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Background: An involvement of the central-nervous and peripheral, innate and
adaptive immune system in the pathogenesis of Parkinson’s disease (PD) is nowadays
well established.

Objectives: We face several open questions in preparation of clinical trials aiming at
disease-modification by targeting the immune system: Do peripheral (blood) inflammatory
profiles reflect central (CSF) inflammatory processes? Are blood/CSF inflammatory
markers associated with CSF levels of neurodegenerative/PD-specific biomarkers?

Methods: Using a multiplex assay we assessed 41 inflammatory markers in CSF/serum
pairs in 453 sporadic PD patients. We analyzed CSF/serum correlation as well as
associations of inflammatory markers with clinical outcome measures (UPDRS-IIl, H&Y,
MoCA) and with CSF levels of a-synuclein, AB1_42, t-Tau, p181-Tau and NFL. All analyses
were stratified by sex as the immune system shows relevant sex-specific differences.

Results: Correlations between CSF and serum were sparse and detected in
only 25% (9 out of 36) of the analysable infllmmatory markers in male PD
patients and in only 38% (12 out of 32) of female PD patients. The most
important pro-inflammatory mediators associated with motor and cognitive decline
as well as with neurodegenerative/PD-specific biomarkers were FABP, ICAM-1, IL-8,
MCP-1, MIP-1-beta, and SCF. Results were more robust for CSF than for serum.

Interpretation: Levels of central-nervous and peripheral inflammatory markers might
be regulated independently of each other with CSF inflammatory markers reflecting
CNS pathology more accurately than peripheral markers. These findings along with
sex-specific characteristics have to be considered when designing clinical trials aiming
at disease-modification by targeting the immune system.
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INTRODUCTION

Parkinson’s disease (PD) is a multifactorial disorder with age,
genetics, environmental and life-style factors contributing to
disease manifestation and clinical trajectories. Moreover, a
growing number of epidemiological and genetic studies as well
as post-mortem and fluid-biomarker analyses provide evidence
for a relevant influence of inflammation on incidence and
progression in PD (1-4). An involvement of the central-nervous
and peripheral, innate and adaptive immune system has been
detected (5). The activation of microglia as representative of the
cerebral innate immune system was shown post-mortem as well
as in-vivo in PD patients by Positron Emission Tomography
studies (TSPO-PET, 18F-FEPPA-PET) and by increased levels of
cytokines in CSF (2, 6). Microglia can be activated by Damage-
Associated Molecular Patterns (DAMPs), which are generated
by damaged cells, misfolded proteins, and protein aggregates. In
PD, a-synuclein acts as DAMP resulting in microglia activation
with induction of a neuroinflammatory response and release of
cytokines/chemokines (7). Moreover, there is increasing evidence
for the involvement of the peripheral innate and adaptive
immune system in the pathophysiology of PD. It was shown that
a-synuclein induces inflammasome-related cytokine production
in the periphery and specific a-synuclein peptides act as antigenic
epitopes resulting in helper and cytotoxic T cell responses in
PBMCs from patients with PD (8, 9).

Several post-mortem and biofluid (blood, CSF) studies
reported increased inflammatory profiles to be associated with
clinical subtypes of PD, promoting an accelerated motor and
non-motor phenotype (3, 10-13). Recent evidence highlights that
the involvement of inflammation in PD is maximized in the early
disease stages and maintains a chronic profile during the course
of the disease (14, 15).

Despite this clear role for inflammation in the pathogenesis
of PD, we face several open questions in preparation of clinical
trials aiming at disease-modification by targeting the immune
system: 1. Do peripheral (blood) inflammatory profiles reflect
central (CSF) inflammatory processes indicative of a cross-talk
between periphery and brain? 2. Are blood/CSF inflammatory
markers associated with CSF levels of neurodegenerative/PD-
specific biomarkers such as a-synuclein, AB;_43, Tau and NFL?
Knowledge on these questions will help to stratify patients and
enrich cohorts for clinical trials.

METHODS

Participants

Between 2005 and 2018, CSF/serum pairs of 453 sporadic PD
patients recruited from the outpatient clinic and/or ward for PD
at the University Hospital of Tiibingen were collected. Fourty-
eight neurodegenerative healthy elderly (spouses, volunteers)
served as control individuals.

Male PD patients presented with mean age of 66 years, mean
age at onset of 59 years, mean disease duration of 7 years, mean
HY of 2.2, mean UPDRS-III of 28, mean MoCA of 25, mean
LEDD of 619. Mean CSF levels in pg/ml were as follows: AB;_4
676, t-Tau 230, p-Tau 41, NFL 1025, total a-synuclein 569. Female

PD patients presented with mean age of 66 years, mean age at
onset of 59 years, mean disease duration of 7 years, mean HY
of 2.1, mean UPDRS-III of 26, mean MoCA of 25, mean LEDD
of 533. Mean CSF levels in pg/ml were as follows: ABj_4, 684,
t-Tau 257, p-Tau 43, NFL 1143, total a-synuclein 689. For more
demographic and clinical details (see Supplementary Table 1).

Clinical Investigations

All participants were examined by a neurologist specialized in
movement disorders. Diagnosis of PD was defined according to
UK Brain Bank Society Criteria (16, 17). Disease duration was
defined as interval between onset of PD and biosample collection.
PD patients were assessed in the dopaminergic ON state. We
assessed severity of motor symptoms using part III of the Unified
Parkinson’s disease Rating Scale (UPDRS-III), from 2006 to 2008
the old version and from 2009 on the MDS-UPDRS (18). Disease
stage was categorized by the modified Hoehn and Yahr Scale
(H&Y) (19). Cognitive function was tested using the Montreal
Cognitive Assessment (MoCA) (20) and/or the Mini Mental
Status Examination (MMSE) (21). Since the MoCA was available
only from 2009 on, all previously obtained MMSE scores were
converted into MoCA equivalent scores according to a published
algorithm (22).

