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Long-term monitoring of patients with epilepsy presents a challenging problem from

the engineering perspective of real-time detection and wearable devices design. It

requires new solutions that allow continuous unobstructed monitoring and reliable

detection and prediction of seizures. A high variability in the electroencephalogram (EEG)

patterns exists among people, brain states, and time instances during seizures, but

also during non-seizure periods. This makes epileptic seizure detection very challenging,

especially if data is grouped under only seizure (ictal) and non-seizure (inter-ictal) labels.

Hyperdimensional (HD) computing, a novel machine learning approach, comes in as a

promising tool. However, it has certain limitations when the data shows a high intra-

class variability. Therefore, in this work, we propose a novel semi-supervised learning

approach based on a multi-centroid HD computing. The multi-centroid approach allows

to have several prototype vectors representing seizure and non-seizure states, which

leads to significantly improved performance when compared to a simple single-centroid

HD model. Further, real-life data imbalance poses an additional challenge and the

performance reported on balanced subsets of data is likely to be overestimated. Thus,

we test our multi-centroid approach with three different dataset balancing scenarios,

showing that performance improvement is higher for the less balanced dataset. More

specifically, up to 14% improvement is achieved on an unbalanced test set with 10 times

more non-seizure than seizure data. At the same time, the total number of sub-classes

is not significantly increased compared to the balanced dataset. Thus, the proposed

multi-centroid approach can be an important element in achieving a high performance

of epilepsy detection with real-life data balance or during online learning, where seizures

are infrequent.

Keywords: hyperdimensional computing, epilepsy, seizure detection, EEG, wearable devices

1. INTRODUCTION

Epilepsy is a chronic neurological disorder characterized by the unpredictable occurrence of
seizures. It is a challenging problem, both from the engineering aspects of real-time detection
and wearable devices design, as well as medical aspects. It impacts a significant portion of the
world population (0.6–0.8%) (1), out of which one-third of patients still suffer from seizures
despite pharmacological treatments (2). The unexpected occurrence of seizures imposes serious
health risks and many restrictions on daily life. Thus, there is a clear need for solutions that allow
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continuous unobstructed monitoring and reliable detection
(and ideally prediction) of seizures. Moreover, these solutions

will further be instrumental for designing novel treatments,
hence, assisting patients in their daily lives and preventing

possible accidents.
In this context, different wearable devices for epilepsy

monitoring have been proposed in the literature [e.g., (3–6)].

However, there is still a long road ahead to create smart and low-
power devices that are well-accepted by the medical community

and the patients. One of the biggest challenges is to achieve

a high enough sensitivity with few or no false positives while

considering the vast disbalance in data distribution (i.e., the
amount of seizure vs. non-seizure data). Also, another key

challenge is related to the usability and comfortability of the

wearable device, as it needs to be lightweight, non-stigmatizing,
and with extensive battery life. This makes many state-of-the-art

algorithms for epilepsy detection (7, 8) infeasible due to excessive

memory and/or power requirements.
Given the aforementioned challenges, Hyperdimensional

(HD) computing comes as an interesting alternative. It has
lower energy and memory requirements (9, 10), and there

have been hardware implementations and optimizations adapted
for it that show promising results (9, 10). HD computing is
based on computations with very long vectors (usually >10,000

dimensions), which represent information in a condensed way.
The inspiration for data representation in the shape of long and
redundant (mostly binary) vectors came from the neuroscience
research. The research stated the hypothesis that the brain’s
computation is based on the high-dimensional randomized
representation of data rather than scalar numerical values (11).

HD computing is an entirely different approach to machine
learning (ML) than most other state-of-the-art algorithms. It is
based on mapping data and its relations in the form of long
vectors, followed by the relatively simple process of learning and
inferring predictions from them. In particular, its three main
stages are encoding, training, and querying. First, baseline vectors
representing different scalar values are combined during the
encoding stage to represent data (either raw data or features).
This process leads to one single vector representing each data
sample instead of, as in other ML approaches, a feature set
representing it. Next, during training, all vectors from the
same class are summed up (bundled) to one prototype vector
representing each class. In the end, for inference, prototype
vectors of all classes are compared with the current data instance
vector, and the label of the most similar one is given as output.

Such an encoding, learning, and inferring approach enables
many new possibilities compared to standard ML. In fact,
its low computational and memory requirements (9, 10)
make it interesting for low-power small-size wearable devices.
For example, in (10) authors analyzed power consumption
and execution time for KNN, SVM, regression, random
forest and HD approach implementation on Raspberry-Pi 3,
and have shown superiority of HD approach. Further, HD
computing benefits significantly from its bit-level and highly
parallelizable operations by using, for example, Processing-in-
memory (PIM) (12) or FPGA hardware platforms (13).

