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Purpose and Background: Distinguishing primary central nervous system lymphoma

(PCNSL) and glioma on computed tomography (CT) is an important task since treatment

options differ vastly from the two diseases. This study aims to explore various machine

learning and deep learningmethods based on radiomic features extracted fromCT scans

and end-to-end convolutional neural network (CNN) model to predict PCNSL and glioma

types and compare the performance of different models.

Methods: A total of 101 patients from five Chinese medical centers with pathologically

confirmed PCNSL and glioma were analyzed retrospectively, including 50 PCNSL and

51 glioma. After manual segmentation of the region of interest (ROI) on CT scans, 293

radiomic features of each patient were extracted. The radiomic features were used as

input, and then, we established six machine learning models and one deep learning

model and three readers to identify the two types of tumors. We also established a

2D CNN model using raw CT scans as input. The area under the receiver operating

characteristic curve (AUC) and accuracy (ACC) were used to evaluate different models.

Results: The cohort was split into a training (70, 70% patients) and validation

cohort (31,30% patients) according to the stratified sampling strategy. Among all

models, the MLP performed best, with an accuracy of 0.886 and 0.903, sensitivity

of 0.914 and 0.867, specificity of 0.857 and 0.937, and AUC of 0.957 and 0.908

in the training and validation cohorts, respectively, which was significantly higher

than the three primary physician’s diagnoses (ACCs ranged from 0.710 to 0.742,

p < 0.001 for all) and comparable with the senior radiologist (ACC 0.839, p = 0.988).

Among all the machine learning models, the AUC ranged from 0.605 to 0.821 in the

validation cohort. The end-to-end CNN model achieved an AUC of 0.839 and an

ACC of 0.840 in the validation cohort, which had no significant difference in accuracy

compared to the MLP model (p = 0.472) and the senior radiologist (p = 0.470).
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Conclusion: The established PCNSL and glioma prediction model based on deep

neural network methods from CT scans or radiomic features are feasible and provided

high performance, which shows the potential to assist clinical decision-making.

Keywords: computed tomography, glioma, primary central nervous system lymphoma, machine learning (ML),

deep neural netorks

INTRODUCTION

Primary central nervous system lymphoma (PCNSL) and glioma
are two common kinds of malignant primary tumors (1). PCNSL
consists of about 2% of brain tumors, with an increasing
incidence over the past decades (2). PCNSL is an aggressive
type of extra nodal lymphoma without coexisting systemic
disease at diagnosis (3). Glioma is the most aggressive primary
malignant brain tumor in adults, accounting for about 15%
of brain tumors (4). The two brain tumors can be identified,
localized, and characterized using conventional techniques,
such as computed tomography (CT) and magnetic resonance
imaging (MRI). It is important to differentiate PCNSL from
glioma since treatment options are vastly different for the two
diseases. Patients with PCNSL usually have a good response to
noninvasive treatments, such as chemotherapy, target therapies,
and whole brain radiation treatment (5). Resection provides
no therapeutic benefit and is reserved only for rare cases of
neurologic deterioration due to brain herniation. But for patients
with glioma, the standard treatment is the invasivemaximum safe
surgical resection followed by concurrent chemo-radiotherapy
(6). Therefore, preoperative differentiation of PCNSL and
glioma is clinically critical to guide neurosurgical treatment
strategies, avoid unnecessary and potentially harmful surgery,
and thus optimize patient outcomes, quality of care, and cost-
effectiveness (7).

Imaging has a central role in the differentiation task
of PCNSL and glioma, especially for patients whose lesion
pathology cannot be obtained by puncture. However, the two
diseases are challenging to differentiate based on radiology
alone since they share overlapping imaging characteristics. A
simple and accurate method is needed to identify PCNSL
and glioma. There are multiple previous studies attempted
to distinguish the two tumors. One way is to use advanced
imaging techniques, such as different types of MR perfusion
(8, 9), diffusion-tensor imaging (DTI) (10), and dynamic CT
perfusion (11). These advanced methods have been assessed
with modest success but require additional expense, time,
and radiation and may not be performed routinely for every
patient. Most recently, machine learning (ML) and deep learning
(DL) have been applied in correctly diagnosing PCNSL and
glioma. Radiomics is one successful method that extracts high-
dimensional quantitative features from medical images using
data-characterization algorithms and provides the information
that represents the underlying pathophysiology that is difficult to
acquire by visual inspection (12, 13). Suh et al. demonstrated that
the diagnostic performance of MR radiomics-based machine-
learning algorithm for differentiating PCNSL from atypical

