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Background: Traumatic Brain Injury (TBI) is one of the leading causes of injury related

mortality in the world, with severe cases reaching mortality rates of 30-40%. It is highly

heterogeneous both in causes and consequences, complicating medical interpretation

and prognosis. Gathering clinical, demographic, and laboratory data to perform a

prognosis requires time and skill in several clinical specialties. Machine learning (ML)

methods can take advantage of the data and guide physicians toward a better prognosis

and, consequently, better healthcare. The objective of this study was to develop and

test a wide range of machine learning models and evaluate their capability of predicting

mortality of TBI, at hospital discharge, while assessing the similarity between the

predictive value of the data and clinical significance.

Methods: The used dataset is the Hackathon Pediatric Traumatic Brain Injury (HPTBI)

dataset, composed of electronic health records containing clinical annotations and

demographic data of 300 patients. Four different classification models were tested,

either with or without feature selection. For each combination of the classification model

and feature selection method, the area under the receiver operator curve (ROC-AUC),

balanced accuracy, precision, and recall were calculated.

Results: Methods based on decision trees perform better when using all features

(Random Forest, AUC = 0.86 and XGBoost, AUC = 0.91) but other models require

prior feature selection to obtain the best results (k-Nearest Neighbors, AUC = 0.90 and

Artificial Neural Networks, AUC= 0.84). Additionally, Random Forest and XGBoost allow

assessing the feature’s importance, which could give insights for future strategies on the

clinical routine.

Conclusion: Predictive capability depends greatly on the combination of model

and feature selection methods used but, overall, ML models showed a very good

performance in mortality prediction for TBI. The feature importance results indicate that

predictive value is not directly related to clinical significance.

Keywords: machine learning, feature selection, feature importance, Traumatic Brain Injury, mortality prediction,

clinical significance, intensive care unit
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1. INTRODUCTION

Traumatic Brain Injury (TBI) is an extremely incident condition
worldwide (1), accounting for a major reason for morbidity,
mortality, disability, and reduced quality of life (2–4). The most

recent data from the Center for Disease Control (CDC) reports
more than 610 TBI-related hospitalizations and 166 TBI-related
deaths per day in the United States (US) (5). In Europe, there
are 4,109 hospitalizations and 156 deaths per day related to TBI,

with reports of population-normalized data stating a three-fold
higher incidence of TBI in Europe than in the US (6). The
severity of this condition leads to high mortality rates ranging

from 3.3 to 28.1 per 1,00,000 in European countries (7) and, in
the US, as high as 36% of hospitalized patients die from TBI-
related complications (8). Regarding the pediatric sector, TBI is
becoming the major cause of death and disability in children
(9). Despite the improvement in healthcare over the recent years,
TBI incidence may be increasing worldwide, mainly due to the
higher use of motor vehicles and consequent increase in traffic-
related accidents (7). Comparing the high-income countries with
low- or mid- income countries, the main reasons for TBI are
quite different, with falls being the leading cause in the US,
whereas, traffic accidents being the number one cause of TBI in
China (10, 11).

Previous studies revealed that early treatment is beneficial
for TBI recovery. It is of great importance to conduct
early interventions and treatment before secondary injury
and brain deterioration happen. However, a precise prognosis
of TBI outcome is difficult due to the high heterogeneity
of the disease, i.e., a wide range of lesions (including a
skull fracture, hemorrhage, and laceration) and affected areas
of the brain (epidural, subarachnoid, and intraparenchymal)
(12, 13). To deal with this variability, many factors are
evaluated on the patient: medical signals such as intracranial
pressure and blood pressure, annotations such as the Glasgow
Coma Scale (GCS) and pupil reactivity but also imaging like
computerized tomography (CT) annotations (midline shift, type
of hemorrhage, edema). Aggregating all sorts of data to obtain a
prognosis is quite cumbersome for medical staff, often requiring
many areas of expertise (neurology, imaging, and laboratory).
Traditionally, doctors use clinical scores such as GCS to predict
patient outcomes. However, the accuracy of GCS depends on the
experience of the nurse who is conducting the clinical queries,
and it varies between different nurses.