Collection of CSF and Serum Samples

Spinal tap for CSF collection and venous blood sampling were
performed directly one after another between 9.00 AM and 1.00
PM. Samples were taken from the bedside and centrifuged within
60 min and frozen at —80°C within 90 min after collection. Until
2013, we used polypropylene tubes from Sarstedt (Article Nr.
72.730.406) and from 2013 on, we used low protein-binding
polypropylene cryovial 2D barcode cryovials FluidX (Article
Nr. 68-0703-01) for storage. Samples with abnormal routine
CSF diagnostics (erythrocytes >1/u1, white blood cell count >5
cells/pl, immunoglobulin subtype G index >0.7) were excluded.

CSF and Serum Measurement of

Inflammatory Markers

Levels of 41 inflammation-associated markers were measured in
CSF/serum pairs using the multiplexed immunoassay by Myriad
RBM, Austin, TX, USA (http://rbm.myriad.com). Mean storage-
time until measurement was 6 years. Storage-time showed a
negative correlation in CSF for ICAM-1 (—0.155 p = 0.004),
Interleukin-4 (—0.146 p = 0.007), Interleukin-7 (—0.255 p <
0.001), PSA-f (—0.155 p = 0.029) and TF (—0.108 p = 0.045) and
a negative correlation in serum for CKMB (—0.115 p = 0.032)
and BDNF (—0.214 p < 0.001). For measurements, samples were
thawed at room temperature, vortexed, spun at 18.000 x g for
1 min and pipetted into a master microtiter plate. After dilution
with assay diluents in a manner of 1:5, an aliquot of 10 p1 diluted
sample was introduced into one of the capture microsphere
multiplexes followed by incubation at room temperature for
1h. Reporter antibodies were added followed by incubation
for an additional hour at room temperature. Streptavidin-
phycoerythrin solution was added followed by incubation for
another hour at room temperature. For control purposes,
calibrators and controls were included on each microtiter plate.
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Standard curve, control, and sample QC were performed to
ensure proper assay performance. Samples were tested in singles.
Analysis was performed using the Luminex 100/200 instrument.
Data were interpreted using the software developed and provided
by Myriad RBM.

The Lower Limit of Quantitation (LLOQ) means the lowest
concentration of an analyte in a sample that can be reliably
detected and at which the total error meets the laboratory’s
requirements for accuracy. NMI’s requirement for accuracy is the
concentration of an analyte at which the coeflicient of variation
of replicate standard samples is 30%.

CSF LLOQ: CA 125 U/ml: 2; IgE U/ml: 2,04; TSH ulU/ml:
0,0195; Alpha Fetoprotein pg/ml: 110; CEA pg/ml: 95,8; CKMB
pg/ml: 157; FABP pg/ml: 618; Factor VII pg/ml: 562; GH pg/ml:
36,2; ICAM-1 pg/ml: 644; Leptin pg/ml: 60,4; MMP-3 pg/ml:
42,4; MMP-9 pg/ml: 7,840; PSA-f pg/ml: 4,32; TF pg/ml: 89,6;
TNF-alpha pg/ml: 3,58; Brain-Der Neu Fac pg/ml: 23,2; ENA 78
pg/ml: 19,2; GM-CSF pg/ml: 19,1; IL-1alpha pg/ml: 1; IL-1beta
pg/ml: 0,358; IL-2 pg/ml: 6; IL-3 pg/ml: 4,08; IL-4 pg/ml: 5,22;
IL-5 pg/ml: 2,3; IL-6 pg/ml: 0,862; IL-7 pg/ml: 8,44; IL-8 pg/ml:
2,74; IL-10 pg/ml: 2,28; IL-12 p40 pg/ml: 73,8; IL-12 p70 pg/ml:
18,1; IL-13 pg/ml: 2,04; IL-15 pg/ml: 187; IL-16 pg/ml: 12,3; IL-18
pg/ml: 12,4; Lymphotactin pg/ml: 85,4; MCP-1 pg/ml: 8,66; MDC
pg/ml: 5,82; MIP-1 beta pg/ml: 13,6; SCF pg/ml: 26,2; TNE-beta
pg/ml: 2,62; TPO pg/ml: 420.

Serum LLOQ: CA 125 U/ml: 5; IgE U/ml: 5,1; TSH ulU/ml:
0,0489; Alpha Fetoprotein pg/ml: 276; CEA pg/ml: 240; CKMB
pg/ml: 394; FABP pg/ml: 1,550; Factor VII pg/ml: 1,410; GH
pg/ml: 90,5; ICAM-1 pg/ml: 1,610; Leptin pg/ml: 151; MMP-
3 pg/ml: 106; MMP-9 pg/ml: 19,600; PSA-f pg/ml: 10,8; TF
pg/ml: 224; TNF-alpha pg/ml: 8,95; Brain-Der Neu Fac pg/ml:
58; ENA 78 pg/ml: 47,9; GM-CSF pg/ml: 47,7; IL-1alpha pg/ml:
2,5; IL-1beta pg/ml: 0,895; IL-2 pg/ml: 15; IL-3 pg/ml: 10,2;
IL-4 pg/ml: 13,1; IL-5 pg/ml: 5,75; IL-6 pg/ml: 2,16; IL-7
pg/ml: 21,1; IL-8 pg/ml: 6,85; IL-10 pg/ml: 5,7; IL-12 p40
pg/ml: 185; IL-12 p70 pg/ml: 45,2; IL-13 pg/ml: 5,1; IL-15
pg/ml: 468; IL-16 pg/ml: 30,7; IL-18 pg/ml: 31; Lymphotactin
pg/ml: 214; MCP-1 pg/ml: 21,77 MDC pg/ml: 14,6; MIP-
1 beta pg/ml: 34,1; SCF pg/ml: 65,5; TNE-beta pg/ml: 6,55;
TPO pg/ml: 1,050. For a list of all assessed markers (see
Supplementary Table 2).