In recent years, a lot of effort has been put into designing
wearable devices for patient monitoring, with detection and
prediction capabilities. One of such applications is epilepsy
monitoring and real-time seizures detection.

HD computing is exciting due to the several opportunities
it offers. One of them is, for example, continuous learning
(14, 15), which is easily implementable due to the simplicity
of the training procedures of HD computing. This is relevant
for epileptic seizure detection due to the inherent scarcity of
epileptic seizure recordings, thus, the small amount of seizure
training data available. An additional opportunity is the use of
semi-supervised learning approaches with HD computing (16).
In the literature, also, the form of iterative learning (17, 18)
has been proposed, but it has not yet been fully explored for
epilepsy. However, unsupervised or at least semi-supervised
learning would be very useful due to the time-consuming and
complex process of labeling data. Further, HD computing can
enable a closer interaction between personalized and generalized
models, being an option for distributed learning (19).

Traditionally, HD computing classifiers have been based
on creating one model vector (centroid) for each target class.
However, a challenging aspect of electroencephalogram (EEG)
signatures of epileptic seizures is their uniqueness and high
variability among people, brain states, and time instances,
especially if they are grouped under only two given labels (seizure
and non-seizure). Further, non-seizure data also contains many
different brain states, such as awake, sleeping, physical, or mental
effort conditions, etc. All of these states have their own brain
signatures. Thus, we hypothesize in this work that creating
multiple sub-types (model vector centroids) of seizure and non-
seizure classes, based on both labels provided by a neurologist
and also on EEG signal characteristics, can be more appropriate.

Following the previous observations about epilepsy, we
present a novel semi-supervised learning approach for HD
computing to evaluate whether a multi-centroid representation
of the seizure and non-seizure states can improve seizure
detection performance. More precisely, in this work, we
contribute to state of the art in the following manner:

• We design a semi-supervised HD computing approach of
learning based on the unconstrained creation of several
prototype vectors/sub-classes (unlabeled) of main (labeled)
classes.

• We implement this novel approach for epileptic seizure
detection based on EEG signal recordings, leading to
the creation of multiple prototype vectors/sub-classes for
seizure and non-seizure. We evaluate and show a significant
improvement in the performance when compared to the
standard 2-class (single-centroid) HD approach.

• Since a high number of prototype vectors penalizes memory
efficiency, we designed two versions of the algorithm to reduce
the number of sub-classes in the post-training stage. One is
based on removing less populated sub-classes, and the other is
based on clustering of sub-classes.

• We measure the performance improvement of this approach
and analyze the number and structure of sub-classes based
on the publicly available CHB-MIT epilepsy database. We

Frontiers in Neurology | www.frontiersin.org 2 March 2022 | Volume 13 | Article 816294

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Pale et al. Multi-Centroid HD Computing

show that this approach has greater improvements for more
unbalanced datasets while not significantly increasing the
number of sub-classes compared to balanced datasets. Thus,
this multi-centroid approach can be an essential element to
achieve high performance of epilepsy detection with real-
life data structures. Moreover, it can be particularly relevant
during online learning, where seizures are infrequent.

2. BACKGROUND AND RELATED WORK

HD computing is based on few specific algebraic properties when
computing with HD vectors. First, any randomly chosen pair
of vectors is nearly orthogonal. Second, if we sum two or more
vectors, the result will be with high probability more similar to
the added vectors than to any other randomly chosen vector. The
most common subtype of used vectors are binary ones, where
their elements can be only 0 or 1. In practice, also tertiary (−1,
0, 1) or integer/float vectors are sometimes used. Summation of
the vectors is usually done by bit-wise summation with majority
voting normalization.

Representing data as HD vectors enables simple training
procedures for classification problems, where all vectors from
the same class can be summed up (and normalized) to represent
a prototype vector of that class. Later, during the prediction
process, the similarity between an HD vector representing the
current sample and the prototype HD vectors for each class is
calculated, and the label of the most similar prototype vector
is given. The similarity is measured as the distance between
two vectors, which can be the Hamming distance for binary
vectors or cosine (or dot) product for integer, or floating-point
value vectors.

HD computing has been applied for different challenges
in the domain of biomedical applications: EEG error related
potentials detection (20), electromyogram (EMG), gesture
recognition (21), emotion recognition from GSR (galvanic-skin
response), electrocardiogram (ECG), and EEG (22), etc. In the
specific application of epileptic seizure detection, there are few
recent papers that have claimed promising results when using
EEG or intracranial EEG (iEEG) data.