Considering that TBI is often an emergency case, increasing
efficiency in data analysis is important. Therefore, many previous
studies were dedicated to developing outcome predictors based
on machine learning (ML) algorithms (14), which have the
capability of fast data analysis and can provide medical staff
with a prognosis helping tool. Researchers proved that combining
GCS with other variables, including initial intracranial pressure,
cerebral auto-regulation index, yields better prediction accuracy
of outcome after TBI. In recent years, different machine learning
approaches have been introduced to ICU to predict patient
outcomes, however, there is no gold standard about which
model works best, and which parameters should be extracted as
the input.

CRASH (15) and IMPACT (16) are examples of effective ML
models for TBI outcome prediction which are publicly available
on the corresponding websites, proving the utility of ML in
this area. These models focus on 6-month outcome prediction
using clinical annotations, imaging, and demographic data.
Despite their adequate performance using logistic regression and
their meticulous analysis of the predictive value of features,
external validation studies have come to the conclusion that
these predictive models required maintenance to improve their
generalization capacity (17, 18). In addition, these models
disregard pediatric patients due to the differences between
pediatric and adult head injuries. IMPACT only analyzes patients
above 14 years old and CRASH only analyzes patients above
40 years old. Recent literature has proposed that more complex
models do not improve the quality of mortality prediction, but
the used features greatly influence performance (19). However,
non-consensual information has been deposed in other works
with ML algorithms such as Artificial Neural Networks showing
great performance in mortality prediction, using similar clinical
and demographic data (20, 21). In these studies, we often notice
a lack of disclosure of hyperparameters and unclarity of the used
methods, impeding the reproducibility of results.

Therefore, the defined goal is predicting mortality at discharge
of pediatric patients with TBI, using demographic and clinical
data as well as CT findings gathered during the patient stay
at the hospital. To do so, a variety of models and feature
selection processes are explored, to understand the dependence of
prediction quality on the used features andmodel type and which
combination of model and feature selection methods works best
in this specific cohort of patients. Besides evaluating feature value
for the prediction, the coherence with their clinical significance is
also discussed in detail. A pediatric patient dataset was selected
as the focus of this exploratory study because despite being
less studied, it is utterly important to develop medical decision
support tools for this group of patients as well. Pediatric TBI
has been thoroughly studied but mostly from a clinical and
epidemiological perspective (22–24). From a clinical perspective,
this age group presents more challenges in prediction tasks since
the brain is still under development and the effects of the injury
to an area in constant alteration are harder to predict (22).
Therefore, this study adds the point of view of computational
and predictive analysis of this population (aged between 0 and
14 years) as there is a great need to develop solutions that
help physicians in clinical decisions in this specific group of
patients. Since the study focuses on a new cohort of patients, a
more exploratory approach was chosen, experimenting different
combinations of models and feature selection methods.

2. MATERIALS AND METHODS

The methods used in this study are summarized in Figure 1. The
pipeline starts by performing data pre-processing, followed by
model training and testing.

2.1. Dataset
The dataset used in this study is the Hackathon Pediatric
Traumatic Brain Injury (HPTBI) dataset (25). It comprises 300

Frontiers in Neurology | www.frontiersin.org 2 June 2022 | Volume 13 | Article 859068

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Fonseca et al. Learning Models for TBI Mortality Prediction

FIGURE 1 | Overview of the pipeline describing the developed approach. Starting with pre-processing of the data, followed by a data split, feature engineering and

sampling, and subsequent training and testing several learning models.

FIGURE 2 | Characterization of the dataset. (A) Proportion of class labels, (B) Frequency plot of the number of patients per age. (C) Frequency plot of the number of

patients vs. the number of days since the injury to the death.

hospitalized pediatric patients, of which 84% are alive, as seen
in Figure 2A. Sixty-four percent of the patients are male, and
the average age is 7.2 ± 5.5 years, with a median of 6.9 years
of age.

The highest portion of this cohort is infants under the age of
1 year old, as shown in Figure 2B, likely due to the frail build
of infants of that age, which promotes more traumatic injuries.
Other age groups show a fairly similar level, promoting a more
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balanced dataset. In Figure 2C, we can see that most patients die
in the first few days after injury because more severe injuries tend
to be hard to recover from. Only five patients died aftermore than
10 days after the injury.