CSF Measurement of AB_4», Total-Tau,
Phospho-Tau, NFL and Total «-Synuclein

CSF levels of ABj_42, t-Tau and p181-Tau were measured using
ELISA kits from INNOTEST, Fujirebio GmbH, Germany. CSF
levels of NFL were measured using the UmanDiagnostics NF-
light®assay. Intra-assay coefficients of variation for each CSF
parameter were below 15%. CSF levels of total a-synuclein
were assessed using an ELISA kit for human o-synuclein
(Roboscreen GmbH, Germany). Intra-assay imprecision of 4.4%
was calculated from duplicate analyses and expressed as median
of the range to average of the duplicates. Inter-assay imprecision
of <10% was determined using two quality control CSF
pool samples.

Ethical Approval and Patient Consents

The study was approved by the Ethics Committee of
the University of Tuebingen (26/2007BO1, 404/2010BO1,
199/2011BO1, 702/2013BO1, 428/2018B0O2). All participants
gave written informed consent.

Data Availability
Anonymized data are available
kathrin.brockmann@uni-tuebingen.de.

upon  request to:

Statistical Analysis

Statistical analysis was performed using SPSS 26.0 software
for Windows (IBM). All analyses were stratified by sex as
the immune system shows relevant sex-specific differences
of inflammatory profiles (23). Group comparisons (disease
group vs. controls) of continuous data were analyzed
using ANOVA/ANCOVA including age as co-variate where
appropriate. Pearson’s correlation was used to evaluate
associations between inflammatory profiles in CSF and
serum and between inflammatory profiles and CSF levels
of a-synuclein, ABi_42, t-Tau, p181-Tau, and NFL. As this
study was exploratory, we did not correct for multiple testing.
However, only correlations with at least 10 valid sample pairs and
a correlation coefficient p > 0.20 were considered meaningful
(irrespective if the p-values was <0.05).

Exclusion of Inflammatory Markers From

Analyses

Of the 41 analyzed inflammatory markers some were not
detectable in CSF and/or Serum. Specifically, Interleukin-5 and
Interleukin-12p70 weren’t detectable in CSF and Serum in
healthy controls while Interleukin-12p70 wasn’t detectable in
CSF in PD patients. BDNF wasn’t detectable in CSF in any of the
cohorts. Therefore, these 3 metabolites were excluded from the
respective group analyses.

Moreover, some inflammatory markers were measurable
only in a small number (<10) of CSF/Serum pairs and/or of
inflammatory/PD-biomarker pairs. These are listed below and
were also excluded from the respected analyses due to lack of
meaningful outcome.

Healthy Controls

For CSF/serum correlations of inflammatory markers, the
following metabolites were excluded as the number of
measurable CSF/serum pairs were <10:

Males: FactorVII (n = 7), TNF-alpha (n = 5), Interleukin-
1 alpha (n = 0), Interleukin-1 beta (n = 0), Interleukin-2 (n
= 0), Interleukin-3 (n = 0), Interleukin-7 (n = 1), Interleukin-
10 (n = 9), Interleukin-12p40 (n = 4), Interleukin-13 (n = 7),
Interleukin-15 (n = 8), Lymphotactin (n = 2), MDC (n = 2),
TPO (n =9), Alpha-fetoprotein (n = 2), CEA (n = 3), CKMB (n
=3), CA-125 (n =5) and IgE (n = 0).

Females: FactorVII (n = 6), Interleukin-1 alpha (n = 8),
Interleukin-1 beta (n = 4), Interleukin-2 (n = 7), Interleukin-3
(n = 0), Interleukin-7 (n = 5), Lymphotactin (n = 4), MDC (n
= 1), Alpha-fetoprotein (n = 1), CEA (n = 4), CKMB (n = 2),
PSA-f (n = 8), CA-125 (n = 3) and IgE (n = 3).
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For correlations between CSF inflammatory markers and CSF
PD-biomarkers the following metabolites were excluded as the
number of measurable pairs were <10:

Males: FactorVII (n = 7), MMP9 (n = 8), TNF-alpha (n
= 4), Interleukin-1 alpha (n = 4), Interleukin-1 beta (n = 0),
Interleukin-2 (n = 1), Interleukin-3 (n = 1), Interleukin-7 (n =
4), Interleukin-12p40 (n = 8), Lymphotactin (n = 2), MDC (n =
2), TPO (n =9), Alpha-fetoprotein (n = 2), CEA (n = 3), CKMB
(n=13), CA-125 (n =5), IgE (n = 0).

Females: FactorVII (n = 6), Interleukin-1 beta (n = 4),
Interleukin-3 (n = 0), Lymphotactin (n = 6), MDC (n = 1),
Alpha-fetoprotein (n = 1), CEA (n = 2), CKMB (n = 2), CA-125
(n=3),I1gE (n =4).

For correlations between serum inflammatory markers and CSF
PD-biomarkers the following metabolites were excluded as the
number of measurable pairs were <10:

Male: Interleukin-1-alpha (n = 4), Interleukin-2 (n = 2),
Interleukin-3 (n = 1), Interleukin-7 (n = 2), Interleukin-13 (n
=7).

Female: Interleukin-2 (n = 7), Interleukin-3 (n = 0),
Interleukin-7 (n = 7).

Parkinson’s Disease

For CSF/serum correlations of inflammatory markers, the
following metabolites were excluded as the number of
measurable CSF/serum pairs were <10:

Males: Interleukin-2 (n = 3), Interleukin-3 (n = 0),
Interleukin-5 (n = 0).