glioma yielded a better diagnostic performance than human
radiologists and ADC values on a single medical center (14).
Kunimatsu et al. developed an ML-based image classifier to
differentiate between GBM and PCNSL using texture features
from contrast-enhanced T1-weighted images although the
prediction accuracy was only 75% on the test data (15). Yun et al.
revealed that a combination of radiomic features and multilayer
perceptron (MLP) network classifier served a high-performing
and generalizable model for the two tumors classification tasks
on a small MR dataset (16). Bathla et al. compared the predictive
performance of various ML techniques to differentiate between
PCNSL and glioma using a combination of various feature
selection and ML algorithms on several MR sequences (17). Xia
et al. (18) investigated the use of CNN model to differentiate
between PCNSL and glioma without delineation from 289 MRI
scans and proved that the proposed model was comparable to the
radiomic models and radiologist.

Prior studies have shown the MR radiomics-based or MRI
scan-based methods could successfully differentiate between
PCNSL and glioma. However, some patients are not suitable
for MR checks, such as critically ill patients with impaired
consciousness and patients with implantable medical devices,
including pacemakers. For these patients, CT check is routinely
performed. CT is also a cost-effective check, and the scan time is
short. To our knowledge, the effectiveness of ML or DL CT-based
models for predicting the two tumors has been rarely explored.
On the other hand, the amount, type, completeness, and diversity
of data determine the performance of classification models. The
results from multicenter trials are more representative for future
clinical practice. Therefore, the aim of our study was to explore
various machine learning and deep learning methods based on
radiomic features extracted from CT scans or raw CT scans to
predict PCNSL and glioma types and compare the performance
of different models on multicenter data. For the end-to-end
CNN model, we also employed visualization techniques to
superimpose heatmaps which explained the important regions
for making decision.

MATERIALS AND METHODS

Study Population
The retrospective study complied with the Declaration of
Helsinki (2000) and was approved by the Independent Ethics
Committees of the Shengli Oilfield Central Hospital, the
Affiliated Hospital of Qingdao University, Yantai Yuhuangding
Hospital, the Affiliated Hospital of Weifang Medical University,
and the Affiliated Hospital of Binzhou Medical University. The
requirement for informed patient consent was waived. Patients
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who underwent brain CT and pathologically proven diagnosis of
PCNSL and glioma between 1 August 2015 and 31 December
2020 were recruited from the electronic medical records. All
51 identified PCNSL cases and 56 randomly selected glioma
cases were assessed for the exclusion and inclusion criteria.
The exclusion criteria included the following: (1) previous brain
biopsy or surgery before CT (3 glioma cases), (2) more than one
lesion (1 glioma case), (3) the absence of available index CT scan
(1 glioma case), and (4) unsuccessful feature extraction (1 PCNSL
case). Finally, the cohort consisted of 50 PCNSL and 51 glioma
who were successfully assessed (Figure 1).

Image Acquisition
All examinations were conducted on four CT scanners: two
dual-source CT scanners with ≥ 64-detector rows (Somatom
Definition Flash/Force; Siemens, Forchheim, Germany) and two
multi-detector rows (Optima 660, GE Healthcare, Milwaukee,
WI, USA; Philips iCT 256, Philips Healthcare, Amsterdam,
Nederland), following the guidelines of head CT. The tube
voltage of the CT scan was 120 kV and the tube current was 200–
250 mAs. Axial images were reconstructed with as slice thickness
of 5mm, spacing of 5mm, and the matrix of 512 × 512mm.
The CT images were reconstructed with a standard kernel. The
CT images were transferred to an external workstation (Syngo
MMWPVE 36A; Siemens Healthcare, Forchheim, Germany) for
further postprocessing.

