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Introduction: Electrocochleography (ECochG) measures inner ear potentials

in response to acoustic stimulation. In patients with cochlear implant (CI),

the technique is increasingly used to monitor residual inner ear function. So

far, when analyzing ECochG potentials, the visual assessment has been the

gold standard. However, visual assessment requires a high level of experience

to interpret the signals. Furthermore, expert-dependent assessment leads to

inconsistency and a lack of reproducibility. The aim of this study was to

automate and objectify the analysis of cochlear microphonic (CM) signals in

ECochG recordings.

Methods: Prospective cohort study including 41 implanted ears with residual

hearing. We measured ECochG potentials at four di�erent electrodes and

only at stable electrode positions (after full insertion or postoperatively). When

stimulating acoustically, depending on the individual residual hearing, we

used three di�erent intensity levels of pure tones (i.e., supra-, near-, and

sub-threshold stimulation; 250–2,000 Hz). Our aim was to obtain ECochG

potentials with di�ering SNRs. To objectify the detection of CM signals, we

compared three di�erentmethods: correlation analysis, Hotelling’s T2 test, and

deep learning. We benchmarked these methods against the visual analysis of

three ECochG experts.

Results: For the visual analysis of ECochG recordings, the Fleiss’ kappa value

demonstrated a substantial to almost perfect agreement among the three

examiners. We used the labels as ground truth to train our objectification

methods. Thereby, the deep learning algorithm performed best (area under

curve = 0.97, accuracy = 0.92), closely followed by Hotelling’s T2 test. The

correlation method slightly underperformed due to its susceptibility to noise

interference.

Conclusions: Objectification of ECochG signals is possible with the

presented methods. Deep learning and Hotelling’s T2 methods achieved

excellent discrimination performance. Objective automatic analysis of CM
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signals enables standardized, fast, accurate, and examiner-independent

evaluation of ECochG measurements.

KEYWORDS

ECochG, signal processing, deep learning, Hotelling’s T2, correlation analysis, residual

hearing, electroacoustic stimulation, cochlear implant

1. Introduction

Electrocochleography (ECochG) measures electrical

potentials generated by the inner ear in response to acoustic

stimulation. In patients with cochlear implant (CI), using the

implanted electrode, these potentials can be picked up directly

from the inner ear. The technique is increasingly used to

monitor the inner ear function during and after implantation.

Research groups were able to correlate changes in the ECochG

signal with traumatic events during implantation (1–6).

In order to assess ECochG potentials (either intra or

postoperatively), the analysis is most commonly performed

by visual inspection, which is currently the gold standard.

Therefore, the interpretation is heavily relying on the expertise

of the examiner. This entails several problems: i) a high level

of experience is needed to interpret the signals correctly. Thus,

inexperienced clinicians and researchers are unable to exploit

the technique; ii) the examiner determines whether or not an

ECochG response is present, which may result in a lack of

reproducibility; iii) longitudinal comparisons are hampered as

the assessment is not absolutely identical. iv) research groups

use different types of analysis, which makes the comparability of

clinical findings and study results difficult or impossible (4, 7–

12); v) due to the inconsistent assessment, patients with a poor

signal-to-noise ratio (SNR) are often not reported. However,

in order to draw correct conclusions, all measurements should

be reported (13, 14); and vi) the analysis of ECochG signals is

complex, which makes immediate judgment difficult. This is, of

course, a prerequisite when an instant assessment is required

(e.g., in the operating theater).

ECochG itself is an umbrella term for different

electrophysiological signal components of the inner ear

(i.e., the cochlear microphonic, CM, the auditory neurophonic,

ANN, the compound action potential, CAP, the summating

potential, SP). These signal components can be highlighted by

measurements with different acoustic polarities (condensation,

CON and rarefaction, RAR). The difference potential (DIF) is

calculated by subtracting the CON and RAR polarities. The DIF

response mainly represents the CM signal (15). In addition, the

sum highlights the summating potential (SUM), which mainly

represents the ANN (16). However, CM and ANN potentials

cannot be isolated, especially at high stimulation levels and low

frequencies (17). In intra and postoperative recordings, most

commonly the CM/DIF signal is used as it is the largest andmost

robust signal component (18). For this reason, in this article, we

will limit the analysis to the CM/DIF signal. Even though the

CM/DIF signal is the strongest potential, there are some things

to keep in mind. The amplitude of the signal is in the microvolt

range and varies greatly between individuals. While certain

patients show large amplitudes, in others, the potentials are very

small, resulting in a poor SNR. Furthermore, the morphology

and latency of the CM/DIF signal might vary significantly

depending on the remaining intact hair cells (19–21). These

factors (i.e., poor SNR, different wave morphology) must be

taken into account when analyzing ECochG potentials.