The first paper that applied HD computing to epileptic
seizure detection was based on transforming data to local binary
patterns (LBPs), which were then mapped to HD vectors (23).
LBPs are short binary arrays that represent whether a signal
is increasing or decreasing. In (23), authors used iEEG data
from patients from the Inselspital Bern epilepsy surgery program
and focused on testing one-shot learning, or learning from as
few seizure instances as possible. Later, the authors extended
this work in Burrello et al. (9) by using, besides LBP, also
the mean amplitude and line length features to describe data.
Each feature forms its own prototype vector for every class
and acts as a standalone classifier. Then, the predictions (more
precisely, vector distances) are fed into a single-layer perceptron
with three neurons to decide the final prediction. The authors
show better performance and lower latency on the same dataset
than the previous paper (23). These works also compared
and showed advantages over other state-of-the-art algorithms

for epilepsy detection regarding performance, memory, and
computational requirements.

In (10), authors used EEG data, which is more viable
for continuous long-term monitoring, and compared HD
computing with different standard state-of-the-art ML
approaches (KNN, SVM, regression, random forests, and
CNN). They used 54 different features from (24) for KNN, SVM,
regression, and random forests, and raw amplitude values of
signals encoded to HD vectors for the proposed HD approach.
The CHB-MIT database from the Children’s Hospital of Boston
and MIT (25, 26) was used. The authors reported that their HD
approach surpassed the performance of all other approaches.

Since in many recent HD papers, various approaches to
map data (or features) to HD vectors were used; in (27) the
authors compared several approaches for the task of epileptic
seizure detection. They present in detail different methods of
mapping data to HD vectors, namely, LBP/raw data, frequency
composition (FFT), single feature, or any number of features.
They show significant differences in performance as well as
memory and computation requirements between them.

Even though current papers applying HD computing for
epilepsy show very promising results, they are still quite far
from real-life applications due to various data preparation and
selection limitations. In particular, most of the papers use only
a small portion of the data available in the databases for training,
most often balancing the amount of seizure and non-seizure data.
However, this context is very far from the actual seizure—non-
seizure ratio in a real-life scenario.

In addition, results are very sensitive to which data is used
for training and testing. This is due to the high variability of
seizures even within one subject. For example, in Figure 1 we
show different seizure segments from the same person (subjects 2
and 4 from the CHB-MIT database). A seizure signal can show
a very different morphology between different channels of the
same seizure, as well as between different seizure instances of the
same person. Furthermore, non-seizure data can represent many
different types of neural activity, such as resting, mental activity,
sleeping, etc. Therefore, it is not realistic to expect to represent it
with only one prototype vector.

In this work, due to the intrinsic variability of seizures and
non-seizure background data, we hypothesize that creating more
prototype vectors for seizures and non-seizures during training
can be beneficial for learning and prediction. We called this
approach “multi-centroid,” as we allow to have more vectors
(centroids) representing sub-types of each class. This is a form
of semi-supervised learning, as the main labels (seizure or non-
seizure) are known, but an unrestricted number of seizure (and
non-seizure) sub-types is created during training. Thus, sub-
classes are unsupervised within the global label, but there is still a
global label that has to be provided.

In the literature, few papers are applying different semi-
supervised learning and clustering approaches to HD computing.
In (16), authors allow iterative expanding of the training data
by labeling unlabeled data points, which can be classified with
high confidence by the current model. This improves the quality
of prediction by 10.2% on average on 18 popular datasets. This
approach can be highly beneficial for epilepsy due to the high
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FIGURE 1 | Raw signal showing several seizures from subjects 2 and 4 of the CHB-MIT database. Only the first four channels are shown).

amount of unlabeled data that can be accumulated during patient
monitoring but cannot be fully labeled by the experts. A potential
problem is that it would strengthen common patterns, but could
under-represent less common patterns.

In (28), the k-means algorithm is adapted to the HD
computing paradigm. This means that, before clustering, data
is mapped to HD vectors. Then, properties of HD vectors are
used to perform clustering on a preset number of classes. The
authors compared it with k-means on nine different datasets,
and the influence of various parameters was investigated. Results
showed the same or better performance than the standard non-
HD k-means algorithm for all datasets. The disadvantage of this
approach is that the number of sub-classes has to be preset, which
can be quite challenging in the case of an epileptic seizures. In
fact, this number would be different for every patient and it may
even change in time as more training data is added. Further,
it does not use the information about the global (seizure/non-
seizure) labels that are available.

Another approach for semi-supervised learning is the idea
of relearning, in which the algorithm iteratively passes through
the training set. In the case of a mis-classification, the sample
is removed from the mis-classified class and added again to
the prototype vector of the correct class. Therefore, iterative
learning tries to overcome the problem of single-pass learning
that it can lead to the saturation of the prototype vectors of
each class by data that are more common in each class and
perform badly on under-represented patterns of the same class.
In (18), authors tested iterative approaches with different fixed
and adaptive learning rates on several datasets for speeding up
learning and saving energy while keeping the same or higher
accuracy as single-pass training.