Image Preprocessing
The overview of the study workflow is provided in Figure 2.
A radiologist (5 years of experience in radiology) from
Shengli Oilfield Central Hospital reviewed the CT images and
manually delineated the brain tumors at the axial site using
MITK software version 2018.04.2 (www.mitk.org). The marked
regions of interest (ROIs) were confirmed by another senior
neuroradiologist (10 years of experience in radiology) who were
blinded to the assessment. For the end-to-end CNN method,
we converted 3D CT scans to 2D slices to overcome the small
number of data points.

Feature Extraction
Radiomic features were extracted using an open-source python
package, Pyradiomics 2.2.0 (https://pyradiomics.readthedocs.io/
en/latest/index.html) (19). The binWidth was set to 25 and
the interpolator was “sitkBSpline.” The resampledSpacing was
(1, 1, 1). In total, 293 radiomic features of each patient were
extracted, which included 18 first-order histogram features, 24
gray-level co-occurrence matrix features, 14 3D-shape features,
14 gray-level dependency matrix features, 16 gray-level size
zone matrix features, 16 gray-level run length matrix features,
5 neighboring gray tone difference matrix features, and 186
Laplacian of Gaussian (LoGsigma=2.0/3.0) features.

Feature Selection
We preprocessed the data and normalized the extracted features.
When the data value exceeded the range of mean and standard
deviation, the median of specific variance vector was used to

replace the outliers. In addition, we standardized the data in a
specific interval.

Due to the high dimension of the possible feature sets to be
used relative to the sample size and highly correlated variables,
feature selection is generally considered a critical piece of the
model building process and could reduce overfitting in further
differentiation model. A total of three feature selection methods
were considered. The analysis of variance (ANOVA) threshold
of 1.0 was applied first and 57 features remained. Then, we
used filter model correlation analysis with a threshold of 0.7
and obtained 21 features. Finally, an embedded model gradient
boosting decision tree (GBDT) was implemented and 7 features
were selected. The feature selection process was performed using
Python (version 3.5.6).

Machine Learning Models Establishment
and Validation
We randomly divided the patients into the training (n = 70, 35
PCNSL and 35 glioma) and validation (n= 31, 15 PCNSL and 16
glioma) sets by a ratio of 7:3. Then, we established six different
radiomic models from the established optimal feature subsets of
the training dataset using logistic regression (LR), random forest
(RF), decision tree (DT), k-nearest neighboring (KNN), support
vector machine (SVM), and naïve Bayes. The hyper-parameters
of the RF, DT, KNN, and SVM were automatically selected by
search method.

Models were trained with the training set using the 5-
fold cross-validation method, and estimation performance
was evaluated within the validation set. The performance
of different models was assessed using the area under the
receiver operating characteristic curve (AUC), accuracy (ACC),
sensitivity, specificity, a positive predictive value (PPV), and
a negative value (NPV). All machine learning methods were
performed using Python (version 3.5.6).

Radiomic-Based Deep Learning Models
In this study, a four-layer convolutional neural network
model, namely, multilayer perceptron (MLP) model, was
constructed with the selected seven radiomic features, such
as original_shape_Sphericity, original_firstorder_Median,
original_firstorder_RobustMeanAbsoluteDeviation,
original_glcm_ClusterShade, original_glcm_Imc1,
original_gldm_DependenceNonUniformityNormalized, and
original_glrlm_RunEntropy as input. MLP is an artificial neural
network that has also performed well in the previous studies
(20, 21). The overall architecture of MLP is shown in Figure 3.
Random search was used to select the best configuration of
hidden layer number nodes. The number of nodes for two
hidden layers was set to 16 and 8, respectively. The number of
nodes for output layer was set to 2, the same as the number of
patient’s group. The learning rate was 0.0001. The optimizer
was stochastic gradient descent, and the loss function was the
cross-entropy. Approximately 5-fold cross-validation was used
in the training process. We derived this radiomics-based deep
learning model using Pytorch 1.7.1 (https://pytorch.org), and
we stopped training when the model converged. The model was
trained with 150 epochs.
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FIGURE 1 | Detailed inclusion and exclusion flowchart.