Females: Interleukin-1-beta (n = 9), Interleukin-2 (n = 3),
Interleukin-3 (n = 0), Interleukin-5 (n = 0), MDC (n = 6), PSA-f
(n=7) and IgE (n = 6).

For the correlation between CSF inflammatory markers with
clinical and CSF PD-biomarkers the following metabolites were
excluded as the number of measurable pairs were <10:

Males: Interleukin-3 (n = 3), Interleukin-5 (n = 2), MDC
(n=9).

Females: Interleukin-1-beta (n = 9), Interleukin-3 (n = 1),
Interleukin-5 (n = 3), MDC (n = 6), IgE (n = 6).

For the correlation between serum inflammatory markers with
clinical and CSF PD-biomarkers the following metabolites were
excluded as the number of measurable pairs were <10:

Males: Interleukin-2 (n = 7), Interleukin-3 (n = 7).

Females: Interleukin-2 (n = 4), Interleukin-3 (n = 4),
Interleukin-5 (n = 7), Interleukin-12p70 (n = 9).

RESULTS

Correlation Between CSF and Serum

Inflammatory Markers

Healthy Controls

In males, 18 out of 41 and in females 24 out of 41 inflammatory
markers reached a sufficient number of analysable CSF/serum
pairs (n > 10) for meaningful correlation analysis. A significant
correlation between CSF and Serum was found only in a small
proportion of the analyzed markers. Interleukin-4 and Leptin
were positively correlated between CSF and serum in males and
in females (males: Interleukin-4 rho = 0.705 p = 0.007, Leptin

rho = 0.767 p = 0.002; females: Interleukin-4 rho = 0.634 p <
0.001, Leptin rho = 0.500 p = 0.009). In males, ICAM-1 (rho
= 0.553 p = 0.032), MIP-1 beta (rho = 0.521 p = 0.047), PSA-
f (tho = 0.738 p = 0.004) and TSH (tho = 0.567 p = 0.043)
were positively correlated between CSF and serum. In females,
Interleukin-6 (rho = 0.423 p = 0.039), MCP-1 (rho = 0.424 p
= 0.019), FABP (rho = 0.389 p = 0.050) and Interleukin-12p40
(rho = 0.832 p < 0.001) were positively correlated between CSF
and serum.

Parkinson’s Disease

In males, 36 out of 41 and in females 32 out of 41 markers
reached a sufficient number of CSF/serum pairs (n > 10) for
meaningful correlation analysis. A positive correlation between
CSF and Serum in male and in female PD patients was seen for
ICAM-1 (males: rho = 0.255 p < 0.001; females: rho = 0.475 p
< 0.001), MMP3 (males: rho = 0.346 p < 0.001; females: rho =
0.249 p = 0.012), Interleukin-6 (males: rho = 0.237 p = 0.004;
females: rho = 0.254 p = 0.030), MCP-1 (males: rho = 0.197 p
= 0.007; females: tho = 0.371 p < 0.001), MIP-1 beta (males: rho
= 0.239 p < 0.001; females: rho = 0.412 p < 0.001), TSH (males:
rho = 0.229 p = 0.004; females: rho = 0.355 p = 0.003), Leptin
(males: rho = 0.662 p < 0.001; females: rho = 0.706 p < 0.001),
Interleukin-4 (males: rho = 0.400 p < 0.001; females: rho = 0.382
p <0.001) and Interleukin-12p40 (males: rho = 0.455 p < 0.001;
females: rho = 0.363 p = 0.006). In females also Interleukin-8
(rho = 0.288 p = 0.003), Interleukin-13 (rho = 0.450 p = 0.004)
and CKMB (rho = 0.669 p = 0.003) were positively correlated
(see Figure 1).

Correlation Between CSF Inflammatory
Markers With Demographics, Clinics and

With PD-Biomarkers

Healthy Controls

There were no significant correlations between CSF
inflammatory markers with age or with CSF levels of AB;_42,
t-Tau, p181-Tau, NFL and a-synuclein in males and in females at
the same time.

In males, higher CSF levels of ICAM-1, Interleukin-8 and SCF
were associated with higher age. Higher CSF levels of ICAM-1,
SCEF, FABP, and TF were associated with higher CSF levels of t-Tau
and p181-Tau. Low CSF levels of GH were associated with higher
CSF levels t-Tau. Higher CSF levels of ICAM-1, Interleukin-
8, SCF, and Leptin were associated with higher CSF levels of
NEFL. All correlation coefficients of these significant associations
were between 0.5 and 0.9. There were no significant correlations
between any of the inflammatory CSF markers with CSF levels of
AB1_4 or a-synuclein in males.

In females, higher CSF levels of Leptin and lower CSF levels
of ENA-78 were associated with higher age. Higher CSF levels of
MMP3 and Interleukin-1 alpha were associated with higher CSF
levels of AP1_45. Higher CSF levels of SCF and TF were associated
with higher CSF levels a-synuclein. All correlation coefficients
of these significant associations were between 0.4 and 0.7. There
were no significant correlations between any of the inflammatory
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FIGURE 1 | Significant CSF/Serum correlations of inflammatory markers in Parkinson’s Disease. A significant correlation between CSF and serum levels was sparse
and detected in only 25% (9 out of 36) of the analysable inflammatory markers in male PD patients and in only 38% (12 out of 32) of female PD patients.
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TABLE 1 | Correlation between CSF inflammatory markers with demographics and CSF PD-biomarkers in healthy controls.