In (29), the authors targeted to achieve the higher
performance of iterative training while keeping the speed
and simplicity of single-pass training. The approach, called
OnlineHD, is single-pass, but adjusts the weight of each example
according to the similarity with the trained prototype vectors.
This leads to an accuracy increase of 12.1% in average, when

compared to single-pass HD approaches, and has 13x fewer
iterations on average than iterative HD approaches.

In the scope of this paper, conversely to previous works, we
propose a new approach called “multi-centroid.” More precisely,
if the current data vector is more similar to an incorrect class
than to any of the correct sub-classes, we create a new sub-class
of the correct class. In this way, less common data patterns will
have their own sub-class and will not get over-voted and under-
represented by more common patterns. This semi-supervised
approach is guided by labeled data, but allows the creation of
an unlimited number of sub-classes for each of the main classes.
The number of sub-classes is highly dependent on the subject,
data training instances, and also the amount of training data, and
as such it would be hard to predict and set at the beginning as
in (28).

Our proposed approach has a similar underlying idea as
OnlineHD (29), or iterative learning (18) in that it focuses on
less common patterns. However, it is different since it allows the
creation of sub-classes rather than adding them multiple times
to a single vector. Consequently, our approach enables more
control over the classification and potential interpretability of
the predictions.

3. MULTI-CENTROID BASED HD
FRAMEWORK AND WORKFLOW

3.1. Classical HD Training and Testing
Workflow
The classical HD computing analysis workflow is presented in
Figure 2. Data is discretized into windows of duration Wlen, for
which features are calculated and encoded into an HD vector
representing that data instance. This is repeated everyWstep, i.e.,
a prediction is given based on Wlen of data every Wstep. In our
case,Wlen has been 8 s, andWstep 1 s.

Before training, vector memory maps need to be initialized.
This means that we assign a static vector to each possible feature
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FIGURE 2 | Schematic of the HD computation workflow.

FIGURE 3 | Schematic of the first step of multi-centroid training workflow where new sub-classes are created.

value, and to each combination of feature and channel. Features
are normalized and discretized in the same number of levels,
which allows us to use the same vectors to represent the values
of all features. Thus, both feature value vectors HDVVal, and
feature-channel index vectors HDVChFeat representing a feature
of a specific channel, are generated once before the training starts.
More precisely, if we have M features and N channels, NxM
HDVChFeat vectors will be initialized.

HDVChFeat vectors representing features and channels are
independently and randomly generated as there is no specific
relation between features and channels. On the other hand,
HDVVal vectors are initialized in a way where first the vector is
randomly initialized. Still, every subsequent vector representing
the next possible value is created from the previous one by
permuting consecutive blocks of d bits. The number of bits
d depends on the number of possible needed values (and
corresponding HDVVal vectors). This approach ensures that
vectors representing numbers that have closer values are also
more similar.

During the training step, a feature value vector HDVVal of a
specific channel is bound to a pre-initialized vector HDVChFeat

representing the feature of that particular channel. All those
bound vectors are then bundled (by summing and normalizing)
to get a vector representing the current data window. Next,
windows belonging to one class are bundled into one HD
prototype vector for that class. Since in our case vectors are
binary, binding is performed by means of a XOR operation,
while bundling is achieved by performing bit-wise summation
(SUM) over the HD vectors and rounding based on majority
voting.

For epileptic seizure detection, specifically, our approach leads
in the end to two prototype HD vectors: one for the ictal and
one for the interictal class. Ictal relates to the part of the data
where the seizure was present. Conversely, interictal corresponds
to the baseline EEG data distant from seizure episodes. Around
ictal data, often pre-ictal and post-ictal phases are defined, but
here we focus only on clear seizure (ictal) and non-seizure
(interictal) classification.
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FIGURE 4 | Diagram of the second step of our multi-centroid training workflow where number of sub-classes is reduced.

In the testing phase, the HD vector of a specific window
is compared with the prototype vectors, and the label of the
more similar class is chosen. In our case, we used the Hamming
distance to quantify this similarity.

3.2. Multi-Centroid Training Workflow
3.2.1. Creation of Sub-classes
The classical single-pass training procedure, as explained in
Section 3.1, has the drawback that all the training samples are
equally important and summed up to the same class prototype
vector. This leads to a dominance by the most common patterns
of the prototype vectors, while less common patterns are under-
represented. Thus, in our proposed multi-centroid approach, as
illustrated in Figure 3, we detect the difference of the current
pattern/vector from the existing prototype vector. Then, in
case of a significant difference, we create a new sub-class with
its associated prototype vector. This significant difference is
estimated by comparing the current vector with the prototype
vectors of all the sub-classes of the correct class and of the wrong
classes. If the most similar prototype is from a wrong class, then
a new sub-class is created for the correct class, initialized with
the current vector. As a result, our approach is also single-pass,
thus the training procedure has the same complexity order as the
classical one.

