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Objective:Measuring the Vestibular-Ocular-Reflex (VOR) gains with the video

head impulse test (vHIT) allows for accurate discrimination between peripheral

and central causes of acute vestibular syndrome (AVS). In this study, we sought

to investigatewhether the accuracy of artificial intelligence (AI) based vestibular

stroke classification applied in unprocessed vHIT data is comparable to VOR

gain classification.

Methods: We performed a prospective study from July 2015 until April 2020

on all patients presenting at the emergency department (ED) with signs of an

AVS. The patients underwent vHIT followed by a delayed MRI, which served

as a gold standard for stroke confirmation. The MRI ground truth labels were

then applied to train a recurrent neural network (long short-term memory

architecture) that used eye- and head velocity time series extracted from the

vHIT examinations.

Results: We assessed 57 AVS patients, 39 acute unilateral vestibulopathy

patients (AUVP) and 18 stroke patients. The overall sensitivity, specificity and

accuracy for detecting stroke with a VOR gain cut-o� of 0.57 was 88.8, 92.3,

and 91.2%, respectively. The trained neural network was able to classify strokes

with a sensitivity of 87.7%, a specificity of 88.4%, and an accuracy of 87.9%

based on the unprocessed vHIT data. The accuracy of these two methods was

not significantly di�erent (p = 0.09).

Conclusion: AI can accurately diagnose a vestibular stroke by using

unprocessed vHIT time series. The quantification of eye- and headmovements

with the use of machine learning and AI can serve in the future for an

automated diagnosis in ED patients with acute dizziness. The application

of di�erent neural network architectures can potentially further improve

performance and enable direct inference from raw video recordings.

KEYWORDS

vertigo, artificial intelligence, video head impulse test, stroke diagnosis, emergency

department
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Introduction

Strokes presenting with symptoms of dizziness or

vertigo often mimic benign inner ear diseases, which can

lead to misdiagnosis by physicians (1). Failure to rapidly

diagnose and promptly treat such strokes often results in

disability or death (2). Strokes occur in up to 8% of dizzy

patients presenting in the emergency department (ED)

(3) and any support tool reducing stroke misdiagnosis is

very important.

Currently, the most widely accepted triage tool for stroke

detection in dizzy patients in the ED is the “HINTS” eye

movement examination (4). “HINTS” is used as an acronym

for the head impulse test, nystagmus test and test of skew.

Such a clinical test can be applied in a timely and efficient

manner at the bedside. However, the correct application and test

assessment needs expertise, which is not always readily available.

Even experts struggle with the assessment of head impulses

when hidden (covert) corrective saccades and spontaneous

nystagmus occur (5). In comparison to a clinical assessment,

videooculography (VOG) devices enables a quantification of

eye- and head movements at the bedside, which can improve the

accuracy of HINTS (6, 7). The Vestibular-Ocular-Reflex (VOR)

gain by video head impulse (vHIT), especially, has already been

successfully used to differentiate between central and peripheral

causes in patients with an acute vestibular syndrome (AVS)

(6, 8).

These VOG devices are easy to use (9) and they can serve in

the near future with telemedicine (10) and machine intelligence

in a remoted setting such as smaller community hospitals lacking

onsite experts, or in pandemic times as a diagnostic tool for acute

dizziness (11, 12). VOG could potentially support physicians

in the ED analog to an Eye ECG (13). Artificial intelligence

(AI) has been suggested to improve stroke diagnosis in EDs,

by implementing machine learning-enabled clinical decision

support systems (14, 15). A concrete application of deep learning

to vestibular disorder classification using videonystagmography

was presented by Ben Slama et al. (16). The advantage of AI

applied on raw VOG data for its assessment is the holistic

approach on unprocessed head impulse test data compared to

partial assessments such as VOR gain at one single time point

or saccade latencies. Current analysis of vHIT data depend

on the parameters assessed and the associated calculation

methods (17).

In this study, we tried to test automated AI stroke

classification based on vHIT time series and to compare whether

the accuracy of the AI-based method is comparable to VOR gain

based stroke classification.

Abbreviations: AVS, acute vestibular syndrome; AUVP, acute unilateral

vestibulopathy; HINTS, Head-Impulse-Nystagmus-Test-of-Skew; ED,

emergency department.