Age AB1_42 t-Tau p181-Tau NFL a-synuclein
ENA-78 f: —0.463* n.s. n.s. n.s. n.s. n.s.
FABP n.s. n.s. m: 0.617* m: 0.829*** n.s. n.s.
GH n.s. n.s. m: —0.659* n.s. n.s. n.s.
ICAM-1 m: 0.524* n.s. m: 0.681** m: 0.554* m: 0.886** n.s.
IL-1 alpha n.s. f: 0.686* n.s. n.s. n.s. n.s.
IL-8 m: 0.580* n.s. n.s. n.s. m: 0.696* n.s.
Leptin f: 0.392* n.s. n.s. n.s. m: 0.805* n.s.
MMP3 n.s. f: 0.501** n.s. m: 0.633** n.s. n.s.
SCF m: 0.562* n.s. m: 0.643** m: 0.640** m: 0.780** f: 0.739**
TF n.s. n.s. m: 0.667** m: 0.750"** n.s. f: 0.705*
Pearson correlation: "p < 0.05; "p < 0.01; p < 0.001.
m, males; f, females.
n.s., not significant.
CSF markers with CSF levels of t-Tau, p181-Tau and NFL in In females, higher CSF levels of Interleukin-8 and

females (see Table 1).

Parkinson’s Disease
In both, males and females, higher CSF levels of ICAM-1, MMP3,
SCF and FABP were associated with higher age. Moreover, higher
CSF levels of GH were associated higher UPDRS-III scores and
higher CSF levels of Interleukin-8 were associated with lower
MoCA scores.

In males, higher CSF levels of CA-125 were associated with
higher H&Y staging. Higher CSF levels of FABP were associated
with lower MoCA scores.

lower CSF levels of Interleukin-18 were associated higher
UPDRS-III scores and with H&Y staging. Higher CSF
levels of MCP-1 and SCF were associated with lower
MoCA scores.

All correlation coefficients of these significant associations
were between 0.2 and 0.5 (see Table 2).

In both, males and females, higher CSF levels of ICAM-1,
MMP3, SCE, FABP, and TF were associated with higher CSF
levels of t-Tau, p181-Tau, and a-synuclein. Moreover, higher
CSF levels of FABP were associated with higher CSF levels
of NFL.

Frontiers in Neurology | www.frontiersin.org

February 2022 | Volume 13 | Article 834580


https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

Lerche et al. Central-Nervous and Peripheral Inflammation PD

TABLE 2 | Correlation between CSF inflammatory markers with demographics and clinical characteristics in Parkinson’s Disease.

Age Age at onset Disease duration H&Y UPDRS-III MoCA LEDD

CA-125 n.s. n.s. n.s. m: 0.384* n.s. n.s. n.s.
CEA m: 0.284* m: 0.332** n.s. n.s. n.s. n.s. f: —0.478*
FABP m: 0.539"* f: 0.304** m: 0.511*** f: 0.236" n.s. n.s. n.s. m: —0.313** n.s.
FactorVI n.s. n.s. n.s. n.s. n.s. n.s. m: 0.396™*
GH n.s. n.s. n.s. n.s. m: 0.237* f: 0.301* n.s. n.s.
ICAM-1 m: 0.238"* f: 0.453"** f: 0.331 f:0.218* n.s. n.s. n.s. n.s.
IL-1 alpha f: —0.316" f: —0.387* n.s. n.s. n.s. n.s. n.s.
IL-7 n.s. n.s. n.s. n.s. n.s. n.s. m: 0.259™*
IL-8 f: 0.279™ n.s. f: 0.406" f: 0.312 f: 0.267 m: —0.232 f: —0.255™* f: 0.262*
IL-18 n.s. n.s. n.s. f: —0.348* fi —0.452"* n.s.
MCP-1 f: 0.249* m: 0.221** n.s. n.s. n.s. fi —0.294** n.s.
MMP3 m: 0.294** f: 0.276** m: 0.268*** f: 0.304** n.s. n.s. n.s. n.s. n.s.
PSA-f m: 0.265*** m: 0.234** n.s. n.s. n.s. n.s. m: 0.204*
SCF m: 0.367* f: 0.350"*  m: 0.322*** f: 0.292** n.s. n.s. n.s. fi —0.272* n.s.

TF m: 0.403*** m: 0.389"** n.s. n.s. n.s. n.s. n.s.
TNF-alpha f: —0.5684* f: —0.5629* n.s. n.s. n.s. n.s. f: 0.520"
TPO n.s. n.s. f: 0.206* n.s. n.s. n.s. n.s.
TSH n.s. n.s. n.s. f: —0.266" n.s. n.s. n.s.

Pearson correlation: 'p < 0.05; "p < 0.01; "'p < 0.001.
m, males; f, females.
n.s., not significant.

TABLE 3 | Correlation between CSF inflammatory markers with CSF PD-biomarkers in Parkinson’s Disease.

AB1-42 t-Tau p181-Tau NFL a-synuclein
CA-125 f: 0.614* f: 0.5695* f: 0.637* n.s. n.s.
CEA n.s. n.s. n.s. m: 0.252* n.s.
ENA-78 n.s. n.s. n.s. n.s. m: 0.225" f: 0.276"
FABP m: 0.215** m: 0.701*** f: 0.486™** m: 0.555"** f: 0.425"** m: 0.300*** f: 0.209* m: 0.453*** f: 0.426™**
FactorVl n.s. . 0.398* f: 0.440% n.s. n.s.
GH n.s. n.s. f: —0.298* n.s. n.s.
ICAM-1 n.s. m: 0.347 f. 0.543"* m: 0.301** f: 0.525"* f:0.219" m: 0.360** f: 0.621***
IL-1 alpha n.s. f: —0.437* f: —0.372* n.s. f: —0.353*
IL-6 n.s. n.s. f: 0.259* n.s. n.s.
IL-8 n.s. n.s. n.s. f: 0.364*** n.s.
IL-12p40 f: 0.370** n.s. n.s. n.s. n.s.
IL-16 n.s. m: 0.200** m: 0.228** n.s. m: 0.241***
Lymphotactin f:0.377* n.s. n.s. n.s. n.s.
MDC m: 0.641* m: 0.669* m: 0.808** n.s. n.s.
MIP-1 beta n.s. f:0.216* n.s. n.s. n.s.
MMP3 m: 0.277*** m: 0.437*** f: 0.496*** m: 0.421*** f: 0.598*** n.s. m: 0.384*** f: 0.490"**
SCF m: 0.227*** m: 0.625"** f: 0.651*** m: 0.573** f: 0.643*** m: 0.264*** m: 0.542*** f: 0.5689"**
TF m: 0.304*** f: 0.334*** m: 0.759*** f: 0.578** m: 0.689*** f: 0.698*** m: 0.252*** m: 0.623* f: 0.642***
TNF-alpha n.s. n.s. n.s. m: 0.338* n.s.