3.2.2. Reducing the Number of Sub-classes
The first part of our approach creates new sub-classes without
any additional constraint, except that new sub-classes have to
be significantly different from the existing ones. As Figure 6

shows, this procedure can sometimes result in a number of sub-
classes that were created by just a few samples, and which might
not contribute to the final prediction performance significantly.
Some of them can be considered probably as outliers or noise
rather than crucial examples of seizure patterns. At the same time,
they increase the memory requirements of the system as memory
is linearly related to the number of HD prototype vectors needed
to store. That is why the second part of the algorithm, which
consists of detecting and removing such irrelevant classes, is an
essential stage of proposedmethod. More specifically, the second
part of the algorithm removes some of the sub-classes while
still keeping the increased performance benefits. Two methods
were tested, as illustrated in Figure 4: the first one is based on

removing less common sub-classes, and the second is based on
clustering them.

The approach to remove less common sub-classes starts by
sorting classes based on the amount of data used to create them
during training. Then, it removes them in steps, starting from
least populated, whilemonitoring the performance after each step
of removal. The performance is evaluated on the training set, and
the iterative removal process is stopped once the performance
drops for more than a pre-selected threshold.

Instead of removing less common sub-classes, the second
approach merges them with the closest same label sub-class.
More specifically, vectors of sub-classes to be merged are bundled
together (and subsequently normalized). The process is also
performed iteratively. It starts from less common sub-classes,
while monitoring the prediction performance and stopping
the process in case of a performance drop bigger than a
preset threshold.

It is important to note that the strength of this algorithm is
an automatic decision on the number of sub-classes for seizure
and non-seizure for each subject individually and depending on
the training data. If we had to decide this number manually,
it would be almost infeasible due to the highly personalized
nature of epileptic seizures. Further, the optimal number of sub-
classes would depend on the subject conditions and duration of
the specific recording as well could change with adding more
recording data.

4. EXPERIMENTAL SETUP

4.1. Database
As mentioned previously, our proposed multi-centroid approach
is compared with the standard 2-class HD approach using EEG
data on the use-case of epileptic seizures detection. We use
the publicly available CHB-MIT database (25, 26) to prepare
three different datasets. Namely, often HD algorithms are
tested on balanced versions of the databases where a sample
of non-seizure data is randomly selected from raw data and
matched in duration with seizure data. This often simplifies
computation and performance assessment while also allowing
to focus on the separability of the classes and preventing
problems related to the class data distribution. Unfortunately,
this does not represent real-life data distribution and can

Frontiers in Neurology | www.frontiersin.org 6 March 2022 | Volume 13 | Article 816294

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Pale et al. Multi-Centroid HD Computing

FIGURE 5 | Illustration of performance quantification on the level of episodes and duration of seizure.

FIGURE 6 | Average performance of all subjects in the test set, for 2 class (2C) and multi-centroid (MC) model. Performance measures shown: sensitivity, predictivity,

and F1 score both for episodes, and duration level.

lead to a highly overestimated performance, which cannot be
achieved during continuous monitoring with a wearable device.
Thus, in this work, we use three different distributions of
data: (1) balanced with an equal amount of ictal and interictal
data, and (2) and (3) unbalanced with 5 and 10 times more
interictal data. We call these three distributions F1, F5, and
F10, respectively.

The CHB-MIT database was collected by the Children’s
Hospital of Boston and MIT from 24 subjects with medically
resistant seizures. It is an EEG dataset with a variable amount
of channels. To standardize the experiment, we use the 18
channels from an international 10–20 montage that are common
to all patients. These 18 channels include channel electrodes
from all the relevant areas in the scalp, including frontal,
temporal, parietal, occipital, and central. The channels that
were excluded correspond to non-standard electrode positions,
reference electrodes, duplicated channels, or were not consistent
between the different recordings of the same subject. As we
target wearable applications in out-of-hospital environments, a
standardized electrode setup is expected in such devices.

Overall, the dataset contains in total 183 seizures, with an
average of 7.6 ± 5.8 seizures per subject. During the balancing
step of data preparation, when randomly selecting the interictal
segments of data, we take care of not including data within 1 min
of seizure onset and up to 15 min after a seizure, as this data
might contain ictal patterns. This step is motivated by the fact
that in these time periods, the true labels are hard to determine,

even by neurologists. Thus, we keep only data labeled with high
medical confidence, and that can be methodologically assessed in
a fair way, as otherwise, we deal with the impossibility of correctly
estimating the performance of the algorithm in these areas. In
literature, the definition of the pre- and post-ictal intervals is
still an open question, and the range of times used is large
[from 5 min (30) to even 5 h (31)]. As the behavior of our
algorithm in these segments is unknown, the predictions might
be unreliable, and this should be taken into account for specific
real-life applications. However, we believe that performance in
these segments will not be of crucial importance for alerting
purposes, as seizure prediction in the pre-ictal period might be
interpreted as a warning for upcoming seizure, whereas seizure
detection in the post-ictal period wouldn’t change the behavior
of the subject as he should still be in an alert state.