Materials and methods

Study design and patient characteristics

In this prospective, cross-sectional study, data were collected

in the ED during office hours between 07/2015 and 04/2020,

which was part of a larger study (DETECT–Dizziness Evaluation

Tool for Emergent Clinical Triage). The local ethics committee

(Kant. Ethikkommission Bern) approved this study (KEK #

047/14). We included patients with AVS who had a continuous

dizziness, associated with nausea or vomiting, head-motion

intolerance, new gait or balance disturbance, and nystagmus.

We excluded patients younger than 18 years, if symptoms

abated after 24 h, or if the index ED visit was >72 h after

symptom onset. Patients with previous eye movement or

vestibular disorders were also excluded. All enrolled patients

gave written consent.

VHIT measurements

A subset of VOR gain data presented here have been

published elsewhere (6, 18–21). A neurootologist with 2 years’

experience in the field, performed physical examination, Caloric

Testing, and vHIT testing in all enrolled patients. vHIT was

performed using the EyeSeeCam (EyeSeeTec GmbH) (22) and

by applying fast passive horizontal head movements (high

frequency, 10–20◦ head excursion in 100–300 milliseconds

corresponding to a 1,000–6,000◦/sec2 acceleration) in room

light during visual target fixation at more than 1m distance.

We assessed only data from valid vHIT marked by the device

following data quality criteria such as peak head velocity

exceeding 70◦/s within the first 150 milliseconds with a head

exceeding 1,000◦/sec2. Head impulses were excluded if the eyes

or head were moving (>20◦/s) before the onset of the head

impulse or if the direction of the head impulse was not in the

horizontal plane (i.e., within ±45◦). Outliers regarding peak

head velocity (1.5-fold interquartile range) were rejected (23).

Two neurootologists (GM, AK) in a consensusmeeting reviewed

all vHITs for data quality and artifacts. Only clean data with

non-disruptive artifacts were included based on a predefined

classification (24).

Patient labeling and stroke diagnosis

All patients received an acute MR brain scan either

within 48 h in the ED or a second, delayed MRI (3–10 days

after symptoms onset), if there was no acute MRI indicated

based on clinical grounds or if the first acute MRI was

non-diagnostic. The delayed MRI served as a gold standard

for stroke detection. A blinded experienced board-certified

senior consultant in neuroradiology re-assessed all MRIs.
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Patients with a negative MRI and a pathological caloric test

were classified as acute unilateral vestibulopathy (AUVP) /

vestibular neuritis.

VOR gain based stroke classification

VOR gain values were derived from eye velocity

divided by head velocity at 60ms after HIT onset. We

calculated a best discrimination cut-off for stroke by

applying a receiver operating characteristics curve (ROC).

We did not use saccade analysis, since the currently used

VOG software did not offer an automated feature for

saccade analysis.

AI-based stroke classification of VOG

All data were evaluated in a time course between “start of

head impulse” (which was defined as the point 250ms before

the maximal head velocity) and 700ms after head movement

stopped. Then all head impulses for both horizontal directions

(right, left) of a single patient were concatenated into time

series with two channels (channel 1: head velocity, channel

2: eye velocity). For classification, a neural network using a

long short-term memory architecture with 64 hidden layers

was trained with a batch size of 512 samples for 256 epochs

(Figure 1). The neural net was implemented using MATLAB

(Version R2020b, Mathworks, Inc., Natick, US). The data was

split in a 70% training set (N = 40 patients) and a 30% test

data set (N = 17 patients). The assignment of patients for the

training and validation data set were randomly shuffled before

each training epoch of the neural network to avoid overfitting to

the training data set. To account for different time series lengths

for individual patients, all input data were segmented into data-

streams of 512 samples, typically covering 3 consecutive vHITs.