Pearson correlation: 'p < 0.05; "p < 0.01; "'p < 0.001.
m, males; f, females.
n.s., not significant.

Frontiers in Neurology | www.frontiersin.org 6 February 2022 | Volume 13 | Article 834580


https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

Lerche et al.

Central-Nervous and Peripheral Inflammation PD

TABLE 4 | Correlation between serum inflammatory markers with demographics and CSF PD-biomarkers in healthy controls.

Age AB1-a2 t-Tau p181-Tau NFL a-synuclein
CA-125 n.s. f: —0.437 n.s. f: —0.381* n.s. n.s.
CEA n.s. f: —0.625"* n.s. f: —0.433" n.s. n.s.
ENA-78 n.s. f: 0.502** n.s. n.s. n.s. n.s.
FABP n.s. n.s. n.s. n.s. f: 0.615" n.s.
FactorVl n.s. n.s. n.s. n.s. f: 0.655" n.s.
IL-6 n.s. f: —0.448* n.s. f: —0.394* n.s. n.s.
IL-15 m: —0.719* n.s. n.s. n.s. n.s. n.s.
IL-16 n.s. f: —0.407* n.s. n.s. n.s. n.s.
IL-18 n.s. n.s. f: —0.407* f: —0.426* n.s. n.s.
Leptin n.s. n.s. n.s. n.s. f: 0.735% n.s.
MIP-1 beta n.s. n.s. n.s. n.s. n.s. f: —0.659*
MMP3 n.s. n.s. n.s. n.s. m: —0.735* n.s.
TF n.s. f: —0.495** n.s. n.s. f: 0.881* n.s.
TNF-alpha n.s. f: —0.401* n.s. n.s. n.s. n.s.

Pearson correlation: 'p < 0.05; "p < 0.01; "'p < 0.001.
m, males; f, females.
n.s., not significant.

All correlation coefficients of these significant associations
were between 0.2 and 0.7 (see Table 3).

Correlation Between Serum Inflammatory
Markers With Demographics, Clinics and

With PD-Biomarkers

Healthy Controls

There were no correlations between serum inflammatory
markers with age, AB;_45, t-Tau, p181-Tau, NFL or with a-
synuclein in males and in females at the same time.

In males, higher serum levels of Interleukin-15 were
associated with higher age. Lower serum levels of MMP3 were
associated with higher CSF levels of NFL.

In females, higher serum levels of TNF-alpha, Interleukin-
6, Interleukin-16, CEA and TF were associated with lower
CSF levels of AB;_45. Higher serum levels of Interleukin-6,
Interleukin-18, CEA and CA-125 were associated with lower CSF
levels of p181-Tau. Higher serum levels of Factor VII, FABP,
Leptin and TF were associated with higher CSF levels of NFL.

All correlation coefficients of these significant associations
were between 0.3 and 0.9 (see Table 4).

Parkinson’s Disease

In both, males and females, higher serum levels of FABP were
associated with higher age whereas higher serum levels of CA-125
were associated with lower MoCA scores. No other correlation
was found to be significant in both sexes at the same time.

In males, higher serum levels of Interleukin-13 and ENA-78
were associated with higher H&Y staging.

In females, higher serum levels of MMP3, TNF-alpha,
Interleukin-15, FABP, CA-125 and lower serum levels of BDNF
were associated with higher H&Y staging. Higher serum levels of
TNF-alpha and Interleukin-15 were also associated with higher
UPDRS-III scores. Moreover, higher serum levels of TNF-alpha

and lower serum levels of BDNF and TSH were associated with
lower MoCA scores.

All correlation coefficients of these significant associations
were between 0.2 and 0.3 (see Table 5).

In both, males and females, higher serum levels of Interleukin-
13 were associated with higher CSF levels of a-synuclein.
There were no other significant correlations between serum
inflammatory markers with AB;_4,, t-Tau, p181-Tau, NFL or
a-synuclein in males and in females at the same time.

In males, higher serum levels of Interleukin-7 were associated
with higher CSF levels of p181-Tau and higher serum levels
of Interleukin-10 were associated with higher CSF levels
of a-synuclein.

In females, higher serum levels of Interleukin-6, Interleukin-
15 and CKMB were associated with higher CSF levels AB;j_4;.
Higher serum levels of ICAM-1, Interleukin-18, and MIP-1 beta
were associated with higher CSF levels of t-Tau and p181-Tau.
Higher serum levels of MMP3, TNF-alpha, Interleukin-6, FABP,
TE, CA-125, and IgE were associated with higher CSF levels
of NFL. Higher serum levels of ICAM-1, Interleukin-12p40,
Interleukin-16, Interleukin-18, MCP-1, and MIP-1 beta were
associated with higher CSF levels of a-synuclein.

All correlation coefficients of these significant associations
were between 0.2 and 0.4 (see Table 6).

DISCUSSION

By using a multiplex assay and assessing 41 inflammatory
markers in CSF/serum pairs in 453 sporadic PD patients we
show that:

(i) A significant correlation between CSF and serum was
sparse and detected in only 25% (9 out of 36) of the
analysable inflammatory markers in male PD patients
and in only 38% (12 out of 32) of female PD patients.
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TABLE 5 | Correlation between serum inflammatory markers with demographics and clinical characteristics in Parkinson’s Disease.