For the reasons given above, an automated and objective

evaluation would be highly desirable. This would standardize

and significantly simplify the analysis of the signals and make it

independent of the examiner. For ECochG signals, an approach

using Fast Fourier Transform (FFT) has been proposed (18, 22–

24). However, this method is not always applicable, especially

for short signals, since they do not have a stationary period

and adjacent frequencies cannot be accurately distinguished.

For other electrophysiological signals, objectified analyses have

become established in clinical practice. For example, for auditory

brainstem responses (ABR), correlation analysis is used (25, 26).

In the evaluation of cortical auditory evoked potentials (CAEP),

Hotelling’s T2 test has yielded a sensitivity at least comparable

to that of visual inspection (27–29). In other medical disciplines

(i.e., identification of cardiac arrhythmias in electrocardiograms,

ECGs), deep learning (DL) strategies could be successfully

implemented (30–33).

The aim of this study was to automate and objectify

the analysis of CM/DIF signals in ECochG recordings. The

employed method should i) be comparable to visual analysis,

(ii) allow the interpretation of intra- and postoperative ECochG

signals by clinicians and researchers who do not have much

experience in the field, (iii) allow immediate feedback, (iv)

should be replicable by other clinical and research centers, (v)

allow reproducible comparison of longitudinal data (since the

same analysis is performed).

2. Materials and methods

This prospective cohort study was conducted in accordance

with the Declaration of Helsinki and was approved by the
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local institutional review board (KEK-BE 2016-00887 and 2019-

01578). All participants gave written informed consent before

participation.

2.1. ECochG data

We performed ECochG measurements in 36 subjects (n

= 41 ears). All subjects used a Med-El implant (MED-

EL, Austria). Pure tone audiograms were performed in

a certified acoustic chamber with a clinical audiometer

(Interacoustics, Denmark). Hearing thresholds were collected

either immediately preoperatively or, in the case of postoperative

measurements, on the same day as the ECochG measurement.

We obtained pure tone air conduction hearing thresholds in

dB hearing level (HL) at 125, 250, 500, 750, 1,000, 1,500, 2,000,

and 4,000 Hz using either headphones or plug-in earphones.

Pure tone averages (PTAs) were calculated as the mean hearing

threshold at 125, 250, 500, and 1,000 Hz. PTAs and patient

demographics are shown in Table 1.

We recorded ECochG potentials using the Maestro Software

(version 8.03 AS and 9.03 AS, MED-EL, Austria). The system

setup was identical to our previous study (10). We measured

ECochG potentials at electrodes 1, 4, 7, and 10 (with electrode

1 at the tip) and only at a stable electrode position (i.e., either

intraoperatively after completed electrode insertion or in a

postoperative setting). When stimulating, depending on the

individual hearing threshold, we used three different intensity

levels: supra-threshold level (5 dB below discomfort level),

near-threshold level (10 dB above hearing threshold), and sub-

threshold level (10 dB below hearing threshold). Thereby, the

acoustic amplitude level was restricted as shown in Table 2.

Our aim was that not all stimulations would elicit an ECochG

response and that, depending on the stimulation level, the SNR

was different. As an acoustic stimulus, we used pure tones with

settings shown in Table 2. ECochG potentials were recordedwith

two polarities (i.e., CON, and RAR). For each ECochG response,

we recorded 100 epochs per polarity. The two polarities were

subtracted to form the CM/DIF signal.

2.2. Preprocessing of ECochG signals

As preprocessing, we used the following steps: i) if present,

removal of stitching artifacts, ii) application of a Gaussian

weighted averaging method to increase the SNR and exclude

uncorrelated epochs from further analysis, and iii) a 2nd order,

forward-backward filtered Butterworth bandpass filter (cutoff

frequencies 10 Hz / 5 kHz for visual analysis, and 100 Hz

/ 5 kHz for objective evaluation methods). To increase the

SNR in our ECochG recordings, we calculated the Gaussian

weighted epochs SGE(i) as described by Davila et al. (34) and

Kumaragamage et al. (35). We used the following equation:

SGE(i) =

2
∑

l=−2

(e
−[0.5( l

σ ·(5−1)/2
)2]

· SE(i+l))

whereas, l is the index number, starting from –2 to 2 that

accounts for five epochs SE averaged under the Gaussian

window, and i is the index number of the epochs in SE. The

SD of the Gaussian window σ was set to 0.4. Each Gaussian

weighted epoch SGE(i) was then correlated with the mean of

all epochs Sapprox. SGE(i) with a correlation less than –0.2 were

excluded to form the final ECochG response S. If more than 10%

of epochs had to be removed, only the 10 worst correlated were

discarded. Finally, we calculated the SNR using the +/- averaging

method (36).

