the DL-based segmentations (p = 0.24, two-sided t-
test for asymmetry), whereas the other three methods had either
a significantly (p < 10−8) positive (FS, FSL) or negative (FS-
SF) ratio. Separation of point clouds (Figure 4) and effect sizes
between healthy controls and HS, as reported in Figure 5, were
generally larger for DL than the other three methods.

When classifying MRIs using 3 SD of AI on the healthy
controls as a threshold, DL reached the highest accuracy in
terms of F1-score (Supplementary Table S2) both for the volume
(F1 = 70.0) and for the surface-to-volume ratio (F1 = 71.2)
which is consistent with the highest AUC observed (Figure 6) for
the DL-based segmentation.

3.3. Robustness
A comparison of the robustness evaluation from the re-scan
sessions (n = 41) is listed in Table 2. The surface-to-volume
ratio derived by the DL-based segmentation was statistically
significantly more robust (lower MAPE) than the other three
methods (Supplementary Figure S8). For the volume, only FSL
was comparably robust to DL. For FS and DL, reproducibility
by means of ICC was generally higher for the surface-to-volume
ratio than for the volume.

3.4. Outlier Review
When classifying MRIs like described above with the DL-
based method, 21 cases (16.7% of all MRI, from 17 patients)

were putative false negatives or false positives in relation
to the initial radiological assessment serving as ground
truth. MRIs stemming from the same patient (7 MRIs
from three patients, as shown in Supplementary Table S3)
appeared in close vicinity in the quantitative report
(Supplementary Figure S6). After reviewing all medical
records by an expert, this diagnosis was confirmed in 8 of these
17 patients. However, the other nine patients were classified
differently after considering all follow-up clinical information.
These outliers are listed in Supplementary Table S3 and
highlighted in Supplementary Figure S6 and the resulting
plot with the corrections is shown in (Figure 1). AUC for
the classification with the adjusted classes was accordingly
higher (see Supplementary Figure S7), while only minimally
disturbing the order of the effect sizes.

3.5. Comparison to Other DL-Based
Methods and Manual Tracing
The supplementary comparison of results from three different
DL-based methods can be found in Supplementary Section 6.
In the surface-to-volume plots (Supplementary Figure S9),
the healthy individuals from the OASIS dataset cluster
around the healthy controls for the DL-based methods
whereas the ratios are significantly higher from the
manual tracing.
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FIGURE 4 | Plots displaying surface-to-volume ratio of left (x-axis) and right (y-axis) hippocampi derived from the four segmentation methods. Healthy controls (HC),

hippocampal sclerosis (bilateral/left/right), and all-other-epilepsies (EPI Other) are color-coded. Limits showing two and three standard deviations (SD) calculated on

the HC.

4. DISCUSSION

In this study, we compared a DL-based neuroanatomy
segmentation method to three established and commonly
used atlas-based methods. Specifically focusing on
the hippocampus, we assessed how the quality of the
segmentation impacts metrics used to quantify HS in
patients with epilepsy. Shape features derived from the
segmentation were examined for their discriminative power
and reliability.

FreeSurfer has been reported to be more accurate than
FSL-FIRST compared to manual segmentation of the

hippocampus (9, 52, 53), consistent with our observations
of higher agreement among the other three methods
(Supplementary Figures S1,S2). Automated methods have
shown reduced accuracy in pathological cases (9, 54, 55)
as well as systematic bias in younger age groups (56) for
which cohort-specific atlases have been recommended (57).
However, hippocampal atrophy of patients with TLE might
be accompanied by atypical shape and positioning of the
hippocampus (58) which would require choosing from
disease-specific templates (59–61). In this study, we have
observed DL generating more plausible segmentation in
pathological cases, suggesting the superiority of learning-based
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FIGURE 5 | Boxplot of the asymmetry indices (AI) of hippocampus surface-to-volume ratios derived from the four segmentation methods. Effect sizes indicate

difference between healthy controls (HC), and left/right-sided hippocampal sclerosis.