A total of 96 features of different types, summarized in
Table 1, were used for the training of the models. Within these
features, there are binary features, mostly describing if a certain
diagnostic or observation was made (e.g., presence of midline
shift in a CT scan), numerical features, accounting for the
days between admission and a certain event (e.g., days from
admission to tracheostomy), and multi-categorical types, which
classify injury mechanism or scales such as the Glasgow Coma
Scale (GCS).

2.2. Pre-Processing
First, features related to the Functional Status Scale (FSS) were
removed from the data since FSS could not be assessed for
patients who perished. Therefore, they are not useful as there
is a high correlation between mortality and missing data on
these features.

One Hot Encoding (OHE) was performed to transform
categorical features into n binary variables, where n was the
number of categories in that variable. Data were normalized
by scaling each feature to have a unit norm. After the feature
selection methods (Refer to Section 2.3), due to the high
imbalance of the dataset and its smaller size, the data were
oversampled using Synthetic Minority Oversampling Technique
(SMOTE) (26). With SMOTE, synthetic samples of the minority
class (mortality) were created to achieve a 50/50 balance of
the data.

2.3. Feature Selection Methods
Feature selection allows us to decrease data dimensionality, hence
reducing computation cost, by removing redundant features
or features that contribute little to the predictive capability of
the model.

Three methods were tested, starting with a simple feature
selection method, using the Koehrsen’s Feature Selector (KFS)
tool by Koehrsen (27). The first step in Koehrsen’s feature
selector is removing highly correlated features, i.e., with a
Pearson Correlation coefficient above 0.90. From the pair of
highly correlated features, one is selected randomly. For the
second step, feature importance is computed for all features
by a gradient boosting machine (GBM), for 10 iterations. With
that information, zero importance and low-importance features,
that do not contribute to cumulative importance of 0.95, are
removed from the training set. Applying Gradient Boosting
Models for feature selection has proven to be of value in previous
literature (28–30).

Then, Principal Component Analysis (PCA) and Independent
Component Analysis (ICA) were tested to verify if these highly
used methods in ML outperform the simpler first approach.
PCA and ICA are two extremely different approaches to
dimensionality reduction since they provide different feature
spaces obtained from the data (31, 32). In order to best
understand the impact of the number of PCA components in
model performance, it was varied from 3 to 15, corresponding

to 0.900 and 0.995 of cumulative variance explained respectively.
The same number of components were used in PCA and ICA, in
order to maintain a fair comparison.

2.4. Classification Models
In this study, a wide range of modest models was presented
to establish baseline results and provide a foundation on
which to improve. Four machine learning-based methods were
implemented in this study, covering different strategies of
learning and allowing a heterogeneous analysis of the data
since there is no previous knowledge about TBI prediction
in the pediatric cohort. For this reason, were implemented
methods based on decision trees, neural networks, and clustering.
Artificial Neural Networks are tested in this study as it is a
highly used method for a variety of tasks, including TBI mortality
prediction (20). KNN was also tested to verify how a clustering
method performs in this task.

Since one of the objectives of this study is to quantify and
qualify the predictive value of features, models such as Random
Forest (RF) and eXtreme Gradient Boosting (XGBoost) are
useful (20, 33), as they have the inherent capability of computing
feature importance, making them good model choices to test in
healthcare related tasks. The results of the computation of the
feature importance of RF and XGBoost are presented in Section
3.2, along with the feature importance computed by Koehrsen’s
Feature Selector.

KNN and ANN present limitations when speaking of feature
importance, which is one of the reasons that they are inherently
harder to interpret. For KNN, the distance between clusters could
be used to indirectly obtain feature importance, and for ANN,
the weights of the nodes could also be used for similar purposes.
However, the methods to achieve explanations for these models
are another area of expertise (explainable artificial intelligence,
xAI) that falls out of the scope of such a preliminary study.
Another approach to make these models more interpretable is
to pair them with an external feature selection method, such as
Koehrsen’s Feature Selector as it is done in this study.