2.3. Visual analysis

ECochG data were visually analyzed by three examiners

with extensive experience in the field. The goal was to have a

labeled data set that was used i) to train and test the objective

algorithms, and ii) to obtain a benchmark for evaluating the

accuracy, specificity, and sensitivity of the objective detection

methods. Using Labelbox (37), the data were presented to the

examiners as a subplot with six individual graphs representing

i) the DIF response, ii) the SUM response, iii) the CON

and RAR responses, and iv-vi) their individual FFT traces

(an example is shown in the Supplementary material). Each

examiner had to assess 4133 ECochGs with the question if a

CM/DIF response was present or not (dichotomous question).

Thereby, we used a blinded design in which the investigators

did not discuss the assessment to avoid bias in the individual

assessment. Signals classified as CM/DIF response by two

examiners (and noise by one examiner) were presented a second

time to all three examiners (to minimize volatility errors). Only

ECochG signals that were finally considered valid responses

by all three investigators were classified as responses. These

were used as ground truth for the objective classification. We

used Fleiss’ kappa to compare the raters. Fleiss’ kappa is a

measure of agreement between multiple raters in classifying

items (38).

2.4. Objective detection methods

We included the following objective detection methods:

i) Hotelling’s T2 test, ii) correlation analysis, and iii) a DL

convolutional neural network (CNN). To train and evaluate our

objective analysis, we benchmarked these methods against the

visual analysis of the three experts.

The dataset was divided into two parts: 70% for training

and 30% for testing purposes. We used the training subset

Frontiers inNeurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2022.943816
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Schuerch et al. 10.3389/fneur.2022.943816

TABLE 1 Demographic of included subjects.

Subject ID Gender Age (years) Side Etiology Electrode ToM (month) PTA (dB HL)

io 1 M 49 L Meningitis Flex 28 io 52.5

io 2 M 69 L Progressive HL Flex 28 io 58.8

io 4 F 45 L Progressive HL Flex 28 io 93.8

io 5 F 60 L Progressive HL Flex 24 io 66.3

io 6 M 51 R Progressive HL Flex 28 io 60.0

io 7 M 75 R Progressive HL Flex 28 io 52.5

io 8 F 77 L Progressive HL Flex 28 io 75.0

io 9 M 36 R Congential genetic Flex 26 io 48.8

io 10 M 71 R Progressive HL Flex 28 io 71.3

io 11 F 70 L Progressive HL Flex 28 io 50.0

io 12 F 27 R Congential genetic Flex 28 io 62.5

io 13 M 66 R Meniere’s disease Flex 28 io 72.5

io 14 F 53 L Progressive HL Flex 28 io 78.8

io 15 M 59 R Progressive HL Flex 28 io 48.8

io 16 F 78 L Progressive HL Flex 28 io 86.3

io 17 F 28 R Progressive HL Flex 26 io 33.8

io 18 M 86 L Progressive HL Flex 26 io 91.3

io 19 M 21 R Progressive HL Flex 28 io 78.8

io 20 F 61 R Sudden HL Flex 28 io 81.3

io 23 M 59 L Progressive HL Flex 28 io 77.5

io 24 F 37 L Sudden HL Flex 26 io 83.8

po 0 F 60 R Progressive HL Flex 28 10 68.8

po 1 M 73 R Progressive HL Flex 28 17 110.0

po 2 M 75 L Progressive HL Flex 24 46 66.3

po 3 M 80 L Congential genetic Flex 28 9 85.0

po 4 F 27 R Congential genetic Flex 28 20 101.3

po 5 F 66 R Progressive HL Flex 28 28 92.5

po 6 F 73 R Meniere’s disease Flex 28 78 90.0

po 7 M 82 L Progressive HL Flex 28 75 113.8

po 8 F 25 R Congential genetic Flex 28 57 85.0

po 9 F 43 R Progressive HL Flex 28 22 83.8

po 10 F 60 R Progressive HL Flex 24 13 97.5

po 11 F 73 L Progressive HL Flex 28 70 100.0

po 12 M 50 R Meningitis Flex 28 11 81.3

po 13 F 68 L Progressive HL Flex 28 22 93.8

po 14 F 52 R Congential genetic Flex 24 174 95.0

po 15 M 50 L Meningitis Flex 28 6 75.0

po 16 M 66 R Meniere’s disease Flex 28 7 106.3

po 17 M 56 R Sudden HL Flex 28 11 91.3

po 18 M 75 R Progressive HL Flex 28 70 96.3

po 19 F 63 R Progressive HL Flex 24 131 91.3

Mean 58.4 43.9 79.2

PTA, pure tone average; HL, hearing loss; ToM, time of measurement in months after implantation; io, intraoperative; po, postoperative.