One of our goals was to reduce the preprocessing of the data

to a minimum. Therefore, we wanted the neural network to

be able to process vHIT time sequences with different lengths

(depending on the number of tests performed and the recording

duration). Since our neural network requires input streams with

constant length, we needed to find a suitable length for the data

streams to avoid extensive padding and truncating. In our data,

most sequences had about 4,100 samples, the shortest had 1,200

samples, and the longest consisted of 9,266 samples. To cover

this range, we chose a stream length of 512 samples (practical

sample size as a power of 2), which approximately corresponds

to 3 vHITs. We also tried other sequence lengths, but found

that a data stream length of 512 samples and a mini-batch size

of 512 samples worked well. Data balancing was performed

to avoid a biased training outcome of the network toward

the more frequent “no stroke” cases (AUVP) by duplicating

sequences (over-sampling) of the stroke data set to result in

an equal amount of AUVP and stroke sequences. In total,

this resulted in 535 data-streams for training and 233 data-

streams for testing. No filtering of the time series was performed.

All data streams were standardized by subtracting the overall

mean value of the head and eye velocities and dividing by the

standard deviation.

Statistical analysis

Descriptive statistics were reported using SPSS statistical

software (IBM SPSS Statistics for Windows, Version 25.0.

Armonk, NY: IBM Corp.). We used a binary logistic regression

to evaluate stroke predictors derived from VOR gains and AI-

Scores. We calculated a receiver characteristics curve (ROC)

with its corresponding sensitivity, specificity, and accuracy for

each test. Best cut-off points based on Youden’s J. The two

ROC curves were compared using the method of DeLong

et al. (25).

Results

We analyzed data from 57 patients aged between 30 and 78

years (average 55 years) with a diagnosis of stroke or AUVP and

valid vHIT measurements. Gold standard classification assigned

(39 with AUVP and 18 with stroke).

VOR-gain based stroke classification of
VHIT

We found odds ratio of 3.3 with a significant increase of

stroke probability for each VOR gain increment of 1.194 (p <

0.001, CI 1.785–6.106) (see Table 1). The overall sensitivity and

specificity for detecting a stroke with a VOR gain cut-off of 0.57

was 88.8 and 92.3% respectively and thus the accuracy was 91.2%

(Table 2 and Figure 3).

AI-based stroke classification of VHIT

Table 1 shows the odds ratio of 1.52 with a significant

increase of stroke probability for each AI score increment

of 0.422 (p < 0.001, CI 1.394–1.669). The obtained

network was able to classify strokes with an accuracy of

87.9% with a sensitivity of 87.7% and specificity of 88.4%

(Table 2 and Figure 3). Example of the neural network

activation patterns for a data-stream of an AUVP and

a stroke patient are shown in Figure 2. Artifacts such

as goggles slippage or head overshoot at the HIT end
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FIGURE 1

Diagram of the recurrent neural network architecture used for the classification of VOG times series. A bidirectional long short-term memory

(BiLSTM) model was used to enable context awareness between past and following sequences in a given time series of a patient.

TABLE 1 Logistic regression and predictive variables.

Test variable Regression coefficient Standard error Wald df p-Value Odds ratio 95% CI

Lower limit Upper limit

VOR gain 1.194 0.314 14.500 1 <0.001 3.302 1.785 6.106

AI-score 0.422 0.046 84.698 1 <0.001 1.525 1.394 1.669

CI 95% confidence intervals, df degree of freedom.

TABLE 2 ROC curve.

VOR gain AI-score

Area under the curve 0.95 0.88

Std-error 0.03 0.23

p-Value 0.00 0.00

95% Lower limit 0.89 0.83

95% Upper limit 1.00 0.93

Positive, if smaller or equal* 0.57 0.46

Sensitivity 0.88 0.87

Specificity 0.92 0.88

Accuracy 0.91 0.87

Negative predictive value 0.95 0.80

Positive predictive value 0.84 0.92

Positive likelihood ratio 11 7.25

Negative likelihood ratio 0.13 0.14

*cut-off.

(Figure 2) were occurring randomly (random noise/variation)

(17) with no systematic bias. There was no statistical

difference between the two ROC curves (p = 0.92) and

thus, there was no inferiority regarding AI classification

(Figure 3).

Discussion

Our study showed that AI-based classification of

unprocessed vHIT time series has a high accuracy und is

as accurate as the VOR gain classification for differentiation

between vestibular strokes and peripheral AVS.

Machine learning and the head impulse
test

Our analysis showed encouraging results using a recurrent

neural network architecture (long short-term memory) for the

binary classification task (“stroke” vs. “no-stroke”) of VOG time

series as exported by the diagnostic software. The input time

series were eye (from one eye only) and head velocities, taken

from head impulses.