2.5. Training
Before training, 20% of the data is held out for the final testing.
The remaining 80% is used for training. This proportion was
chosen based on previous study (21). To train the models, a five-
fold cross-validation (CV) method is applied in order to reduce
splitting bias as much as possible. The metric used for refitting
the models during CV was the area under the receiver operator
characteristic curve (ROC-AUC). Training scores are obtained
by averaging the 5 validation set results. Each of the 5 validation
results will generate an estimator andwe obtain the best estimator
out of the 5, for each model. Then, this best estimator will be
fitted to the test set and evaluated, before giving us the final test
results. The metrics used for evaluation are Balanced Accuracy,
Precision, Recall, and AUC. The entire pipeline is run for 50 trials
and the results are averaged. In this way, the obtained results
are more robust as they are not biased to a specific split (29).
To tune the hyperparameters of the models, a grid search was
performed, where each parameter was varied within a range. This
information is summarized for each model in Table 2.
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TABLE 1 | Summary of the different types of data and parameters in the Hackathon Pediatric Traumatic Brain Injury (HPTBI) dataset.

CTa findings Clinical data Demographics

CT positive for cerebral edema or brain swelling? Catheter type, quantity, and length of stay Age

CT positive for compression or effacement of the basilar

cisterns?

ICPb type, quantity, and length of stay Where did the patient go when they left the ED?

CT positive for epidural hematoma? Did the patient have a cardiac arrest? Sex

CT positive for intraparenchymal hemorrhage? Did the patient receive a decompressive craniectomy? Days from injury to admission

CT positive for intraventricular hemorrhage? Did the patient receive enteral nutrition?

CT positive for midline shift? Did the patient have an epidural hematoma evacuated?

CT positive for skull fracture? Cardiac arrest

CT positive for subarachnoid hemorrhage? GCSc ICUd (eye, motor, verbal, and total)

CT positive for subdural hematoma? GCS EDe (eye, motor, verbal, and total)

Pharmaceuticals ordered

(barbiturate, mannitol, inotrope or vasopressor,

hypertonic saline)

aComputed Tomography.
b Intracranial pressure.
cGlasgow Coma Scale.
d Intensive Care Unit.
eEmergency Department.

3. RESULTS AND DISCUSSION

3.1. Best Hyperparameters
The choice of hyperparameters has always been a major focus of
study in machine learning. It is extremely task and data specific
which impedes data scientists to define a generalized feature
selection method. In this study, a vast range of hyperparameters
was tested, as seen inTable 2. Since the pipeline included 50 trials,
with each one giving us the best estimator per model, the full
pipeline provides a list of 50 estimators per model. The frequency
of each hyper-parameter value in this list of the best estimators
was studied and the values that did not come up very often were
removed. So in Table 2, we present the best estimators among the
50 trials, i.e., the estimator that obtained the highest AUC and the
most frequent values, which is the value that shows upmore times
in the best estimator of each of the 50 trials.

Usually, the best value is also the most frequent one, as seen
in Table 2. However, there are some disagreements such as the
number of neighbors for KNN, the number of estimators and
max depth for RF, and the number of estimators and column
samples by the tree for the XGBoost. This is because a small
variation in this type of hyperparameters does not influence
performance a lot, e.g., 42 and 37 estimators in RF will get
similar performance. Therefore, defining the best value for these
hyperparameters is difficult, but it gives us an idea of the range of
values that are more suited to the task at hand.

On the other hand, other parameters, usually discrete
hyperparameters, like solver type and activation functions, are
easier to define. For example, the most recommended solver used
by ANN is LBFGS as it performs well in small datasets like ours.
tanH is also clearly the best activation function for this dataset.

Nevertheless, defining the best hyperparameters can be
challenging but what is proposed here is to start with a wide range
of values and test the models for a large number of trials, saving
the best estimator in each trial. Then, we are able to pick the most

often selected hyperparameters and remove the values that are
not chosen often. After some iterations of this process, we will
get a small range of values that gets similar performances but can
run in much less time.