FIGURE 2 | The workflow of this study. (1) Image processing, (2) feature extraction, (3) machine learning and deep learning for differentiation PCNSL from glioma.
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FIGURE 3 | The overall architecture of the neural network. We constructed a three-layer multilayer perceptron (MLP) network classifier. The input was the radiomic

features. The number of nodes for two hidden layers was set to 16 and 8, respectively. The number of nodes for output layer was set to 2, the same as the number of

patient’s group.

End-to-end CNN Model and Visualization
We trained an 2D end-to-end CNN model that integrated

an automatic feature extraction and a discriminative classifier

into one model. The raw CT scans were the input and the

classification label was the direct output. There were 1,138

glioma and 1,218 PCNSL slices in the training set. Transfer
learning was used, and a pretrained Densenet-121 (22) model
on ImageNet (http://www.image-net.org/) was fine-tuned to
perform classification on our dataset. We converted our 2D

slices into color images and resized them to the Densenet input
size (224 × 224). Slices for each patient were classified by our
trained model, and the final decision was performed by majority

voting. The loss function was cross-entropy, and the optimizer

was Adam. The learning rate was set to 0.0001 without weight

decay. The batch size was 8. We applied 5-fold cross-validation
and trained 500 epochs.

For the growing importance of interpretability in deep
learning, we applied Grad-Cam++ (23) technique to
draw coarse localization heatmaps, which highlighted the
important regions for CNN model to make diagnosis
decisions. The model paid more attention to the deeper
red region.

Physician’s Diagnosis
In addition, all images were read by four independent
radiologists, and three were primary radiologists (with 3, 4, and
4 years of experience in neuroradiology). One was a senior
neuroradiologist (17 years of experience). The four independent
radiologists were blinded to the initial diagnosis report, the
pathological and clinical information, but were aware of that the
segmented tumors were either PCNSL or glioma. The consistency
of diagnosis from three readers was evaluated using intra-
and interclass correlation coefficients (ICCs). An ICC of <0.4
indicated poor correlation; an ICC of 0.4 to 0.75 indicated fair
to good correlation; and an ICC of more than 0.75 indicated
excellent correlation (24).

Statistical Analysis
Area under the receiver operating characteristic curve (AUC)
and accuracy (ACC) were used to evaluate the performance of
the models. All statistical analyses were performed using Python
(version 3.5.6). Categorical variables were presented as absolute
numbers and counts with percentages. Summary statistics are
presented as means ± standard deviation (SD) for normally
distributed continuous variables, or as median [interquartile
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TABLE 1 | Demographic and clinical characteristics of all patients.

Characteristic PCNSL glioma P value

Gender 0.913

Male 27 (54.0%) 28 (54.9%)

Female 23 (46.0%) 23 (45.1%)

Age, mean ± SD (years) 61.1± 12.1 56.4 ± 13.0 0.017

Tumor Location 0.066

Telencephalon 40 49

Thalamus 5 2

Brainstem 2 0

Cerebellum 3 0

History of malignancy 0.624

No 49 (98.0%) 48 (94.2%)

Yes 1 (2.0%) 3 (5.8%)

range (IQR)] for non-normally distributed continuous variables.
Mann–Whitney U test was performed to compare continuous
variables, whereas chi-squared test was used for categorical
variables between groups. Delong tests was performed to
compare the AUC of different models. A two-tailed p <0.05
indicated statistical significance. ICC was used to evaluate the
consistency between different readers.

The training and validation of theMLP and CNNmodels were
implemented using Pytorch 1.7.1 (https://pytorch.org) with Tesla
V100 GPU support.

RESULTS

Study Population
In this study, the PCNSL cohort comprised of 50 patients (27
men and 23 women) with a mean age of 61.1 ± 12.1 years
whereas the glioma cohort comprised of 51 patients (28 men and
23 women) with a mean age of 56.4 ± 13.0 years. The detailed
patient demographics of the dataset are listed in Table 1. There
were no significant differences between the PCNSL and glioma
sets in terms of gender (p = 0.913), history of malignancy (p =

0.624), and tumor location (p= 0.066).