to train and validate the models. For training, both features

(ECochG signals) and labels (ground truth determined by the

examiners) were provided. The test set was used to evaluate

the performance of the model. Here, only features were

provided. The predictions of the model were then compared to

the labels.

2.4.1. Hotelling’s T2 test

Based on Hotelling’s T2 method described by Golding et al.

and Chesnaye et al. for objective detection of CAEP signals, we

adapted the method to ECochG signals (27, 29). The Hotelling’s

T2 test for one sample is a multivariate extension of the Student’s

t-test (39, 40). With Hotelling’s T2 test, we can test the null
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TABLE 2 Settings for acoustic stimulation and maximum possible

acoustic stimulation level (maximum amplitude).

Frequency Stimulus Recording Measurement Maximum

(Hz) duration delay window amplitude

(ms) (ms) (ms) (dB HL)

250 12 1 19.1 109

500 8 1 9.6 115

750 6.67 1 9.6 123

1,000 5 1 8.0 122

1,500 4 1 8.0 122

2,000 3 1 6.5 122

hypothesis (H0) whether Q features are statistically different

from Q hypothesized values.

In our case, the ECochG recordings were the features and

the hypothesized values were noise. The ECochG recordings

were divided into Q windows along the time axis called ’time-

voltage-means’ (TVMs). The mean value was taken from each

Q-window, resulting in the following N× Q voltage matrix V:

V =









v11 . . . v1Q
...

. . .
...

vN1 . . . vNQ









Where N was the number of epochs and vij the j
th voltage

means from the ith epoch. The corresponding hypothetical

values (noise) were an array of size 1 × Q filled with zeros.

The noise was zero because the expected mean value of an

ECochG signal should be zero due to the bandpass filtering. The

number of used TVMs resulted in a down sampling, illustrated

in Figure 1.

We performed the calculations using a python (v 3.9.7)

script and the hotellings function from the spm1d module (v

0.4) (41, 42). As significance level α, we used 0.01 to tune the

number of voltage means Q for each acoustic stimulus frequency

individually. The optimal number of TVMs for the Hotelling

T2 test was calculated based on the maximum accuracy. For

this purpose, the number of TVMs was successively increased

in steps of five from 5 to 195 and the Hotelling’s T2 test was

calculated on the training set.

2.4.2. Correlation analysis

Our correlation algorithm is based on the method of Wang

et al. which explores the correlation of ABR signals (26). The

correlation procedure relies on the repeatability of the similarity

of two waveforms. The degree of similarity can be quantified

by calculating the Pearson correlation coefficient. A positive

correlation close to one reflects the presence of a response, while

a zero correlation shows the absence of response (25).

In our calculations, we treated the two polarities

(CON/RAR) separately and finally averaged the correlation

coefficients. The two polarities were separate, treated as

they evolve inversely (which is caused by condensation and

rarefaction phased acoustic stimuli). The procedure is shown in

Figure 2. Finally, we fitted a logistic regression model based on

the correlation coefficients.

2.4.3. Deep learning

Our DL classification approach was based on the method

used to automatically identify cardiac arrhythmia in ECG

signals. Several DL approaches to cardiac arrhythmia detection

have been proposed in the literature (30–33). Among them,

time frequency scalograms using continuous wavelet transform

(CWT) and AlexNet showed convincing results (32, 33).

AlexNet is a large convolutional neural network (CNN)

containing about 6,50,000 neurons and 60 million parameters.

It consists of five convolutional layers, and three fully

connected layers and is optimized for image classification

(43).

Time frequency scalogram images for the classifier were

generated from our dataset using CWT and the Python

module PyWavelets (44). In this process, a Morlet wavelet

shrinks and expands to map the signals into a time-

frequency scalogram. We chose the Morlet wavelet because

it offers a good compromise between spatial and frequency

resolution (33, 45). We normalized the scalograms and

compressed them to a dimension of 224 × 224 × 3

for width, height, and depth (red, green, blue). ECochG

DIF traces and their wavelet transformation are shown in

Figure 3.