VOR gain using a vHIT device can be calculated by

various methods (17). We used the velocity gain at 60ms in

order to avoid any bias from covered saccades or spontaneous

nystagmus. Gain calculation might be more susceptible to

artifacts and wrong eye calibrations resulting in wrong gain

estimations compared to AI, which considers the whole velocity

profile data. Therefore, it is mandatory to inspect visually the

velocity profile of slow phase VORwhich needs to be bell-shaped

and not contaminated with artifacts. Such manual assessment

needs expertise by the examiner.

With the advent of machine learning, these steps can

be combined into a single machine-learning instance that is

trained to directly classify eye movement video recordings (26).

However, there are two steps that need to occur prior to trying

to classify any new recording. First, a large dataset must be

collected and labeled by a set of experts. This labeling must

correspond with the indented classification to be performed

by the machine. For example, a recording in a dataset could

be labeled as stroke or no stroke according to neuroimaging

results. Then, the machine is trained with this dataset and

becomes ready to classify new recordings. Machine learning

may increase its diagnostic accuracy by combining results and

features obtained frommultiple tests like nystagmus test and test

of skew (14), or can also be used to only replace an individual

step or group of steps in the classical analysis pipeline.
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FIGURE 2

Examples of vHIT input streams (top row, raw data including artifacts) consisting of eye velocity (dashed curve) and head velocity (continuous

curve) time series and corresponding activation patterns of the first 10 hidden LSTM layers for a patient with AUVP (A) and a stroke patient (B).

FIGURE 3

Blue line: ROC CURVE using artificial intelligence for head

impulse test interpretation AUC: 0.88. Red line: ROC CURVE

using VOR gain to predict a vestibular stroke AUC: 0.95.

While other studies used different data sets to apply AI

on vestibular disorders (14, 27, 28), we chose to try AI in

vHIT data because HIT has been previously considered the

most important component of HINTS with a 18-fold stroke

probability in AVS patients with a bilateral normal HIT (29).

Accuracy of AI in stroke detection depends not only on the

quality of disease labeling but also on the quality of the collected

data. An expert can improve data quality of each performed

impulse by encouraging subjects to keep their eyes open and

by avoiding any physical contact between the examiners hand

and the goggles. Applying specific recording techniques and

avoiding some known pitfalls during eye- and head tracking

minimize the risk of artifacts (9, 24, 30). Moreover, data from

all impulses are averaged, further reducing the effect of noise or

artifacts in single impulse (24).

Our results of VOR gain accuracy are similar to older studies

(8). The known dissociation between caloric test results and

vHIT might affect the overall specificity of this test (6). A recent

study showed a slight worsening of accuracy of AI for stroke

classification based on HINTS data (14). This discrepancy may

be explained by the fact that we used different data forms. We

used unprocessed raw data (including artifacts), whereas they

used only pre-processed/calculated VOR gain values for AI. A

single VOR gain number does not reflect the whole dynamic of a

head impulse and informative data such as corrective saccades

are completely ignored. Our approach, however, included the

whole vHIT trace including the complete slow phase VOR
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(ascending, peak and descending velocity profile) and the fast

phase responses (compensatory saccades) for a period of 700ms.

This more holistic approach explains the improved accuracy of

AI for stroke classification.

Strength and limitations

To our knowledge, this is the first study, which used

AI in raw vHIT time series for stroke classification in AVS.

The biggest limitation of our study is the small sample size

used to train the neural net. For this reason, although we

obtained promising results, our study should be considered as

exploratory. More training data from multicenter prospective

studies may improve the performance, as data set size is usually

a limiting factor in machine-learning studies (31). The long

short-time memory architecture is a commonly used model for

the classification of time series. We can envision the use of

other network architectures, e.g., used for image segmentation

and classification tasks to directly utilize raw video recordings

as predictive variables. Moreover, additional data, such as

gyroscope recordings can be included for improved robustness.

In addition, we did not analyze other tests such as nystagmus

and test of skew. We expect that the combination of several

tests (which is reflected in the three steps “HINTS” exam),

would further improve AI sensitivity (32). AVS patients suffer

from imbalance and gait disturbance. Additional tests, such

the assessment of stance and gait, can already be assessed

automatically by the application of machine learning (14, 33)

and might be added in future triage protocols.