Performance of Different Models
The training and validation performances of six machine
learning models, MLP model, end-to-end CNN model, and four
radiologists are presented in Table 2. Figure 4 demonstrated the
area under the receiver operating characteristic curves (AUCs)
of all models. Among all the machine learning models, RF had
the best performance (AUC = 0.998, ACC = 0.957), followed by
SVM (AUC = 0.930, ACC = 0.829), DT (AUC = 0.923, ACC =

0.900), LR (AUC = 0.885, ACC = 0.814), KNN (AUC = 0.852,
ACC = 0.771), and naive Bayes (AUC = 0.796, ACC = 0.714) in
the training set. In the validation set, the performance of SVM
(AUC = 0.829, ACC = 0.742) was the best among the six RMs,
followed by LR (AUC = 0.821, ACC = 0.774), KNN (AUC =

0.819, ACC = 0.774), RF (AUC = 0.740, ACC = 0.710), Bayes
(AUC = 0.644, ACC = 0.581), and DT (AUC = 0.605, ACC
= 0.608). There was obvious overfitting in DT and RF models.

In comparing diagnostic performances, the ACCs of the three
primary radiologists were 0.742, 0.710, and 0.710 for readers 1,
2 and 3, respectively. The ICC of the three radiologists was 0.651
(p< 0.001). The senior radiologist achieved an accuracy of 0.839,
which was higher than the three primary radiologists.

The MLP performed best than other models, with an accuracy
of 0.886 and 0.903, sensitivity of 0.914 and 0.867, specificity of
0.857 and 0.937, and AUC of 0.957 and 0.908 in the training
and validation cohorts, respectively. There was no significant
difference compared to the senior radiologist in accuracy (0.903
vs. 0.839, p = 0.988 using chi-squared test). The end-to-end
CNN model achieved an accuracy of 0.957 and 0.839, sensitivity
of 0.971 and 0.867, specificity of 0.943 and 0.813, and AUC
of 0.957 and 0.840 in the training and validation cohorts,
respectively, which had no significant difference in validation
accuracy compared to the MLPmodel (p = 0.472) and the senior
radiologist (p= 0.470).

We added Figure 5 which includes six cases Grad-Cam++

heatmaps that were obtained from the last convolutional layer in
the network. The heatmaps might provide the most important
regions that influenced the diagnosis decision. The deep red
regions overlapped with the tumor area.

DISCUSSION

Differentiation between PCNSL and glioma is an important
but challenging task. The question of “PCNSL” or “glioma”
may become “resection or nonsurgical treatment” bypassing the
steps of biopsy, histological evaluation, and postsurgical patient
recovery. This would undoubtedly help expert neurosurgeons
to optimize both patient outcomes and the cost-effectiveness
of neurosurgical care (25). In this review, we explored various
machine learning and deep learning methods based on radiomic
features extracted from CT scans to predict PCNSL and glioma
types and compare the performance of different models on
101 patients from five Chinese medical centers. Among all the
models, the MLP model performed best, with an accuracy of
0.886 and 0.903, sensitivity of 0.914 and 0.867, specificity of
0.857 and 0.937, and AUC of 0.957 and 0.908 in the training
and validation cohorts, respectively, and was significantly higher
than the three primary physician’s diagnoses (ACCs ranged from
0.710 to 0.742, p < 0.001 for all) and comparable with the
senior radiologist (ACC 0.839, p = 0.988). The end-to-end
CNN model achieved an AUC of 0.839 and an ACC of 0.840
in the validation cohort, which had no significant difference in
accuracy compared to the MLP model (p = 0.472) and the
senior radiologist (p = 0.470). The CNN model used raw CT
scans as input. Feature extraction and selection were automated
and implemented. The coarse localization heatmaps help to give
an intuitive understanding of the mechanisms of the model.