3.2. Classification Results
The model comparison is summarized in Figure 3. In terms of
ROC-AUC values, XGBoost and KNN are the best performers
with 0.91 ± 0.06 and 0.90 ± 0.05 AUC, respectively. XGBoost
performs better when no feature selection is used prior to
training while KNN performs better when using Koehrsen’s
feature selector. Since XGBoost is based on decision trees, it
was expected that it performed better with no previous feature
selection method. The same applies to RF, as its best performance
of 0.85 ± 0.08 AUC is achieved with no prior feature selection.
For KNN, feature selection has a high impact on the model
performance, since it only obtains an AUC of around 0.80 with
ICA, PCA, and no feature selection. ANN is the worst performer
among the four models, for all metrics. However, it still obtains
an AUC value of 0.84 ± 0.08 using ICA with 15 components
and Koehrsen’s feature selector. Low precision scores indicate a
high false-positive rate, i.e., a high mortality prediction, which
is naturally incorrect as the class balance of the dataset leans
toward non-mortality. The similar performance among all four
feature selection methods could be an indication that the features
are not important to the model’s predictions or that the feature
selection methods are not correct. However, since Koehrsen’s
Feature Selector was able to boost KNN’s performance by a
considerable margin, the cause of the similar results for all feature
selection methods is likely to be the model itself and not the
features or feature selection methods. Eventually, a deeper ANN
would be able to extract more complex features from the original
feature space, which would consequently lead to different results
between feature selection methods. With only two hidden layers,

Frontiers in Neurology | www.frontiersin.org 5 June 2022 | Volume 13 | Article 859068

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Fonseca et al. Learning Models for TBI Mortality Prediction

TABLE 2 | Table summarizing the tuned hyperparameters for each model and the corresponding best and most frequent values.

Parameter Values Best value Most Frequent value

KFSf PCAg ICAh No FSi FS PCA ICA No FS

KNNj

Number of

neighbors

1 : 1 : 10 6 9 9 6 7 9 9 8

Weights Uniform, distance Distance Distance Distance Distance Distance Distance Distance Distance

Distance metric Manhattan, Euclidean Manhattan Manhattan Euclidean Manhattan Manhattan Manhattan Euclidean Manhattan

RFk

Number of

estimators

20 : 1 : 50 25 37 37 25 25 37 42 37

Max depth of the

tree

10, 30, 50, 85, 100,

None

30 30 85 30 30 30 None 10

Max features to

split

Square root, log2 Square root Square root Square root Square root log2 Square root Square root Square root

Minimum

samples per

Leaf

1,2,5,8,10 1 1 1 1 1 1 1 1

Minimum

samples to split

1,2,5,8,10 2 2 2 2 2 2 2 2

ANNl

Solver LBFGS, Stochastic

Gradient Descent,

ADAM

lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs lbfgs

Activation

function

Identity, logistic, tanH,

ReLU

tanH tanH tanH tanH tanH tanH tanH tanH

Alpha 0.0001,0.001, 0.01,

0.05, 0.1

0.01 0.001 0.01 0.05 0.01 0.001 0.001 0.01

Learning rate Constant, adaptive adaptive Constant Adaptive Constant Adaptive Constant Adaptive Adaptive

XGBoostm

Number of

estimators

50, 100, 1000 100 1,000 100 1,000 1,000 1,000 1,000 1,000

Max depth 1, 3, 7, 10 7 7 10 7 7 7 7 7

Subsample 0.3 : 1.0 1 1 1 1 1 1 1 1

Alpha 0.0001,0.001, 0.01,

0.05, 0.1

0.001 0.001 0.0001 0.001 0.0001 0.0001 0.0001 0.001

Colsample by

tree

0.3 : 1.0 0.5 0.3 0.5 0.3 0.5 0.5 0.5 0.3

Learning rate 0.001, 0.01, 0.05, 0.1,

1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.05

The best value is the value of the hyperparameters on the best estimator among all 50 trials. The most frequent value is the value that shows up the most among the 50 estimators that

are obtained throughout the 50 trials.
fKoehrsen’s Feature Selector.
gPrincipal Component Analysis.
h Independent Component Analysis.
iFeature Selection.
jk-Nearest Neighbors.
kRandom Forest.
lArtificial Neural Networks.
meXtreme Gradient Boosting.

the feature spaces extracted will probably be similar between
methods, leading to similar results. However, due to the size of
the dataset, it would be unwise to use deep networks.

The oversampling of the dataset provided far superior results
than using the original unbalanced data. All model score results
reported include this processing step prior to the training.

Another important topic addressed is the predictive value
of the features in this dataset. Feature importance computed
by Koehrsen’s feature selector is presented in Figure 4. The
feature importance has been normalized from 0 to 1 to facilitate
interpretation. Feature importance computed by the Random
Forest algorithm is seen in Figure 5.