4.2. Feature Extraction and Mapping to HD
Vectors
In standard ML approaches, more features usually lead to
performance improvements (24), and this has also been shown
for HD (27). Thus, we use the same approach using 45 features as
in (27) but with an additional feature of mean amplitude value.
The initial 45 features, based on (24), contain 37 different entropy
features, including sample, permutation, Renyi, Shannon, and
Tsallis entropies, as well as eight features from the frequency
domain. For frequency-domain features, we compute the power
spectral density and extract the relative power in the five common
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brain wave frequency bands; delta: [0.5–4] Hz, theta: [4–8] Hz,
alpha: [8–12] Hz, beta: [12–30] Hz, gamma: [30–45] Hz, and a
low-frequency component ([0–0.5] Hz), for each signal window.
These features are commonly held to be medically relevant for
detecting seizures (32).

Next, for each feature, its value HDVVal and its index vector
HDVChFeat are bound (XOR), to get HDVValFeat vectors. Finally,
to get a final HD vector representing each Wlen, we bundle
(sum and round) HDVValFeat vectors of all features and channels,
as shown in Figure 2. In this approach, we do not distinguish
between channels and treat them all equally important.

4.3. Validation
4.3.1. Validation Strategy
Due to the subject-specific nature of epileptic seizures and their
dynamics, the performance is evaluated on a personalized level.
Data for each subject was pre-processed and divided into files,
where each file contains one seizure, but the specific amount
of non-seizure samples depends on the balancing type (1x, 5x,
or 10x). This setting supports a leave-one-seizure-out approach,
where the HD model is trained on all but one seizure/file. For
example, for a subject with Nseiz files (each containing one
seizure), we perform Nseiz leave-one-out training/test cycles and
measure the final performance for that subject as the average of
all cross-validation iterations.

Besides measuring the performance of seizure predictions, in
this experimental analysis we also consider the number of sub-
classes created and kept after the optimization steps of sub-classes
removal or clustering, as well as the amount of data in them.

4.3.2. Performance Evaluation
The system’s performance is quantified using several different
measures to capture as much information as possible about
predictions. Similarly as proposed in (33, 34) and later used
in (27), we measure performance on two levels: (1) episode
level, and (2) seizure duration level. Seizure duration is based on
standard performance measures, where every sample is equally
important and treated independently. The episode metric, as
illustrated on Figure 5, on the other side, focuses on correctly
detecting seizure episodes, but is less concerned about duration
and correct prediction of each sample within seizure.

For both levels, we measure sensitivity [true positive rate or
TPR, calculated as TP/(TP+ FN)], precision [positive predictive
value or PPV , calculated as TP/(TP + FP)] and F1 score [2 ∗

TPR ∗ PPV/(TPR + PPV)]. Metrics on these two levels give us
a better insight into the operation of the proposed algorithms.
Furthermore, the performance measure often depends on the
intended application and plays a big role in the acceptance of the
proposed technology. Finally, in order to have a single measure
for easier comparison of methods, we calculate the geometric
mean value of F1 score for episodes (F1E) and duration (F1D)
as F1DEgmean = sqrt(F1D ∗ F1E).

4.3.3. Label Post-processing
We report the performance measures described in Section 4.3.2
for raw predictions. However, assuming that the decision of
the classifier can change every second is not realistic from a

real-time monitoring perspective. Thus, it is advisable to post-
process labels before reporting performance figures. This is due
to the viable time properties of the seizures, and also due to the
small Wlen and even smaller Wstep, so that granularity is much
smaller than the dynamics of the seizures. For example, it is not
reasonable for seizure episodes to last only a few data samples,
or if two seizures are very close, they probably belong to the
same seizure and are so labeled by neurologists. Thus, as data
and predictions are time sequences, we exploit time information
to smooth the predictions by going through the predicted labels
with a moving average window of a certain size SWlen (5 s) and
performing majority voting.

4.3.4. Statistical Analysis
Due to the high variability of performance between subjects,
we perform statistical analysis when comparing different
approaches. The Wilcoxon test was performed comparing the
performance between two paired groups, and more specifically,
performance of each subject for traditional, single-centroid (2C)
approach and multi-centroid (MC) approach.

Finally, we have released all the code and data required to
reproduce the presented results as open-source1.