Patients with PCNSL and glioma shared many similar clinical
symptoms and overlapping imaging characteristics. In our study,
the three primary physician’s diagnoses results ranged from 0.710
to 0.742 and the experienced radiologist achieved 0.839. The
fine-grained features of tumor regions were difficult to identify
with the naked eyes. The low accuracy indicated the difficulties
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TABLE 2 | Performance of different models in training set and validation set.

Method Training Validation

AUC (95%CI) ACC (p) Sensitivity Specificity PPV NPV AUC (95%CI) ACC (p) Sensitivity Specificity PPV NPV

LR 0.885 0.814 (0.810) 0.800 0.829 0.824 0.806 0.821 0.774 (0.470) 0.800 0.750 0.750 0.800

(0.816–0.942) (0.711–0.939)

RF 0.998 0.957 (0.810) 0.943 0.971 0.971 0.944 0.740 0.710 (0.149) 0.800 0.625 0.667 0.769

(0.995,1.0) (0.577,0.880)

SVM 0.930 (0.877–0.974) 0.829 (0.231) 0.857 0.800 0.811 0.848 0.829 (0.709–0.946) 0.742 (0.071) 0.867 0.625 0.684 0.833

DT 0.923 0.900 (0.151) 0.971 0.829 0.850 0.967 0.605 0.581 (0.470) 0.600 0.562 0.562 0.600

(0.874–0.967) (0.492–0.727)

Naive Bayes 0.796 0.714 (0.632) 0.771 0.657 0.692 0.742 0.644 0.516 (0.988) 0.467 0.562 0.500 0.529

(0.705–0.870) (0.475–0.803)

KNN 0.852 0.771 (0.031) 0.629 0.914 0.880 0.711 0.819 0.774 (0.988) 0.733 0.812 0.786 0.765

(0.777–0.914) (0.699–0.932)

Radiologist1 - 0.743 (0.810) 0.714 0.771 0.758 0.730 - 0.742 (0.718) 0.733 0.750 0.733 0.750

Radiologist2 – 0.714 (0.810) 0.686 0.743 0.727 0.703 - 0.710 (0.470) 0.733 0.688 0.688 0.733

Radiologist3 – 0.729 (0.339) 0.771 0.686 0.711 0.750 – 0.710 (0.470) 0.600 0.813 0.750 0.684

Radiologist4 – 0.843 (1.000) 0.829 0.857 0.853 0.833 0.839 (1.000) 0.800 0.875 0.857 0.824

MLP 0.957 0.886 (0.473) 0.914 0.857 0.865 0.910 0.908 0.903 (0.988) 0.867 0.937 0.928 0.882

(0.923,0.980) (0.885,0.941)

CNN 0.957 0.957 (0.632) 0.971 0.943 0.944 0.971 0.840 0.839 (0.470) 0.867 0.813 0.813 0.867

(0.928–0.979) (0.797–0.900)

AUC, area under curve; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value.

Radiologist4 is a senior neuroradiologist with 17 years’ experience while the other three are senior neuroradiologists with less than 5 years’ experience.

P is significant difference in accuracy compared to the senior radiologist4 using chi-squared test.

FIGURE 4 | The ROC curves of different models in testing samples. MLP method achieved the best testing AUC. We also compared other methods with MLP using

Delong test.

in identifying the two brain tumors with the gross visual. The
studies reported that even using high-resolution MR sequences,
visual differentiation of the two tumors was still challenging

(26, 27). Radiomics enabled the conversion of original images
into high-dimensional feature spaces that allowed an improved
performance in PCNSL and glioma. Radiomic ML algorithms
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FIGURE 5 | Representative images with heatmaps from the CNN model using Grad-Cam++ methods. The red regions were important for the diagnosis decision and

the deep red regions overlapped with the tumor area. (A–C) were cases for glioma and (D–F) were cases for PCNSL.

performed as well as or better than radiologists in several
studies (14, 28, 29). Bathla et al. (17) compared the predictive
performance of various ML techniques to differentiate between
PCNSL and glioma using a combination of various feature
selection and ML algorithms on 94 patients, and several models
achieved comparable performance.