FIGURE 6 | ROC-curves using the absolute asymmetry index (AI) to separate between HS and all-other-epilepsies.
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TABLE 2 | Robustness in terms of mean absolute percentage error (MAPE) and intraclass correlation coefficient (ICC).

MAPE ICC(2,1)

FS FS-SF FSL DL FS FS-SF FSL DL

Left hippocampus volume 2.957% 3.870% 1.749% 1.921% 0.867 0.782 0.931 0.918

Right hippocampus volume 3.435% 4.371% 2.802% 2.101% 0.796 0.696 0.844 0.882

Left hippocampus surface/volume 1.147% 1.893% 2.765% 0.663% 0.890 0.766 0.643 0.955

Right hippocampus surface/volume 1.025% 1.905% 2.554% 0.738% 0.927 0.722 0.750 0.941

Bold numbers highlight the lowest MAPE and highest ICC in every row.

methods possibly due to a large number of variable training
samples.

We observed that mis-segmentation of the atlas-based
methods were often on the lateral side along the body of
atrophic hippocampi (cf. Figure 3). We suspect this is due to
the lower prior probability of fluid-filled cavities in this region
as it was observed to a lesser extent toward the tail (closer to the
lateral ventricle) and head (inferior horn of lateral ventricle). In
particular, for FSL-FIRST, this might be caused by the relatively
low number of modes used in the default settings (9, 15).

All methods revealed a negative asymmetry index (AI) of
hippocampal volumes in the healthy controls, indicating a
slightly larger right hippocampus, which is a well-documented
observation in the literature, reported for FreeSurfer on a very
large cohort (mean AI of -0.007, identical to the result of
our method for a 40-fold smaller sample of controls) (28),
using manual tracing (62), and in a meta-analysis (63). This is
probably also the cause for the observed larger effect sizes of
HS-right (cf. Figure 4).

An often-cited limitation of supervised learning-based
methods is the sparsity of (manually) annotated training data.
Our results suggest that such a model can be trained entirely
with weak labels, which can be generated automatically in
large quantities using established tools like FreeSurfer (16, 64).
Interestingly, the predictions of such a trained model seem to be
at least as robust and potentially more sensitive than the method
used to generate the training data.

The sensitivity of detecting HS is significantly lower with
standard MRI than with epilepsy specific protocols, particularly
if performed by less experienced radiologists (6). Our DL-
based segmentation runs in about two minutes, including
radiomics, substantially faster than several hours of processing
time for FreeSurfer without surface reconstruction. The almost
immediate availability is an advantage for future applications
in clinical routine. The fast processing time would even allow
a preliminary analysis during scanning of the patient and
potentially suggesting further hippocampus-specific protocols in
case of (semi-automatic) detection of hippocampal abnormalities
while the patient is still in the scanner.

Hippocampal volumetry is the most common method to
quantify HS. However, volume loss can be subtle and does not
reflect other traits of a degenerating hippocampus. For example,
a frayed CA1 region might also broadly impact the surface
area, making the ratio of the two quantities a potentially more
specific measure. The ratio might also be helpful for bilateral
HS cases where the AI of surface-to-volume ratio seems to

be qualitatively more discriminative (cf. Figure 4) than from
volume (cf. Supplementary Figure S4). Overall the ratio was
slightly more discriminative (cf. Figure 6) and showed a higher
reproducibility across repeated scans (cf. ICC inTable 2) than the
volume alone.

Radiomics features have been suggested before for detecting
HS (65, 66), often by combining a plethora of different features,
which makes the interpretation difficult. In our experiments,
the surface-to-volume ratio was identified by an SVM classifier
as the most important metric out of 14 shape features.
Moreover, it is a feature that is immediately understandable
by non-technical personnel as it is a biologically plausible
metric for hippocampal sclerosis. Such an easy-to-interpret
quantitative imaging biomarker for HS could potentially increase
the acceptance and facilitate communication of findings with
clinicians. We proposed to report such a biomarker by plotting
the left against the right measures along with normative data
(cf. Figure 1) which has the advantage to make asymmetries
visible (deviations from the diagonal) as well as show the absolute
values in a single data point.