We used PyTorch (v 1.11.0) and the pre-trained (on the

ImageNet database) AlexNet loaded from torchvision (v 0.6.0)

to take advantage of the already good classification properties

(46, 47). We substituted the last two classifiers of the AlexNet

for binary classification output. The rest of the network was

left exactly as it was during initialization. Stochastic gradient

descent with momentum was used to train the model. The

mini-batch size was 8 and the maximum epoch was 25 with

the learning rate being 1e-4, and a momentum of 0.9. We

used 10-fold cross-validation to detect overfitting. We then

trained the model with the full training set to increase model

performance.

2.5. Statistical analysis

We used accuracy, sensitivity, and specificity to evaluate our

algorithms. The algorithms were compared using the area under

the receiver operating characteristic (ROC) curve, also known as

the area under the curve (AUC). We used a one-sided DeLong

test with a confidence level of 0.95 using the roc.test function of

the pROC package (v 1.18.0) with R (v 4.1.2) (48, 49).
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FIGURE 1

Di�erence potential (DIF) curves in blue show a recognizable CM/DIF signal (A1,A2) and noise with no visible CM/DIF component (B1, B2) in

response to a 500 Hz stimulus. The orange curve in (A1,B1) shows 5 time-voltage-means (TVMs), and the green curve in (A2,B2) shows 10 TVMs

used to calculate Hotelling’s T2 test. It is evident that in this example, an increase of the TMVs leads to better mapping of the CM/DIF signal with

higher accuracy.

3. Results

3.1. ECochG recordings and
preprocessing

Gaussian weighted averaging significantly increased the

mean SNR from 2.50 dB (standard deviation, SD, 2.39) to 4.18

dB (SD 1.86) as demonstrated by the one-tailed paired-samples

t-test (p< 0.001). In total, 4133 DIF signals were labeled visually

by the three experts. Labeling took between 13.5 and 15 h (on

average, 12 s per signal). In contrast, objective analysis using the

algorithms took less than 25 ms per signal (the duration was

determined on a notebook XPS 13 9360 (Dell, Round Rock, TX,

USA) and does not include the training time of the algorithms,

which was substantially longer).

3.2. Visual analysis

The Fleiss’ kappa value of the agreement for the examiners

and all stimulation frequencies are shown in Table 3. Results

demonstrated a substantial to almost perfect agreement among

the examiners (50). Particularly, for the mid-frequencies (500

Hz – 1 kHz), the examiners were very much in agreement.

This agreement was a little lower for the lowest (i.e.,

250 Hz) and the two highest frequencies (i.e., 1,500 and

2,000 Hz), but still substantial. However, between the three

examiners, there was a systematic discrepancy in the visual

assessment. The false-positive rates (FPRs) for examiners 1,

2, and 3 were 0.110, 0.068, and 0.032, respectively. That is

examiner 1 still considered signals with a lot of noise as

valid responses, whereas examiner 3 only accepted clearer

neurophysiological traces.

Table 4 shows an overview of the stimulation frequencies,

the stimulation levels, the SNR, and the number of signals where

the experts identified a CM/DIF response. For frequencies of 500

Hz and above, when stimulated at supra-threshold level, a clear

CM/DIF component was found in 53.3%.

For all frequencies, the supra-threshold stimulation showed

the largest amplitudes (p < 0.001, one-tailed paired-samples

t-test), the biggest SNR (p < 0.001) as well as the most

visible signals. Near-threshold stimulation showed larger
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FIGURE 2

The correlation analysis handles CON and RAR recordings separately and proceeds as follows: (i) the ECochG recordings are divided into CON

and RAR; (ii) CON and RAR are each divided into two randomly arranged bu�ers of the same size (Bu�ers 1–4, 50 epochs each); (iii) the Pearson

correlation coe�cients for CORR CON and CORR RAR are calculated from bu�er 1 and 2 and bu�er 3 and 4, respectively; (iv) CORR is

calculated from the mean of CORR CON and CORR RAR. Since CORR depends on the subdivision of bu�ers, steps ii–iv (shaded area) are

repeated 100 times and averaged to get the final correlation coe�cient CORR COEFF. CON, condensation; RAR, rarefaction; CORR, correlation;

COEFF, coe�cient.