Comparing Figures 4, 5, we notice similarities in the top
10 features of both methods, such as the hospital length of
stay, enteral nutrition, pupillary reaction on ICU admission, the
existence of a cardiac arrest, brain swelling, or cerebral edema
in the CT scan, ordering of inotrope or vasopressors [used in
patients in shock to increase cardiac contractility and organ
perfusion (34)]. Intuitively, we would grant importance to these
features as they are of enormous medical importance, so it was
expected our models pick them among the top 10 features. Other
features of high predictive value are less coherent with their
clinical value such as the number of days from admission to
the removal of the first catheter, order of hypertonic saline, and
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FIGURE 3 | Comparison of model scores per feature selection method: (A) k-Nearest Neighbors (KNN), (B) Artificial Neural Networks (ANN), (C) Random Forest (RF),

(D) eXtreme Gradient Boosting (XGBoost).

FIGURE 4 | Ten most important features according to normalized feature importance computed by Koerhsen’s feature selector tool, which uses a Gradient Boost

Model.

mannitol (commonly used in low severity cases for the nutrition
of the patient).

From Figure 6, it is possible to see that it presents almost
the same features as the RF computed feature importance, as
expected. However, there are some differences, including the
higher values for the first three features, indicating that XGBoost
gave more importance to these features than RF.

Quantitatively, feature importance values are low in both
methods, especially after the top five, indicating that the

predictive value of those less important features does not vary
much. Nevertheless, the top features present feature importance
two times higher than the fifth to tenth top features, which is a
considerable difference.

3.3. Clinical Considerations
As previously stated, it is of the utmost importance for physicians
to understand algorithm results, therefore, we must analyze the
results from the clinical point of view. Regarding the feature
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FIGURE 5 | Ten most important features according to Gini feature importance computed by random forest.

FIGURE 6 | Ten most important features according to Gini feature importance computed by XGBoost.

FIGURE 7 | Frequency of Glasgow Coma Scale (GCS) scores (A) evaluated in the intensive care unit (ICU), (B) evaluated in the emergency department (ED). The

scores range from 3 (completely unresponsive) to 15 (completely responsive).

importance results obtained by Koerhsen’s Feature Selector
(Figure 4), enteral nutrition is the most relevant feature by a
considerable margin. As enteral nutrition is used in critically ill
patients, its correlation with mortality makes sense. However, we
would expect other features such as midline shift, brain swelling,
and subarachnoid hemorrhage to be of higher importance as they
are directly related to the severity of the injury, i.e., the more
severe the injury is, the higher damage to the skull and brain.
Additionally, these CT related features are highly important in

the current state-of-the-art TBImortality prediction (15, 16). The
high importance of other features like the number of days to
the removal of the first and second catheter cannot be intuitively
explained as there is no apparent direct connection between them
and TBI. Placing catheters in patients is a common practice
to allow easy access to the patient blood and facilitate the
administration of pharmaceuticals. One possible explanation of
this is if the catheters are removed early in the hospital stay, it
can indicate that the patient does not require pharmaceuticals,
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and therefore, its condition is not severe, indicating a low chance
of mortality. Nevertheless, these indirect connections are not easy
to interpret and consequently may not be valuable to physicians.
A similar interpretation can be made regarding the ordering of
hypertonic saline. It is common practice to use hypertonic saline
as a source of nutrients for hospitalized patients. If such practice
is not required, it may indicate that the patient can eat and
drink and therefore his condition may not be severe, reducing
the chance of mortality.

The feature importance results obtained by the RF model
(Figure 5) are overall more clinically relevant since no features
related to catheter removal are in the top 10. Additionally,
pupillary reactivity, namely when both pupils are fixed, is the
most important feature, followed closely by enteral nutrition
and the existence of cardiac arrest. Pupillary reactivity is very
important in the currently commercialized models, CRASH (15)
and IMPACT (16), as it is a direct indicator of the severity
of the patient’s brain injury, i.e., if both pupils are fixed, the
damage is considerable and the patients (35, 36). Compression or
effacement of basilar cisterns is also among the most important
features, according to the RF model. This adds to the reliability
of this method, as the compression of basilar cisterns has shown
a high correlation with mortality (37). Nevertheless, there are
still some features, apparently important for the RF prediction,
that do not present a direct connection with the injury like the
ordering of hypertonic saline and vasopressors.