5. EXPERIMENTAL RESULTS

5.1. Prediction Performance
In Figure 6, the performance between single-centroid (2-class,
2C) and multi-centroid (MC) models for all three data balancing
cases (F1, F5, F10) is shown. Performance is reported as
sensitivity, predictivity, and F1 score for both episode detection
and seizure duration detection to get a deeper insight into
the performance.

It is evident that the detection of episodes in the aspect of
sensitivity is extremely high even for a 2C model, so there is
no real space for improvement with the multi-class approach.
However, predictivity of both episodes and duration of seizures
increases with multi-centroid model, meaning that less false
positives are detected withMC approach than 2C approach. Only
for duration sensitivity, even though there is an increase for the
training set (not shown here), on the test set, we notice a slight
decrease. Therefore, not the whole seizure duration is correctly
predicted. This can be due to over-fitting in the training set for
balanced dataset with small amount of data in general. As multi-
centroid approach is intended to help increase performance on
more realistic data distributions, with final goal of being used
in real-time epilepsy monitoring, this is not very critical, but it
should be noted that one potential disadvantages of our method
is that it can lead to over-fitting for small datasets.

Further, it can be noticed that performance is, in general,
worse for non-balanced datasets and that performance drops
with more non-seizure data. Therefore, it is required to report
all three performance values, as reporting only performance on
the balanced dataset (as most works in the literature do) can
lead to misleading results about the performance on real-life data
distribution. Moreover, the performance increment due to the

1https://c4science.ch/source/MultiCentroidHD_public/
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FIGURE 7 | Percentage of data added to each of sub-class, shown for both seizure (red) and non-seizure (blue) sub-classes for five randomly selected subjects.

multi-centroid approach is higher for more unbalanced datasets
(F10 and F5 when compared to F1), which can be explained by
the initially higher space for improvement.

5.2. Analysis of Created Sub-classes
Figure 7 shows the number and distribution of sub-classes
created during multi-centroid training, for both seizure and
non-seizure sub-classes for few subjects. First, we can see that the
number of sub-classes created is very variable among subjects,
some having only a few (e.g., Subj 1 with 4 sub-classes for
seizure) and some having a lot of them (e.g., Subj 3 with more
than 20 seizure sub-classes). The number of seizure and non-
seizure sub-classes is also very variable within the subject. For
example, subject 1 has 17 non-seizure sub-classes and only
four seizure sub-classes, while subject 7 has 11 seizure sub-
classes and only five non-seizure ones. This situation reflects the
variability of raw data and demonstrates the rationale for our
multi-centroid approach instead of grouping all seizures into one
vector (class) and all non-seizures to another vector, as done in
the 2-class model.

Furthermore, it is very interesting to observe the amount of
data used to create each of the sub-classes. This corresponds to
the frequency of occurrence of each sub-class and shows that
there are usually 1–3 sub-classes that are very common, while the

rest are less common. This also varies greatly between patients,
and whether it is a seizure or non-seizure class. This is the main
motivation behind the strategies we implemented to reduce the
number of sub-classes.

5.3. Reduction of Sub-classes
In Figure 8, we show the results of the experiment, where
we iteratively remove 10% of less common sub-classes in
every step of the iteration. We see that the number of
seizure and non-seizure sub-classes is linearly dropping, while
the percentage of data retained is slowly dropping at the
beginning and faster later. More specifically, it is reduced
more quickly for seizure data as sub-classes are more evenly
populated than non-seizure sub-classes. In total, significant data
reduction begins to occur once more than 50% of sub-classes
are removed.

For the same experiment, we show how the performance
(F1DEgmean) decreases while iteratively removing or clustering
sub-classes. Similarly, there is no significant drop in performance
up to 50% of sub-classes being removed, and after it drops
very steeply. The decrease is less steep for clustering and allows
even 80% of sub-classes to be clustered while keeping high
performance (meaning <5% of gmean of F1 score for episodes
and duration performance drop).
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FIGURE 8 | Iterative reduction of sub-classes and how it affects the number of sub-classes and percentage of data in them. Further, performance decrease through

steps due to removing/clustering of sub-classes is shown. Performance for test set before (gray) and after (black) smoothing is shown.

FIGURE 9 | Performance and number of sub-classes for 2-class (2C), multi-class (MC) approach and with two methods for reduction of number of sub-classes:

sub-classes removal (MCr) and clustering (MCc).

5.4. Optimizing Performance and Number
of Sub-classes
As shown in Figure 8, it is possible to reduce the number of
sub-classes significantly, while not sacrificing much in terms
of performance. Thus, as explained in Section 3.2.2, we tested
two approaches. The first approach (MCr) removes the less
common sub-classes iteratively in steps (10% of sub-classes
in each step) and, after each iteration, evaluates performance
on both training and test set. If the performance on the
training set drops more than a given tolerance threshold
(in this case, 3% of F1DEgmean was used), the process

is stopped and the number of sub-classes is considered
optimal.