FIGURE 3

The blue DIF curves (A1,B1) show a recognizable CM/DIF signal (A1) and noise with no visible CM/DIF component (B1), respectively, in response

to a 500 Hz stimulus. Their corresponding time frequency scalograms generated using continuous wavelet transformation (CWT) are shown in

(A2,B2). These scalograms were then used to train and test the deep learning algorithm. DIF, di�erence; CM, cochlear microphonic.

amplitudes (p < 0.001), and bigger SNR (p < 0.001) than

sub-threshold stimulation. However, this was not the case

for 250 Hz stimulation amplitudes (p = 0.104). Regarding

visual analysis, near-threshold levels showed significantly

more visible CM/DIF responses than sub-threshold levels,

except at 250 Hz. At this frequency, we identified the

same number of responses for near-threshold and sub-

threshold levels.
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3.3. Comparison of objectification
methods

All objectification methods presented in Table 5 showed

good performance in detecting CM/DIF responses (51). The

ROC curves of the objectification methods for all mixed

frequencies are shown in Figure 4. The DL method performed

best (AUC = 0.97, accuracy = 92%), followed closely by

Hotelling’s T2 test (AUC = 0.96, accuracy = 91%). Statistically,

this difference was not significant (p = 0.14). In contrast,

the correlation analysis method underperformed as a classifier

(AUC = 0.85; accuracy = 83%). This difference was statistically

significant (DL p < 0.001; Hotelling’s T2 test p < 0.001). Table 5

shows the performance of the algorithms for all frequencies.

TABLE 3 Fleiss’ kappa among all three examiners.

Frequency (Hz) Fleiss’ kappa Interpretation

250 0.748 Substantial agreement

500 0.860 Almost perfect agreement

750 0.868 Almost perfect agreement

1,000 0.858 Almost perfect agreement

1,500 0.799 Substantial agreement

2,000 0.740 Substantial agreement

Mean 0.815 Almost perfect agreement

Interpretation according to Landis and Koch et al. (50).

4. Discussion

This study demonstrates that it is possible to objectively

and automatically determine whether a CM/DIF response

is present or not. All three algorithms investigated showed

very good to excellent discrimination performance. Especially

Hotelling’s T2 test and the DL method revealed excellent results

(mean accuracy was 91 and 92% with an AUC of 0.96 and

0.97, respectively).

4.1. Preprocessing

ECochG traces are usually displayed as averaged signals

(both, intra,- and postoperatively). During signal recordings,

noisy epochs can affect the signal quality and reduce SNR

(34). In addition, there are large inter-individual differences.

While some patients show very prominent potentials, in

others the signal amplitude is small (1, 3, 10, 12, 52). If

ECochG is to be used routinely in the operating room and

postoperative setting, however, all patients (including those

with small signals) must be analyzed. In our cohort, the

previously described Gaussian weighted averaging method

(34, 35) showed a substantial increase in SNR of ECochG

signals of all frequencies. Our calculations improved the

mean SNR by 1.68 dB. Kumarange et al. were able to

improve the SNR by 3.5 dB. However, they used extracochlear

ECochG recordings, whereas we measured from inside

the cochlea.

TABLE 4 Overview of the stimulation frequencies, the individual intensities, and the SNR.

Frequency (Hz) Threshold n Ampl (dB) Ampl STD SNR (dB) SNR STD n visible % n visible

250 Supra 226 27.33 2.71 2.68 1.34 49 21.7

Near 222 26.19 2.32 2.32 0.40 10 9.0

Sub 135 26.50 2.21 2.28 0.27 6 4.4

500 Supra 301 27.61 5.32 4.41 5.55 144 47.8

Near 283 25.00 2.48 2.62 0.66 43 15.2

Sub 161 24.50 2.60 2.37 0.39 2 1.2

750 Supra 225 28.00 5.92 4.20 5.30 114 50.1

Near 272 25.30 3.45 2.80 2.70 63 23.2

Sub 190 24.92 2.84 2.41 1.17 12 6.3

1,000 Supra 212 29.62 7.88 5.64 6.96 120 56.6

Near 333 25.24 3.86 2.95 2.83 123 36.9

Sub 200 24.09 2.60 2.38 0.78 10 5.0

1,500 Supra 193 27.44 6.31 3.98 5.18 102 52.8

Near 301 24.38 3.11 2.40 1.20 67 22.2

Sub 187 23.84 3.43 2.30 1.03 8 4.3

2,000 Supra 176 27.35 7.05 4.24 5.39 110 62.5

Near 270 24.09 3.23 2.40 0.95 81 30.0

Sub 227 23.23 3.23 2.42 1.02 35 15.4

Frequency, pure tone frequency in Hz; Ampl, peak-to-peak amplitude (dB re 1 µV): SD, standard deviation; SNR, signal-to-noise ratio; n, number of entries. n visible: signals where all

examiners indicated a visible cochlear microphonic component.
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TABLE 5 Performance of objectification methods.