In all three methods, there is an unforeseen absence of the
GCS, which is a very valuable indicator of the patient’s state and it
is standard practice in brain injuries (36). In an attempt to explain
this disregard for such a highly used feature in this task, we can
look at Figure 7 and analyze the frequency of each score. It is
clear that the majority of patients present a GCS score below 9,
with the peak being at 3. The GCS ranges from 3, indicating a
completely unresponsive patient, to 15, completely responsive.
With this in mind, the cohort in this study is mostly constituted
by very severe cases of TBI, therefore, it can be inferred that GCS
scores should be a good indication of in-hospital mortality, which
is not observed here.

The unexpected absence of CT related features such asmidline
shift and brain swelling in the top 10 features can be related to
the previously referred heterogeneity of the condition in pediatric
patients, due to their still developing brains. The pre-conceived
importance of CT-based features is mostly based on adult cases,
but eventually, in a cohort of pediatric patients where the brain
and skull are still not fully formed, the importance of these CT
and brain related features may be changed, which is why they
are not visible in the feature importance figures. Nevertheless,
this interpretation would still require confirmation by other
external validation studies, with different datasets and methods
of feature importance.

4. LIMITATIONS

This study presents some limitations that were identified and the
possible strategies for future work. The size of the datasets in
healthcare usually suffers from the lack of massive collections,

which has been slowing the progress and application of AI
solutions in the medical field. In the current study, the size of the
dataset used is namely one of the limitations. The dataset may
not cover the heterogeneity of the population, and eventually,
the learning model did not generalize enough to cope with the
variabilities of the population. On other hand, the small size of the
dataset limited the approach to be used. Deep learning methods
were not applied, since they need massive data to be trained.
Moreover, the dataset only contains pediatric patients, which is a
less studied group of the population for TBI-related classification.
For some ages, there are only a few cases, which do not allow
to study the correlation between some variables and age. Finally,
the dataset did not contain continuous data, which could be
very useful for mortality prediction and allow the creation
of novel classification models that take into consideration the
time sequence.

5. CONCLUSION

In this study, four machine learning methods were compared
in terms of their ability to predict mortality after TBI. XGBoost
seems to be the best performer of the tested models, achieving
an AUC of 0.91, using no feature selection. The feature selector
tool tested showed promising results for KNN and ANN,
outperforming PCA and ICA. Decision tree-based methods
performed better with no feature selection.

The comparison between different combinations of machine
learning models and feature selection tools allows us to
conclude that feature selection can improve prediction quality,
either through external feature selection methods paired with
models like KNN or with decision-tree based models with
inherent feature selection capability, like XGBoost. Besides,
feature selection also introduces more comprehensibility to the
methods, facilitating the comparison of predictive value and
clinical significance.

Regarding the feature importance, there are some differences
between the expected clinically significant variables and
important features for prediction, namely the absence in the top
10 of the GCS features and the CT-based features, which may
be explained by the still developing brain and skull of pediatric
patients, that causes a higher variety of outcomes in this cohort.

Exploring a new cohort of patients portrays challenges such
as dealing with smaller datasets and less literature to compare
results. This entails further responsibilities such as exploring
different methods instead of improving or building upon a more
established methodology. Nevertheless, despite the exploratory
nature of this study, the results obtained showed that machine
learning methods can take advantage of the information in
ICU data, allowing the prediction of mortality in TBI pediatric
patients with high accuracy.

Predictive tools can be helpful in the prognosis process by
warning physicians about more critical cases and allowing them
to adapt their medical care plan based on the severity of each case.

Future study may focus on training and testing these models
on bigger and multicenter datasets, making them more robust,
but also, focused on the initial period of the ICU admission which
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is the most critical time window for prognosis. For example,
using only the data from the first two days of admission, in order
to make a faster prediction that can more carefully guide medical
attention. Efforts can also be made toward predicting not only
mortality but also the functionality of the patient after a certain
amount of time, providing physicians information that can lead
to more focused and overall better medical care.
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