The MLP model is a type of feed-forward artificial neural
network model that has the input and output layers connected
by a hidden layer. It helps to evaluate nonlinear relationships
in classification tasks (30) and improve efficiency (31). Yun et
al. (16) established an MRI radiomic MLP model to distinguish
PCNSL from glioma and found high performance, which was
even better than unsupervised convolutional neural networks.
In our study, among all of our machine learning methods, the
nonlinear classifier SVM ranked first, which indicated that amore
complex model was needed for the input features. Therefore, we
established an MLP classifier that had the capability of producing
a higher level and more abstracted feature selection algorithm
and it performed the best.

Convolutional neural network model is an automatic model
for differentiating between PCNSL and glioma. It was built on
raw CT slices and required no segmentation of tumor region.
Training from scratch was usually data hungry, so transfer
learning was applied. Natural images shared some underlying

features with medical images and the pretrained model helped to
improve the convergence rate. The validation results showed that
CNN model had no significant difference in accuracy compared
to the senior radiologists. According to the heatmaps, the red
important regions overlapped with the tumor regions, which
showed that the diagnosis decision of CNN mode was based on
the tumor rather than background regions. The effectiveness and
reasonability have been proved.

Although the MRI is the recommended check for brain
tumor diseases diagnose and it has a better resolution in brain
tissue, cost-effective CT is routinely performed for patients in
clinical practice. In our cases, there are final pathologically
confirmed patients with PCNSL unable to accept prepuncture
due to the tumor location and mistakenly underwent surgery.
CT has its own advantages, such as short scan time and low
price. Also, CT is performed for some patients who cannot have
MR check, such as people with implantable medical devices,
including pacemakers and cochlear implants. The ML or DL
algorithms have achieved great success in differentiating between
PCNSL and glioma onMR scans in previous studies and inspired
us to verify distinguish on CT scans. To our knowledge, the
effectiveness of CT-based ML or DL models for predicting the
two tumors has been rarely explored before. Therefore, we
collected data from multicenter and established different models
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to explore the performance on the two tumors classification tasks.
We followed the standard radiomic process: ROI segmentation,
feature selection, and model establishment and validation. An
effective feature selection is a crucial step because radiomic
features are multiple collinear and correlated predictors that
could produce unstable estimates and might overfit predictions.
In our models, 7 features remained after feature selection, and
using fewer features was a good strategy against overfitting.
In this study, MLP model was significantly higher than the
three primary physician’s diagnoses and the six machine learning
methods. CNN model made comparable prediction result with
MLP method (p = 0.431 in AUC) and senior radiologist (p =

0.470 in ACC). CNN was also recommended since the whole
process rarely required human intervention. The multicenter
study validated the robustness and generalizability of our model,
and it could provide a convenient and accurate tool for
radiologists to identify PCNSL and glioma types on CT scans.

Besides the retrospective nature, our study also had several
limitations. First, we used a relatively small number of patients.
The small sample size could limit the effectiveness of supervised
machine learning and deep learning methods and caused
overfitting. It was quite possible that the model performance
might vary with additional training data. We collected data
from five Chinese medical centers and divided all data into
training and validation sets by a ratio of 7:3. Unlike glioma,
there was no free available PCNSL dataset which could be
readily used. The absence of an external validation set could
not help us to determine the generalizability of our findings.
Nevertheless, our methods for CT radiomic feature analysis
showed the potential to be reproducible with other datasets,
although our classifiers might exhibit limited value. Second, the
proposed models were used especially for the discrimination
of PCNSL and glioma, whereas in clinical practice, the single
brain metastasis could show similar appearance on CT which
might cause diagnostic difficulties. Further study with collecting

more data to validate the generalizability of the developed

models and a more advanced multiclassification model needs
to be explored. Our classifiers could serve as a base model
for the discrimination of PCNSL and glioma and might
have the potential to be an effective aided diagnostic tool
for clinical practice to some extent. If more kinds of brain
tumor data could be collected, a baseline model could be
conducted quickly.

In conclusion, we established machine learning and deep
learning models from CT scans to help to differentiate
PCNSL and glioma and verified that the models were
feasible and provided high-performance -like senior
physician’s diagnoses, which showed the potential to assist
clinical decision-making.
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