Frequency Correlation analysis Hotelling’s T2 test Deep learning

(Hz) Acc Sens Spec CI AUC Acc Sens Spec CI AUC Q Acc Sens Spec CI AUC

250 0.92 0.19 1 0.04 0.64 0.90 0.83 0.91 0.04 0.96 90 0.96 0.88 0.98 0.03 0.98

500 0.85 0.50 0.99 0.05 0.91 0.93 0.95 0.92 0.03 0.97 80 0.92 0.94 0.91 0.04 0.97

750 0.84 0.50 0.98 0.05 0.88 0.93 0.91 0.93 0.04 0.98 100 0.94 0.91 0.95 0.03 0.97

1,000 0.81 0.58 0.94 0.05 0.84 0.86 0.95 0.82 0.05 0.97 85 0.91 0.88 0.92 0.04 0.97

1500 0.82 0.42 0.97 0.05 0.82 0.95 0.95 0.94 0.03 0.99 105 0.93 0.95 0.92 0.04 0.99

2,000 0.77 0.44 0.95 0.06 0.81 0.89 0.78 0.96 0.05 0.91 100 0.84 0.71 0.92 0.06 0.92

all 0.83 0.52 0.95 0.02 0.85 0.91 0.91 0.91 0.02 0.96 0.92 0.88 0.94 0.02 0.97

Q is the number of TVMs used in Hotelling’s T2 test. The optimal number of TVMs depends on the frequency and is given in the Q column. Stim, stimulus frequency (Hz); Acc, accuracy;

Sens, sensitivity; Spec, specificity; CI, 95% confidence interval; AUC, area under the receiver operator characteristic curve; Q, number of used TVMs for Hotelling’s T2 test.

FIGURE 4

ROC curves comparing correlation analysis, Hotelling’s T2 test, and deep learning (DL) methods. The false positive rate (FPR) is the dependent

variable (x-axis) in the DL and correlation algorithms. As Hotelling’s T2 test does not specify probabilities, we used p-values instead. Since p is

inversely proportional to probabilities, we mapped 1-p. The black line shows a random classifier. ROC, receiver operator characteristic; p,

p-value.

4.2. Visual analysis

In our study, the visual evaluation of the data was

carried out by three independent examiners who have many

years of experience in this field. Per recording, it took them

12 s on average to judge if a signal was present or not.

In contrast, with the described computer algorithms, the

evaluation was available after a few milliseconds. This time

span may not sound like much. But it is crucial, especially

in the intraoperative real-time setting, where immediate

decisions must be made to prevent possible inner ear

injury.

Regarding the visual analysis, the agreement of the three

examiners was very good, especially in the frequency range

between 500 and 1,000 Hz. Disagreements occurred mainly

in borderline cases with low SNRs (another reason why the
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SNR needs to be improved, if possible). The agreement among

the experts was still substantial, but lower 250 Hz and for

the two highest frequencies (i.e., 1,500 and 2,000 Hz). At 250

Hz, among all measured intracochlear ECochG, the SNR was

the lowest (also refer to Table 4) (8). For the two highest

frequencies, in some cases, it was difficult to distinguish

between natural signal fluctuations and reproducible CM/DIF

signal components.

It is important to note that a low SNR can affect the

waveform morphology. In our data, e.g., CON and RAR

responses did not evolve in opposite directions to each other,

or there was a change in the usual morphology (e.g., the

characteristic frequency of the CM/DIF signal was too low,

or the ECochG traces had an irregular shape). This resulted

in one examiner detecting a CM/DIF response while the

other detected only noise. In our analysis, we found that

the overall agreement was high, but one expert was rather

cautious and another more tolerant in his assessment. This

issue can be addressed by using an automated, quantitative

and objective evaluation method, as suggested by our study.

This allows for a uniform evaluation of the signals, which

simplifies the comparison between individuals and different

implantation centers or even makes it possible in the first

place.