The application of head impulse data for stroke classification

is restricted only for AVS patients and should not be applied

to every acute vertigo patient (30). This fact means that AI

based ED triage with the head impulse test can only be applied

on selected patients with true AVS and is not generalizable

to all dizzy ED patients. Patients with other causes of vertigo

such as benign paroxysmal positional vertigo (BPPV) should be

evaluated by positional tests either on site or remotely by the

application of telehealth programs (34). Other modern machine

learning methods can be successfully applied on patients with

recurrent vertigo (spontaneous episodic vertigo syndromes)

such as Menière’s disease and vestibular migraine (35). It might

also be used for the triage of common vestibular disorders

however, (36) current classification accuracy is still low.

Clinical implications

The prospective collection of big data is the prerequisite for

a future successful implementation of AI in clinical decision

support systems (37–39).

An application of AI on big dizziness data repositories in the

future can lead to a development of an automated interpretation

of VOG results or automated early stroke detection in at risk

dizzy patients. Clinical decision support systems are highly

recommended for the assessment of the vHIT or “HINTS,”

since computer algorithms assess more than single VOR gain

values or catch-up saccade frequency. Bedside clinical HIT tests,

however, rely exclusively on the presence of catch-up saccades

and need further expertise, which is not readily available

in the ED. We recommend, therefore, future multicentric

observational studies with systematic quantitative recordings

of eye- and head movements combined with telemedicine

services on every dizzy patient. Such big data approach has

the potential for an automated VOG triage as a point-of-

care decision support tool. We, therefore, believe that a more

holistic approach offered by AI could not only pave the

way for a widespread use of vHIT in EDs but could also

substantially improve the objective assessment of vHIT at

the bedside.

Conclusion

AI can accurately diagnose a vestibular stroke by using

only vHIT unprocessed data in patients with AVS. Automated

vHIT assessment for stroke prediction was not inferior

to the current approach assessing a single VOR gain

value. However, the algorithm might be further improved

by larger training data sets and the implementation of

additional tests collected with VOG at the bedside. The

quantification of eye- and head movements with the

use of machine learning and AI is a promising future

tool for an automated diagnosis in ED patients with

acute dizziness.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further inquiries

can be directed to the corresponding author.

Ethics statement

The study was approved by the Local Ethics Committee

(KEK # 047/14). The patients/participants provided their written

informed consent to participate in this study.

Author contributions

AK: investigation, data curation, and writing—original

draft. WW: conceptualization, methodology, formal analysis,

and writing—review and editing. TW and EM: data curation.

EZ and FW: investigation. MC: supervision and project

Frontiers inNeurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2022.919777
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Korda et al. 10.3389/fneur.2022.919777

administration. GM: conceptualization, formal analysis,

writing—review and editing, project administration, and

funding acquisition. All authors contributed to the article and

approved the submitted version.

Funding

This study was supported by the Swiss National Science

Foundation #320030_173081.

Acknowledgments

EyeSeeTec GmbH loaned the VOG goggles.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

1. Newman-Toker DE, Moy E, Valente E, Coffey R, Hines AL. Missed diagnosis
of stroke in the emergency department: a cross-sectional analysis of a large
population-based sample. Diagnosis. (2014) 1:155–66. doi: 10.1515/dx-2013-0038

2. Saber Tehrani AS, Kattah JC, Mantokoudis G, Pula JH, Nair
D, Blitz A, et al. Small strokes causing severe vertigo: frequency of
false-negative MRIs and nonlacunar mechanisms. Neurology. (2014)
83:169–73. doi: 10.1212/WNL.0000000000000573

3. Goeldlin M, Gaschen J, Kammer C, Comolli L, Bernasconi CA, Spiegel
R, et al. Frequency, aetiology, and impact of vestibular symptoms in the
emergency department: a neglected red flag. J Neurol. (2019) 266:3076–
86. doi: 10.1007/s00415-019-09525-4

4. Newman-Toker DE, Kerber KA, Hsieh YH, Pula JH, Omron R, Saber
Tehrani AS, et al. HINTS outperforms ABCD2 to screen for stroke in
acute continuous vertigo and dizziness. Acad Emerg Med. (2013) 20:986–
96. doi: 10.1111/acem.12223