The second approach (MCc) is based on clustering the less

common sub-classes rather than completely removing them. In

this approach, as well in iterative steps, we pick the less common

sub-classes (10% of them in each step) and merge them with the

most similar sub-classes of the same global label to each of them.

The process stops after performance drops more than a tolerance

threshold in the training set, the same as in the MCr approach.
In Figure 9, we show performances and number of sub-classes
for 2-class model (2C), initial multi-centroid (MC) model, and
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FIGURE 10 | Summarized results for multi-class learning when compared to

2-class learning. Performance improvement and number of sub-classes is

reported for all three balancing datasets.

after two approaches for optimization, with sub-classes reduction
(MCr) and clustering (MCc). Only one performance is shown,
F1DEgmean, to simplify comparisons. Finally, we report the
results for the test set using all three balancing scenarios (F1, F5,
F10).

Based on the results in Figure 9, we can conclude that the
approaches to optimize the number of sub-classes (MCr and
MCc) do not significantly degrade performance when compared
to the multi-centroid model. Performance is still substantially
higher than the 2-class model for F5 (p = 0.009 of Wilcoxon
statistical test) and F10 datasets (p = 1.19e-16). For balanced
dataset (F1) MC approach doesn’t bring significant improvement
over 2C approach (p= 0.159). On the other hand, the number of
sub-classes is much smaller in MCr and MCc approaches when
compared to the MC model.

Even though the iterative process and number of sub-classes
were decided based on training data performance, test data
performance also remains equivalent with the MC model. The
number of sub-classes is reduced by 50% (or more) in all three
dataset balancing cases. The sub-class removal approach leads to
a slightly fewer sub-classes than the clustering approach.

In Figure 10, we summarize our experimental results and
show the final performance improvement and the number of
sub-classes after the multi-centroid model with the removal of
sub-classes (MCr) for all three balancing datasets. Performance
improvement is the smallest for F1, as the space for improvement
is also the smallest. For highly unbalanced data (F10), an increase
of up to 14% (on top of initial performance) for the test set was
achieved. The multi-centroid approach has the biggest potential
for more unbalanced datasets, which are closer to real-life data

distribution and also have the lowest absolute performance. As
seen in Figure 9, F1 performance is improved from 80 to
83% for the test set after smoothing, and from 60 to 73%
for F10.

When observing the number of sub-classes for different
dataset balancing strategies, it seems that the more non-
seizure data considered, the more sub-classes are necessary. This
conclusion is logical, as we add more data that can represent
different neural activity states. On the other hand, in terms of
seizure sub-classes, the more non-seizure data we have, the fewer
seizure sub-classes we need, as training is less sensitive to small
changes in seizure dynamics. Thus, our results indicate that the
multi-centroid approach is more significant the closer we are to
more realistic data balancing.

6. CONCLUSION

In this work, we have presented a novel semi-supervised learning
approach aimed at improving hyperdimensional computing
models. The multi-centroid approach was tested on the
challenging use case of epileptic seizures detection. In particular,
based on given global labels (seizure or non-seizure), instead of
forcing only two HD prototype vectors, one for each class, we
allow unsupervised creation of any number of sub-classes and
their centroid vectors (of seizure and non-seizure). This enables
less common signal patterns not to be under-represented, but to
create their own sub-class when they are significantly different
from the existing sub-classes.

Our proposed multi-centroid approach has significantly
improved performance when compared to a simple single-
centroid (2-class) HD model; up to 14% on the test set of
the most challenging dataset with 10 times more non-seizure
than seizure data. It also leads to the creation of a highly
variable number of seizure and non-seizure sub-classes for
each subject, reflecting the complexity of the data and the
classification challenge itself. One drawback of this approach
is the memory requirements that storing all sub-class model
vectors implies. However, this increment is linear with the
number of sub-classes and can be easily constrained according
to the hardware requirements of different types of possible final
wearable platforms.

Then, we designed and tested two approaches for optimizing
the number of sub-classes, while still keeping an improved
performance, as well as sub-classes reduction and clustering.
Both approaches have led to a significant reduction of the
number of sub-classes (∼50%), while maintaining equally high
performance as the first expanding step of the initial multi-
centroid model.

Finally, the multi-centroid has proven to be able to reach
bigger improvement for less-balanced datasets. At the same time,
the total number of sub-classes is not significantly increased
compared to the balanced dataset. Thus, it can be an important
step forward to achieve high performance in epilepsy detection
with real-life data distributions, where seizures are infrequent,
especially during online learning.
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