The analysis of the three stimulation levels showed that

supra-threshold stimulation most frequently elicited a visually

present CM/DIF signal. In addition, the SNR (except at 250

Hz) was substantially higher compared to the near- and sub-

threshold levels. With supra-threshold stimulation, in our

cohort, for the frequencies 500 Hz and above, a clear CM/DIF

response was detected in 53.3% of cases. This implies that

in a significant proportion of cases, no clear response could

be detected. Additionally, this is despite the fact that most

of the measurements took place in a postoperative setting

and patients had a measurable residual hearing on the day

of examination. However, it should be noted that the PTA of

our study population shows a large variance and was, in some

individuals, above 90 dB (compare Table 1). Consequently, the

stimulus intensity was not always equally above the hearing

threshold. In addition, recordings were measured from 4

different electrodes. For many subjects, ECochG responses were

not visible at all electrodes. In literature, the situation regarding

the prevalence of CM/DIF responses when stimulating above

the hearing threshold is controversial. While some authors

have found a close correlation between hearing threshold and

CM/DIF signal threshold (11), other scientists have not found

a clear relationship (1, 2, 8, 9, 12, 22, 23). Based on our

data (refer to Table 4), we must assume that this correlation

is both level- and frequency-dependent. For near-threshold

and sub-threshold simulations, we detected significantly fewer

visually detectable ECochG signals. Interestingly, the sub-

threshold stimulation also showed CM/DIF responses in some

cases (9, 23). Especially at 2,000 Hz, this finding was more

pronounced.

4.3. Comparison of the objectification
methods

In our study, DL with CNN AlexNet on time-frequency

scalogram plots using CWT showed the best discrimination

performance. The advantage of this method is that the

morphology of the electrophysiological signal is taken into

account. Similar to visual inspection, our algorithm was able to

identify the CM/DIF response in the time-frequency scalograms

shown in Figure 3. Another advantage of DL is its independence

from preprocessing steps of ECochG signals (e.g., filtering). We

trained our network with both, filtered and unfiltered data and

could observe an almost identical accuracy of 90%.

Hotelling’s T2 test showed the highest sensitivity of our

tested algorithms. This high sensitivity is also known from other

research (27–29). However, in order to achieve good results with

the Hotelling T2 method, the signal must be free of artifacts

and baseline wander. Both signal phenomena occur in ECochG

measurements and must be addressed by using preprocessing

steps. Furthermore, an optimal length of the TVMs must be

defined. This is a trade-off; if the TVMs are too long, they

contain the natural fluctuation of the ECochG signal (e.g., peaks

and valleys). This results in TVMs with zero amplitude (similar

to noise). If the TVMs are too short, the robustness and thus the

test sensitivity decreases (overfitting) (29, 39).

Finally, the correlation analysis gave good objectivity to our

data, although it did not reach the performance of the other two

methods. It should be noted that signal artifacts can also have

a high correlation and thus reduce the accuracy of this method.

Such artifacts arise, e.g., from stitching or other unwanted effects

(25). To overcome this, one could try to eliminate artifacts with

more elaborate techniques or correlate only segments that are

not affected.

In summary, the DL algorithm and Hotelling’s T2 test

are very well suited for the objective assessment of ECochG

signals; we achieved a high accuracy with both approaches. By

using one of these methods, we can evaluate CM/DIF signals

independently of the expertise of the examiner. In this article, we

focused on the methodology itself with the question of whether

a CM/DIF response was present or not. In the next step, further

calculations could be included. For example, the evolution of

amplitude or latency during electrode insertion. Furthermore,

the advantages of the methodology are the immediate result

as well as the reproducibility, which allows the comparison i)

between individuals, ii) between different implant centers as

well as iii) of longitudinal data. Finally, an automated ECochG

assessment tool would pave the way for future standardized and

widespread use in the clinical setting.
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4.4. Limitations

Our data set was limited to 4133 ECochG recordings.

Additional signals would further improve the methodology,

increase the generalization of our models and reduce overfitting.

Moreover, the data were visually reviewed by three experts. If

more experts were incorporated into the algorithm, this may

also refine the evaluation. Systemic noise can hamper the use of

objective algorithms. In particular, the correlation analysis and

Hotelling’s T2 test were found to be vulnerable. The DL method

on the other hand was less dependent on data preprocessing and

less sensitive to noise interference.

We have applied our methodology only when the electrode

position was stable. In the next step, the objectification methods

must also be tested during insertion, i.e., when the electrode

is in motion. Furthermore, in the current study, we restricted

ourselves to the CM/DIF signal. However, the methodology

could also be used for the other signal components (i.e.,

ANN/SUM, CAP, SP). The combination of different data

features is also advisable (4, 53) and must be evaluated in a

future study.

5. Conclusion

Objectification of ECochG signals is possible with the

methods presented in this paper. Our DL algorithm and

Hotelling’s T2 test achieved a high accuracy to detect CM/DIF

responses that had previously been identified by three ECochG

experts. Objective automatic analysis of CM/DIF signals

enables standardized, fast, accurate, and examiner-independent

evaluation of ECochG measurements.
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