4.1. Limitations
As we consider manual segmentation not a viable option
for a potential future clinical application, the aim of the
study was designed to compare an efficient DL-based method
against commonly used atlas-basedmethods without comparison
against a manually derived ground truth. To account for
this limitation, we demonstrated the influence of manual
labels on the proposed surface-to-volume ratio with data from
Mindboggle (51), a frequently used publicly available dataset
withmanually annotated neuroanatomy labels. Althoughmanual
tracings are generally looking good on the coronal view, we
confirm the earlier observation of disturbing staircaise effects
by Coupé et al. (67) in the axial and sagittal view of manually
traced hippocampi (cf. Supplementary Figures S10,S11). This
demonstrates the difficulty of manual tracing and the challenge
for humans to label 3D structures in 2D views. A remedy
would require correcting tracings from all three directions
iteratively until complete consistency, which is difficult for the
hippocampus as tracing protocols for the hippocampus are
predominantly defined in the coronal direction (68). While these
slice inconsistencies probably have a less pronounced effect on
the calculated volumes due to averaging effects, the surface area
is particularly prone to such artifacts. Consequently, manual
tracing is not an option for this type of shape analysis.
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While the primary analysis aimed to compare DL vs. atlas-
based methods and not necessarily find the best DL-based
algorithm, we replicated key figures and metrics with two other
popular deep learning methods in a supplementary analysis.
Overall, the DL-based methods yielded comparable results,
outperforming atlas-based methods.

All segmentation methods were used with their default
settings (without hyperparameter tuning on the dataset),
recognizing this might have caused FSL-FIRST to underperform
in this comparison due to the low number of modes. Results from
all methods were used as is without manual corrections. The
dataset contained T1w images with minor variations in the MR
protocol which might influence the segmentations.

We have not performed an in-depth shape analysis of
the segmented hippocampi but rather used simple metrics to
demonstrate that an improved segmentation leads to better
discrimination of abnormal hippocampi. We speculate that
advanced shape analysis techniques (55, 69, 70) would benefit
from the improved DL-based segmentation.

A varying amount of information was available for assigning
the patients’ MRIs to the epilepsy sub-groups. Therefore, we
have deliberately used the initial radiological diagnosis as ground
truth for the primary analysis. To account for uncertainty in
the diagnosis, we performed an outlier review by an imaging
expert and reported these results separately. Some cases changed
diagnosis after reviewing all follow-up clinical information,
confirming the challenge of diagnosis HS fromMRI.

4.2. Outlook
In visual assessments of suspected HS, the T2w image contains
important additional information for the reader. It remains to
be investigated whether supplying the corresponding T2w as
an additional input to the model can help to further improve
the segmentation. Quantitative methods analyzing T2 or FLAIR
intensities in a region of interest (30, 71) might also benefit from
an improved segmentation of the hippocampi.

The data in this evaluation were predominantly of patients
with longer disease duration. We will subsequently apply the
method in a multi-center prospective study of first-seizure
patients (72) to assess its utility in early-onset epilepsies.
Providing the proposed metrics together with the MRI to
neuroradiologists could be useful in the clinical routine.

5. CONCLUSIONS

Our findings suggest that deep learning-based neuroanatomy
segmentations are more sensitive and robust than atlas-based
methods to support radiological assessments of HS in MRI of
patients with epilepsy. Beyond volumetry of the hippocampus,
the surface-to-volume ratio further increases the discriminative

power to dichotomize HS from other epilepsies while being a
more robust metric. It could serve as a potential quantitative
imaging biomarker of interest for HS.
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