5. Korda A, Carey JP, Zamaro E, Caversaccio MD, Mantokoudis G. How good
are we in evaluating a bedside head impulse test? Ear Hear. (2020) 41:1747–
51. doi: 10.1097/AUD.0000000000000894

6. Morrison M, Korda A, Zamaro E, Wagner F, Caversaccio MD, Sauter TC,
et al. Paradigm shift in acute dizziness: is caloric testing obsolete? J Neurol. (2022)
269:853–60. doi: 10.1007/s00415-021-10667-7

7. Newman-Toker DE, Saber Tehrani AS, Mantokoudis G, Pula JH, Guede
CI, Kerber KA, et al. Quantitative video-oculography to help diagnose stroke in
acute vertigo and dizziness: toward an ECG for the eyes. Stroke. (2013) 44:1158–
61. doi: 10.1161/STROKEAHA.111.000033

8. Mantokoudis G, Tehrani AS, Wozniak A, Eibenberger K, Kattah
JC, Guede CI, et al. VOR gain by head impulse video-oculography
differentiates acute vestibular neuritis from stroke. Otol Neurotol. (2015)
36:457–65. doi: 10.1097/MAO.0000000000000638

9. Korda A, Sauter TC, Caversaccio MD, Mantokoudis G. Quantifying a learning
curve for video head impulse test: pitfalls and pearls. Front Neurol. (2020)
11:615651. doi: 10.3389/fneur.2020.615651

10. Müller-Barna P, Hubert ND, Bergner C, Schütt-Becker N,
Rambold H, Haberl RL, et al. Televertigo: diagnosing stroke in
acute dizziness: a telemedicine-supported approach. Stroke. (2019)
50:3293–8. doi: 10.1161/STROKEAHA.119.026505

11. Chari DA, Wu MJ, Crowson MG, Kozin ED, Rauch SD. Telemedicine
algorithm for the management of dizzy patients. Otolaryngol Head Neck Surg.
(2020) 163:857–9. doi: 10.1177/0194599820935859

12. Murdin L, Saman Y, Rea P. The remote neuro-otology assessment - managing
dizziness in the coronavirus disease 2019 era. J Laryngol Otol. (2020) 134:1120–
2. doi: 10.1017/S0022215120002273

13. Newman-Toker DE, Curthoys IS, Halmagyi GM. Diagnosing stroke in acute
vertigo: the HINTS family of eye movement tests and the future of the “eye ECG”.
Semin Neurol. (2015) 35:506–21. doi: 10.1055/s-0035-1564298

14. Ahmadi SA, Vivar G, Navab N, Möhwald K, Maier A, Hadzhikolev
H, et al. Modern machine-learning can support diagnostic differentiation of
central and peripheral acute vestibular disorders. J Neurol. (2020) 267:143–
52. doi: 10.1007/s00415-020-09931-z

15. Abedi V, Khan A, Chaudhary D, Misra D, Avula V, Mathrawala
D, et al. Using artificial intelligence for improving stroke diagnosis
in emergency departments: a practical framework. Ther Adv Neurol
Disord. (2020) 13:1756286420938962. doi: 10.1177/17562864209
38962

16. Ben Slama A, Mouelhi A, Sahli H, Zeraii A, Marrakchi J, Trabelsi H, et al.
deep convolutional neural network for automated vestibular disorder classification
using VNG analysis. Comput Method Biomech Biomed Eng Imaging Vis. (2020)
8:334–42. doi: 10.1080/21681163.2019.1699165

17. Zamaro E, Saber Tehrani AS, Kattah JC, Eibenberger K, Guede CI, Armando
L, et al. VOR gain calculation methods in video head impulse recordings. J Vestib
Res. (2020) 30:225–34. doi: 10.3233/VES-200708

18. Mantokoudis G, Korda A, Zee DS, Zamaro E, Sauter TC, Wagner
F, et al. Bruns’ nystagmus revisited: A sign of stroke in patients with the
acute vestibular syndrome. Eur J Neurol. (2021) 28:2971–9. doi: 10.1111/ene.
14997