Age Age at onset Disease duration H&Y UPDRS-III MoCA LEDD
AFP n.s. m: 0.221** n.s. n.s. n.s. n.s.
BDNF n.s. n.s. n.s. f: —0.233** n.s. f: 0.214* n.s.
CA-125 m: 0.214* n.s. n.s. f: 0.223" n.s. m: —0.206** f: —0.204* n.s.
CEA f: 0.248* n.s. f: 0.265"* n.s. n.s. n.s. n.s.
CKMB n.s. n.s. n.s. n.s. n.s. n.s. f: 0.310"
ENA-78 n.s. n.s. n.s. m: 0.217*** n.s. n.s. n.s.
FABP m: 0.317** f: 0.343"** m: 0.255** f: 0.3562*** f: 0.269"* n.s. m: —0.205** n.s.
ICAM-1 f: 0.226* n.s. f: 0.206* n.s. n.s. n.s. n.s.
IL-1 alpha n.s. f: —0.307** f: 0.311** n.s. n.s. n.s. n.s.
IL-3 n.s. n.s. f: 0.426* n.s. n.s. n.s. n.s.
IL-6 n.s. n.s. f: 0.348 n.s. n.s. n.s. n.s.
IL-7 n.s. n.s. f: 0.342 n.s. n.s. n.s. f: 0.306"
IL-8 f: 0.296*** f: 0.250™ n.s. n.s. n.s. n.s. n.s.
IL-12p40 n.s. n.s. n.s. n.s. n.s. n.s. f: 0.272**
IL-13 n.s. n.s. m: 0.289"** m: 0.239** n.s. n.s. m: 0.201*
IL-15 n.s. n.s. f: 0.249** f: 0.337** f: 0.233* n.s. n.s.
IL-18 n.s. n.s. f: 0.205% n.s. n.s. n.s. n.s.
MMP3 f: 0.362*** f: 0.238" f:0.217* f: 0.295** n.s. n.s. n.s.
SCF m: 0.305*** m: 0.255*** n.s. n.s. n.s. n.s. n.s.
TNF-alpha n.s. n.s. n.s. f: 0.203* f: 0.206* f: —0.254** n.s.
TSH n.s. n.s. n.s. n.s. n.s. f: 0.205* f: 0.233"
Pearson correlation: 'p < 0.05; "p < 0.01; "'p < 0.001.
m, males; f, females.
n.s., not significant.
TABLE 6 | Correlation between serum inflammatory markers with CSF PD-biomarkers in Parkinson’s Disease.

AB1_42 t-Tau p181-Tau NFL o-synuclein

CA-125 n.s. n.s. n.s. f: 0.275™ n.s.
CKMB f: 0.297** n.s. n.s. n.s. n.s.
FABP n.s. n.s. n.s. f: 0.356™* n.s.
ICAM-1 n.s. f: 0.254** f:0.213" n.s. f: 0.328"**
IgE n.s. n.s. n.s. f: 0.244~ n.s.
IL-6 f: 0.220* n.s. n.s. f:0.219* n.s.
IL-7 n.s. n.s. m: 0.266* n.s. n.s.
IL-10 n.s. n.s. n.s. n.s. m: 0.222**
IL-12p40 n.s. n.s. n.s. n.s. f: 0.273**
IL-13 n.s. n.s. n.s. n.s. m: 0.393"* f: 0.327*
IL-15 f: 0.247 n.s. n.s. n.s. n.s.
IL-16 n.s. n.s. n.s. n.s. f:0.211¢
IL-18 n.s. f: 0.203* f: 0.203* n.s. f: 0.214*
MCP-1 n.s. n.s. n.s. n.s. f: 0.246*
MIP-1 beta n.s. f: 0.3177 f: 0.287** n.s. f: 0.265
MMP3 n.s. n.s. n.s. f: 0.283** n.s.
TF n.s. n.s. n.s. f: 0.268** n.s.
TNF-alpha n.s. n.s. n.s. f: 0.264** n.s.
TPO n.s. n.s. n.s. fr —0.294* n.s.

Pearson correlation: 'p < 0.05; "p < 0.01; "p < 0.001.

m, males; f, females.
n.s., not significant.

Frontiers in Neurology | www.frontiersin.org 8

February 2022 | Volume 13 | Article 834580


https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

Lerche et al.

Central-Nervous and Peripheral Inflammation PD

Of these markers, ICAM-1, Interleukin-4, Interleukin-6,
Interleukin-12p40, MCP-1, MIP-1 beta, MMP3, Leptin, and
TSH were associated in CSF and serum in both sexes
whereas Interleukin-8, Interleukin-13 and CKMB were
additionally correlated only in females.

(ii) Higher CSF levels of FABP, Interleukin-8, MCP-1, and
SCF were associated with older age and with cognitive
impairment as measured by MoCA scores in males and/or
females. Higher CSF levels of Interleukin-8 were also
associated with motor impairment in UPDRS-III and
H&Y staging.

(iii) Higher CSF levels of FABP, ICAM-1, MMP3, SCE
and TF were associated with higher CSF levels of
neurodegenerative/PD-specific biomarkers, namely ¢-Tau,
p181-Tau, and a-synuclein in males and in females.

(iv) Higher serum levels of CA-125, FABP, and TNF-alpha as
well as lower serum levels of BDNF were associated with
cognitive impairment as measured by MoCA scores and
with motor impairment assessed by H&Y staging in males
and/or females.

(v) Whereas some inflammatory serum markers were positively
associated with CSF levels of -Tau and p181-Tau (ICAM-1,
Interleukin-18, MIP-1 beta) others were correlated with
NFL (MMP3, TNF-alpha, FABP, TE CA-125). Notably,
all of these were only found in female PD patients and
were not the same as those associated with the PD-specific
biomarker CSF a-synuclein (Interleukin-10, Interleukin-
12p40, Interleukin-13, Interleukin-16, Interleukin-18,
MCP-1, MIP-1 beta).