19. Mantokoudis G, Wyss T, Zamaro E, Korda A, Wagner F, Sauter TC,
et al. Stroke prediction based on the spontaneous nystagmus suppression
test in dizzy patients: a diagnostic accuracy study. Neurology. (2021) 97:e42–
51. doi: 10.1212/WNL.0000000000012176

20. Korda A, Zamaro E, Wagner F, Morrison M, Caversaccio MD, Sauter TC,
et al. Acute vestibular syndrome: is skew deviation a central sign? J Neurol. (2022)
269:1396–403. doi: 10.1007/s00415-021-10692-6

21. Korda A, Zee DS, Wyss T, Zamaro E, Caversaccio MD, Wagner F, et al.
Impaired fixation suppression of horizontal vestibular nystagmus during smooth
pursuit: pathophysiology and clinical implications. Eur J Neurol. (2021) 28:2614–
21. doi: 10.1111/ene.14909

22. Schneider E, Villgrattner T, Vockeroth J, Bartl K, Kohlbecher S,
Bardins S, et al. EyeSeeCam: an eye movement-driven head camera for the
examination of natural visual exploration. Ann N Y Acad Sci. (2009) 1164:461–
7. doi: 10.1111/j.1749-6632.2009.03858.x

23. Glasauer S, von Lindeiner H, Siebold C, Büttner U. Vertical vestibular
responses to head impulses are symmetric in downbeat nystagmus. Neurology.
(2004) 63:621–5. doi: 10.1212/01.WNL.0000135022.14937.A9

24. Mantokoudis G, Saber Tehrani AS, Wozniak A, Eibenberger K, Kattah
JC, Guede CI, et al. Impact of artifacts on VOR gain measures by video-
oculography in the acute vestibular syndrome. J Vestib Res. (2016) 26:375–
85. doi: 10.3233/VES-160587

25. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under
two or more correlated receiver operating characteristic curves: a nonparametric
approach. Biometrics. (1988) 44:837–45. doi: 10.2307/2531595

Frontiers inNeurology 07 frontiersin.org

https://doi.org/10.3389/fneur.2022.919777
https://doi.org/10.1515/dx-2013-0038
https://doi.org/10.1212/WNL.0000000000000573
https://doi.org/10.1007/s00415-019-09525-4
https://doi.org/10.1111/acem.12223
https://doi.org/10.1097/AUD.0000000000000894
https://doi.org/10.1007/s00415-021-10667-7
https://doi.org/10.1161/STROKEAHA.111.000033
https://doi.org/10.1097/MAO.0000000000000638
https://doi.org/10.3389/fneur.2020.615651
https://doi.org/10.1161/STROKEAHA.119.026505
https://doi.org/10.1177/0194599820935859
https://doi.org/10.1017/S0022215120002273
https://doi.org/10.1055/s-0035-1564298
https://doi.org/10.1007/s00415-020-09931-z
https://doi.org/10.1177/1756286420938962
https://doi.org/10.1080/21681163.2019.1699165
https://doi.org/10.3233/VES-200708
https://doi.org/10.1111/ene.14997
https://doi.org/10.1212/WNL.0000000000012176
https://doi.org/10.1007/s00415-021-10692-6
https://doi.org/10.1111/ene.14909
https://doi.org/10.1111/j.1749-6632.2009.03858.x
https://doi.org/10.1212/01.WNL.0000135022.14937.A9
https://doi.org/10.3233/VES-160587
https://doi.org/10.2307/2531595
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Korda et al. 10.3389/fneur.2022.919777

26. Newman JL, Phillips JS, Cox SJ. 1D convolutional neural networks
for detecting nystagmus. IEEE J Biomed Health Inform. (2021) 25:1814–
23. doi: 10.1109/JBHI.2020.3025381

27. Juhola M. On machine learning classification of otoneurological data. Stud
Health Technol Inform. (2008) 136:211–6.

28. Kabade V, Hooda R, Raj C, Awan Z, Young AS, Welgampola MS, et al.
Machine learning techniques for differential diagnosis of vertigo and dizziness: a
review. Sensors. (2021) 21:7565. doi: 10.3390/s21227565