Overall, associations between inflammatory markers with clinical
outcomes and with CSF levels of neurodegenerative/PD-
biomarkers were stronger and more robust for CSF than
for serum.

It has already been shown in sporadic and in LRRK2-
PD patients that higher serum levels of IL-8, IL-10, MCP-
1, MIP-1, TNF-alpha are associated with more severe motor
impairment assessed with UPDRS-III, Timed-up and Go and
H&Y staging (3, 24, 25). Moreover, higher IL-8 plasma levels
were associated with dementia in PD patients carrying a homo-
or heterozygous mutation in the glucocerebrosidase (GBA) gene
(PDgpa) (26). Here, we further support the role of these
inflammatory markers to be associated with clinical outcomes of
motor and cognitive performance and to be associated with CSF
levels of neurodegenerative/PD-specific biomarkers. We could
previously also demonstrate a role of FABP in sporadic as well as
in LRRK2-associated PD with increased serum levels compared
to healthy controls. This indicates a common disease-specific
pattern irrespective of the underlying genotype (23). Now, we
extend these findings and show that higher levels of FABP in
CSF and in serum are also associated with clinical characteristics
of motor and cognitive decline as well as with CSF levels of
neurodegenerative biomarkers.

FABP is primarily involved in the intracellular transport of
long-chain fatty acids (27). It was previously shown that a-
synuclein binds to long-chain fatty acids resulting in enhanced
a-synuclein oligomerization and Lewy body formation in
dopaminergic neurons. FABP overexpression aggravated fatty

acid-induced a-synuclein oligomerization in a mouse model
(28). Although increased serum and CSF levels of FABP are
found in Lewy body diseases, similar results were also observed
in patients with stroke, brain injury and Creutzfeldt-Jakob
disease, suggesting that FABP is a disease-non-specific pro-
inflammatory marker (29-31). In-vivo and in-vitro experiments
show an up-regulation of the Stem Cell Factor SCF in neurons
of injured brain tissue paralleled by neural stem/progenitor cell
migration highlighting that SCF is involved in self-renewal and
cell survival (32). Apart from FABP and SCE the other pro-
inflammatory mediators found to be most important in our study
(ICAM-1,IL-8, MCP-1, MIP-1-beta) represent pro-inflammatory
chemokines of the central-nervous (microglia) and peripheral
innate immune system (monocyte-macrophage-lineage). The
intercellular adhesion molecule ICAM-1 has been demonstrated
already several years ago in sustaining neuroinflammation via
activated microglia in PD brains, MPTP-treated monkeys and
rats (33, 34). IL-8 is produced by macrophages and promotes
chemotaxis causing granulocytes to migrate toward sites of
infectious/injured tissue where, as a second function of IL-
8, phagocytosis is induced. Interestingly, secretion of IL-8 is
increased by oxidative stress which promotes inflammation and
thereby further increases oxidative stress. MIP-1 is also produced
by macrophages and promotes chemotaxis and synthesis of other
pro-inflammatory cytokines such as IL-1, IL-6 and TNF-alpha
(35) whereas MCP-1 has a chemotactic function on monocytes.

So far, there is only one small study published assessing
a variety of inflammatory markers by multiplex assay in
CSF/serum pairs with further analyses in relation to clinical
outcomes and CSF levels of neurodegenerative/PD-biomarkers
(12). This sporadic PD cohort comprised 22 patients with
paired CSF/serum sampling and was similar in age (mean
65.4 years) and disease duration (mean 5.4 years) to our
cohort. Also, the assessed inflammatory markers (IFN-y, IL-
18, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, TNF-a) and
the neurodegenerative/PD-biomarkers in CSF (APi—_42, t-Tau,
pThr231-Tau, total a-synuclein) showed a huge overlap with
the markers assessed in our study so that these 2 studies
are nicely comparable. Importantly, results in our large PD
cohort support and expand findings from that study: (I) Only
a fraction of markers is robustly detectable in both, CSF and
serum. (II) Correlations of cytokines between CSF and blood are
sparse indicating that levels of central-nervous and peripheral
inflammatory markers might be regulated independently of
each other and that changes may not simply reflect passive
diffusion of circulating cytokines into or out of the CNS.
(III) Associations between inflammatory markers with CSF
levels of neurodegenerative/PD-biomarkers are primarily seen
with #-Tau, p-Tau and a-synuclein but not with AB;_4, and
are more robust for CSF than for serum. These findings
suggest that CSF levels of inflammatory markers better reflect
central-nervous-system pathology as compared to peripheral
inflammatory markers.

Based on results from the present study, further analyses
are needed in order to design clinical trials aiming at disease-
modification by targeting the immune system. Such studies
should be longitudinal and address the following questions: Do
blood/CSF inflammatory profiles change over the course of the
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disease and do they mirror the degree of neuroinflammation,
respectively? Which blood/CSF inflammatory profiles are
best associated with longitudinal phenotypical trajectories
and what is their prognostic value? Which inflammatory
markers in blood/CSF are most meaningful with regard to
patient stratification and outcome measures? These might not
necessarily be the same and it might not be a single marker
but rather a combination. Promising candidates identified in
the present study are FABP, ICAM-1, IL-8, MCP-1, MIP-1-beta,
and SCF.

The strength of the present study is the large monocentric
collection of high-quality CSF/serum pair samples according to
standardized procedures which minimizes variance in sample
collection and processing.

Limitations of our study are: (I) The single measurement
of inflammatory markers so that variations in measurement
cannot be accounted. (II) The mean storage-time until
measurement of inflammatory markers was 6 years which
might impact detectability of markers that are present at
low concentrations.
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