29. Tarnutzer AA, Berkowitz AL, Robinson KA, Hsieh YH, Newman-Toker DE.
Does my dizzy patient have a stroke? A systematic review of bedside diagnosis in
acute vestibular syndrome. CMAJ. (2011) 183:E571–92. doi: 10.1503/cmaj.100174

30. Mantokoudis G, Otero-Millan J, Gold DR. Current concepts in acute
vestibular syndrome and video-oculography. Curr Opin Neurol. (2021) 35:75–
83. doi: 10.1097/WCO.0000000000001017

31. Vabalas A, Gowen E, Poliakoff E, Casson AJ. Machine learning
algorithm validation with a limited sample size. PLoS ONE. (2019)
14:e0224365. doi: 10.1371/journal.pone.0224365

32. Korda A,WimmerW, Zamaro E,Wagner F, Sauter TC, CaversaccioMD, et al.
Video-oculography ‘HINTS’ in acute vestibular syndrome: a prospective study.
Front Neurol. (2022) 13:920357. doi: 10.3389/fneur.2022.920357

33. Pradhan C, Wuehr M, Akrami F, Neuhaeusser M, Huth S, Brandt
T, et al. Automated classification of neurological disorders of gait using

spatio-temporal gait parameters. J Electromyogr Kinesiol. (2015) 25:413–
22. doi: 10.1016/j.jelekin.2015.01.004

34. Barreto RG, Yacovino DA, Teixeira LJ, Freitas MM. Teleconsultation
and teletreatment protocol to diagnose and manage patients with benign
paroxysmal positional vertigo (BPPV) during the COVID-19 Pandemic. Int Arch
Otorhinolaryngol. (2021) 25:e141–e9. doi: 10.1055/s-0040-1722252

35. Groezinger M, Huppert D, Strobl R, Grill E. Development and validation
of a classification algorithm to diagnose and differentiate spontaneous episodic
vertigo syndromes: results from the DizzyReg patient registry. J Neurol. (2020)
267:160–7. doi: 10.1007/s00415-020-10061-9

36. Vivar G, Strobl R, Grill E, Navab N, Zwergal A, Ahmadi SA. Using Base-ml
to learn classification of common vestibular disorders on DizzyReg registry data.
Front Neurol. (2021) 12:681140. doi: 10.3389/fneur.2021.681140

37. Gamache R, Kharrazi H, Weiner JP. Public and population health
informatics: the bridging of big data to benefit communities. Yearb Med Inform.
(2018) 27:199–206. doi: 10.1055/s-0038-1667081

38. Dash S, Shakyawar SK, Sharma M, Kaushik S. Big data in
healthcare: management, analysis and future prospects. J Big Data. (2019)
6:54. doi: 10.1186/s40537-019-0217-0

39. Dagliati A, Tibollo V, Sacchi L, Malovini A, Limongelli I, Gabetta M, et al.
Big data as a driver for clinical decision support systems: a learning health systems
perspective. Front Digit Humanit. (2018) 5. doi: 10.3389/fdigh.2018.00008

Frontiers inNeurology 08 frontiersin.org

https://doi.org/10.3389/fneur.2022.919777
https://doi.org/10.1109/JBHI.2020.3025381
https://doi.org/10.3390/s21227565
https://doi.org/10.1503/cmaj.100174
https://doi.org/10.1097/WCO.0000000000001017
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.3389/fneur.2022.920357
https://doi.org/10.1016/j.jelekin.2015.01.004
https://doi.org/10.1055/s-0040-1722252
https://doi.org/10.1007/s00415-020-10061-9
https://doi.org/10.3389/fneur.2021.681140
https://doi.org/10.1055/s-0038-1667081
https://doi.org/10.1186/s40537-019-0217-0
https://doi.org/10.3389/fdigh.2018.00008~
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

	Artificial intelligence for early stroke diagnosis in acute vestibular syndrome
	Introduction
	Materials and methods
	Study design and patient characteristics
	VHIT measurements
	Patient labeling and stroke diagnosis
	VOR gain based stroke classification
	AI-based stroke classification of VOG
	Statistical analysis

	Results
	VOR-gain based stroke classification of VHIT
	AI-based stroke classification of VHIT

	Discussion
	Machine learning and the head impulse test
	Strength and limitations
	Clinical implications

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


